
Model checking: an introduction

FMSS, 2020-2021

1 / 114

Model checking

A fully automated method for analysing properties of systems. Closer to
program verification than to program analysis.

A verification technique based on:

I model of the program/system described by a transition system with
additional information assigned to states

I computation tree logic for expressing properties as a logic formula
I automatic check that the model satisfies the formula

E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite state concurrent
systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 2, 1986.

2 / 114

Transition System

In general, we can assume a set of atomic propositions and states are assigned a
subset of the propositions.

A transition system TS is a tuple (S, I,→,AP,L) such that:
I S is a non-empty set of states;
I I ⊆ S is a non-empty set of initial states;
I →⊆ S × S is the transition relation;
I AP is a set of atomic propositions;
I L : s ⇒ PowerSet(AP) is a labelling function for states.

We write
s → s′ if there is a transition from state s to state s′.

3 / 114

Computation Tree Logic - CTL

CTL formula φ

Atomic proposition
s |= φ
state s satisfies φ, i.e., state s is a model of φ

The simplest formula is an atomic proposition.
Example: assume φ = a. s |= φ (a holds in s)

Formulae are evaluated in the initial state.

4 / 114

Computation Tree Logic

Reachability in one step

EXφ it is possible in one step to reach a state that satifies φ

5 / 114

Computation Tree Logic

Reachability in one step

AXφ the next state it is certain that satifies φ

6 / 114

Computation Tree Logic
Reachability

EF φ
There exists a path and a state along that path such that φ
holds

7 / 114

Computation Tree Logic
Reachability

AF φ
Along every path there exists a state such that φ holds at that
state

8 / 114

Computation Tree Logic
Unavoidability

EG φ
There exists a path such that φ holds at every state along that
path

9 / 114

Computation Tree Logic

Unavoidability
AG φ
Along every path φ holds at every state

10 / 114

An example
S = {a,e,g,h} I = {a} AP = {consonant , vowel}
L(a) = {vowel}, L(e) = {vowel}
L(g) = {consonant}, L(h) = {consonant}

Atomic proposition
g |= consonant a 6|= consonant

Reachability in one step
e |= EX consonant a 6|= EX consonant
a |= AX vowel e 6|= AX vowel

Reachability
a |= EF consonant g 6|= EF vowel
a |= AF vowel e 6|= AF vowel

Unavoidability
a |= EG vowel g 6|= EG vowel
g |= AG consonant a 6|= AG vowel

11 / 114

Another example of Transition System
Towers of Hanoi

I Three rods (a, b, c) and three disks with different size
(small, medium, large) in order on rod a. The largest disk
at the bottom of a.

I Move the entire stack of disks from rod a to rod c,
assuming the following rules:
I only one disk can be moved at a time
I no larger disk may be placed on top of a smaller disk

https://en.wikipedia.org/wiki/Tower_of_Hanoi
12 / 114

Hanoi Tower: steps

13 / 114

Transition System
State: sequence of rods on which disks are palced (possmall posmedium poslarge)

14 / 114

Transition System

TS = (S, I,→,AP,L) where:
- S is the set of sequences of three letters chosen among a, b, c;
- I = {aaa};
-→ is the transition relation; the relation is symmetric (in the figure an
undirected line)
- AP = S, the atomic propositions are chosen the same as the set of states;
- L(σ) = σ, the labelling function is trivial.

We can check if along every path it is always possible to reach the
configuration "all disks on rod c". Let φ = ccc.

aaa |= AF φ

15 / 114

Computation Tree Logic

CTL

STATE FORMULAE

φ ::= tt | ap | φ1 ∧ φ2 | ¬φ | EΨ | AΨ

PATH FORMULAE

Ψ ::= Xφ | Fφ | Gφ | φ1Uφ2

φ1Uφ2

path formula which requires that exists a state s such that φ2

holds and φ1 holds in all states up to the state s

16 / 114

Computation Tree Logic

Other formulae

ff for ¬tt
φ1 ∨ φ2 for ¬((¬φ1) ∧ (¬φ2))
φ1 =⇒ φ2 for ((¬φ1) ∨ φ2)

The meaning of state formulae and path formulae depend on
each other.

17 / 114

Semantics of state formulae

σ |= tt iff true
σ |= ap iff ap ∈ L(σ)
σ |= φ1 ∧ φ2 iff (σ |= φ1) ∧ (σ |= φ2)
σ |= ¬φ iff σ 6|= φ
σ |= EΨ iff ∃π : π ∈ Path(σ) ∧ π |= Ψ
σ |= AΨ iff ∀π : π ∈ Path(σ) =⇒ π |= Ψ

E and A have the same meaning as in predicate logic but they
range over paths rather than states.

18 / 114

Semantics of path formulae

σ0σ1 · · ·σn · · · |= Xφ iff σ1 |= φ ∧ n > 0
σ0σ1 · · ·σn · · · |= Fφ iff σn |= φ ∧ n ≥ 0
σ0σ1 · · ·σn · · · |= Gφ iff ∀i : σi |= φ
σ0σ1 · · ·σn · · · |= φ1

⋃
φ2 iff ((σn |= φ2 ∧ n ≥ 0)

∧(∀i ∈ {0, ,n − 1} : σi |= φ1))

For example, F φ holds on a path, whenever φ holds on some
state of the path, possibly the current state

19 / 114

Definitions

I a state formula φ holds on a TS whenever it holds for all
initial states: ∀σ ∈ I : σ |= φ

I A path in a transition system is a sequence of states
σ0σ1 · · ·σn−1σn · · · , where ∀n > 0, σn−1 → σn, and where
the path is as long as possible.
Path(σ0) denotes the set of paths π = σ0σ1 · · ·σn−1σn · · ·
starting in σ0. .

I state σ is stuck if there are no transitions leaving σ. We
have Path(σ) = σ.

20 / 114

Definitions

I Given S0 ⊆ S, Reach1(S0) = {σ1 | σ0σ1 · · · σn · · · ∈ Path(σ0)
and σ0 ∈ S0}
states reachable from a state in S0 in one step.

I Given S0 ⊆ S, Reach(S0) = {σn | σ0σ1 · · ·σn · · · ∈ Path(σ0)
and σ0 ∈ S0 and n ≥ 0}
states reachable from a state in S0 in zero or more steps.

I Reach(I) is the set of reachable states.

21 / 114

Analysis of programs

Program = Program Graph + Data
I Program graph: represents the control structure of the program.
I memory: represents the data structure on which the program operates.
I the semantics of the program is based on the memories at the different

program points.
When we execute an instruction we move from a pair (pp,m) to another pair
(pp′,m′).
The value of pp′ and m′ depends on the values pp and m and the semantics
of the instruction that is executed.

22 / 114

Analysis of programs

An example

Assume:
Program point pp: [1], [2], [3] and [4], with [1] the initial point
x can take value : 0, 1, 2, 3
Memory m: (x ,0),(x ,1), (x ,2) and (x ,3).

23 / 114

Transition System TS

I S = {(pp,m) | pp ∈ {[i], i = 1,2,3,4}∧
m ∈ {(x , i), i = 0,1,2,3}}

I I = {([1], (x , i)), i = 0,1,2,3}
I →
I AP = {@[i], i = 1,2,3,4}∪{@(x , i), i = 0,1,2,3}∪ {start} ∪ {end}
I L([1], (x , i)) = {@1,@(x , i), start}

L([2], (x , i)) = {@2,@(x , i)}
L([3], (x , i)) = {@3,@(x , i)}
L([4], (x , i)) = {@4,@(x , i),end}

Each state is labelled by the program point and the memory it consists of,
and we have explicit labels for the initial and final program points.

24 / 114

Transition System TS

L([1], (x , i)) = {@1,@(x , i), start}, L([2], (x , i)) = {@2,@(x , i)}
L([3], (x , i)) = {@3,@(x , i)}, L([4], (x , i)) = {@4,@(x , i),end}

25 / 114

Analysis of programs

How many states? How many reachable states?

Consider the set of states where the following formula holds:
@[3]
@(x ,2)
@[1] ∧ @(x ,2)

Termination of the system
start =⇒ EF end

for each initial state it is possible to terminate
start =⇒ AF end

for each initial state it is certain to terminate

26 / 114

Analysis of programs

When the transition system is built by the program graph, and
the memory has k variables taking values in {0, · · · ,n − 1},
the complexity of the model checking is exponential in the
number of variables (nk).
The complexity depends on the product of the size of the
program points, the size of the formula φ and nk .

27 / 114

Model checkers

A model checker is program that can determine whether or not a CTL formula
holds on a transition system.

Let TS = (S, I,→,AP,L).

Auxiliary functions
Let S0 ⊆ S.

Reach1 (S0) =
R := {}
for each σ → σ′

if σ ∈ S0 then R := R ∪ {σ′}

Reach (S0) =
R := S0
while exists σ → σ′ with σ ∈ R ∧ σ′ 6∈ R

R := R ∪{σ′}
28 / 114

Model checkers

To reduce the complexity of model checkers algorithms, we can use the following
assumption:
there are transitions leaving all states.

To meet this assumption we add self loops on stuck states.

This allows to have some laws regarding negations.
AXφ is the same as ¬EX¬φ

Moreover, we assume that the set of states S is finite.

Let Sat(φ) be the set of states satisfying φ:
Sat(φ) = {σ | σ |= φ}

the procedure performs a recursive descent over the formula given as argument

29 / 114

Model checkers

TS = (S, I,→,AP,L).

Sat(tt) = S
Sat(ap) = {σ ∈ S | ap ∈ L(σ)}
Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)
Sat(¬φ) = S/ Sat(φ)
Sat(EXφ) = {σ | (Reach1(σ) ∩ Sat(φ)) 6= {}}
Sat(AXφ) = {σ | (Reach1(σ) ⊆ Sat(φ))}

30 / 114

Model checkers

Sat(EX (φ)) Sat(AX (φ))

31 / 114

Model checkers

Sat(EFφ) = {σ | (Reach({σ}) ∩ Sat(φ)) 6= {}}

Another algorithm
Sat(EFφ) =

R := Sat(φ)
while σ → σ′ with σ 6∈ R and σ′ ∈ R
do R := R ∪ {σ}

32 / 114

Model checkers

Sat(AGφ) = {σ | (Reach(σ) ⊆ Sat(φ))}

Sat(AGφ) = ¬(EF (¬φ))

33 / 114

Model checkers

Sat(EGφ) =
⋂

n F n(Sat(φ))
where
F (S′) = {σ ∈ S′ | (Reach1({σ}) ∩ S′) 6= {}}

Sat(φ) = F 0(Sat(φ)) and then
we remove states until
each remaining state has a successor
within the resulting set.

Algorithm
Sat(EGφ) =

R := Sat(φ)
while there is σ ∈ R with Rich1(σ) ∩ R = {}
do R := R/ {σ}

34 / 114

Model checkers
Sat(AFφ) = S/ (

⋂
n F n(S/ Sat(φ)))

where
F (S′) = {σ ∈ S′ | (Reach1({σ}) ∩ S′) 6= {}}

Sat(AFφ) = ¬(EG(¬φ))

35 / 114

Model checkers

Remaining cases (not shown)
Sat(E(φ1Uφ2)) Sat(A(φ1Uφ2))

36 / 114

from programs to systems

37 / 114

Model checking

Mechanical checking of the satisfaction of a logic formula on the model of the
behaviour of the system

Model construction:

I Kripke structure (Transition System - TS)
S = {s1, · · · sn}
AP = {p1,p2, ...pk} set of atomic propositions
L : S → Powerset(AP)}

I Labelled transition system (LTS)
S = {s1, · · · sn}
A = {a1, ...,am} set of actions
→: S × A× S

LTS can be generated by process algebras specifications.

38 / 114

Process algebras

Process algebras are a standard tool for the modelling of concurrent systems.

Assume models given using the Calculus of Communicating Processes (CCS)
[Milner, 89].
I A system consists of a set of communicating processes;
I each process executes actions, and synchronizes with other processes.
I Moreover, a special action τ denotes an unobservable action and model

internal process actions or internal communications.

Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)

39 / 114

A tea/coffee vending machine

The behaviour of the machine is the following:

I insert a coin to have a coffee or a tea
I the tea button or the coffee button can be pushed
I after pressing the tea button you collect tea, after pressing the coffee button

you collect coffee
I after collecting the tea/coffee, the machine is again available

The machine can described by a recursive process, whose possible actions are:
coin, teaButton, coffeeButton, collectTea, collectCoffee.

40 / 114

CCS

Syntax and informal semantics of CCS operators.

stop Inactive process A process which does nothing
a : P Action prefix Action a is performed

and then process P is executed
P + Q Nondeterministic choice Alternative choice between the behaviour

of process P and that of Q
P || Q Parallel Composition Interleaved execution of process P

and process Q
P \ a Action restriction Behaves like P apart from action a

that can only be performed
within a communication

P[a/b] Action renaming Behaves like P apart from action a
that is renamed b

41 / 114

A tea/coffee vending machine

LTS of M

The machine can be described as a recursive process M, whose possible actions
are: coin, teaButton, coffeeButton, collectTea, collectCoffee

M = coin : (P + Q)

P = teaButton : collectTea : M

Q = coffeeButton : collectCoffee : M

42 / 114

A tea/coffee vending machine
Assume the machine can fail: after the user has inserted a coin, the machine not
allow to push any button and moves to the initial state, without signalling any
failure.

LTS of M

M = coin : (P + Q + R)

P = teaButton : collectTea : M

Q = coffeeButton : collectCoffee : M

R = tau : M

43 / 114

CCS

I The specification is based on a set Act of elementary actions that processes
can perform and on a set of operators that permit to build complex processes
from simpler ones.

I The special action τ , not belonging to Act , represents the unobservable
action and is used to model internal process actions or to hide actions to the
external environment.

I We denote by Obs(P) the set of observable actions of the process P.

44 / 114

CCS

An inactive process is specified by the stop operator.

The action prefix operator specifies the execution of actions in sequence.

The nondeterministic choice operator indicates that a process can choose
between the behaviour of several processes.

Parallel composition of two processes corresponds to the interleaved execution of
the two processes.

The restriction operator is used to specify processes which synchronise on actions
(communication).

A communication transforms the couple of actions executed together into the
internal action τ .

The relabeling operator transforms an action into another action.

45 / 114

Labelled Transition Systems

The semantics of process algebras are Labeled Transition Systems (LTSs) which
describe the behavior of a process in terms of states, and labeled transitions,
which relate states.
An LTS describes sequential nondeterministic behaviours. More formally,

Definition
An LTS is a 4-tuple A = (X , x0,Act ∪ {τ},→), where: X is a finite set of states; x0

is the initial state; Act is a finite set of observable actions;→⊆ X × Act ∪ {τ} × X
is the transition relation.

We denote by x a→ x ′, a ∈ Act ∪ {τ}, the transition from the state x to the state x ′

by executing action a.

46 / 114

Labelled Transition system

Let us consider the process R below. Process R executes action a and then may
execute action b or action c, and then stops.

R = a: (R1 + R2)
R1 = b: stop
R2= c: stop

LTS

47 / 114

Labelled Transition System

Let us consider process Q below. Q, differently from R, executes the choice
between action b and c hen performing action a.

Q = Q1 + Q2
Q1 = a: b: stop
Q2= a: c: stop

LTS

48 / 114

Labelled Transition system

Let us consider the system described by the following process:
P = (R ‖ Q) \ a \ b

LTS of P

Every state of the LTS represents the combined current states of the subsystems
components.
In the initial state, only a can be executed. Since a is a synchronisation action, tau
is shown in the LTS.
Then following the left (right) edge of the LTS of Q, the behaviour of P is described
by the left (right) subtree.

49 / 114

Graphical notation

The graphical specification of process P is the following.

50 / 114

Expressing properties

The temporal logic ACTL (Action-based Computation Tree Logic).

ACTL is an action-based version of the branching time temporal logic CTL.

ACTL has the advantage that, since it is based on actions rather than states, it is
naturally interpreted over LTSs.

51 / 114

ACTL

The formulae of ACTL are action formulae, state formulae and path formulae.

An action formula permits expressing constraints on the actions that can be
observed.

A state formula gives a characterization about the possible ways an execution can
proceed after a state has been reached.

A path formula states properties of an execution.

The truth or falsity of a formula refers to a satisfiability relation over LTSs, denoted
|=.

52 / 114

Syntax and informal semantics of the used ACTL operators
Action formulae
χ ::= true any observable action

a the observable action a
∼ χ any observable action different from χ
χ | χ′ either χ or χ′

State formulae
φ ::= true any behaviour is possible
∼ φ φ is impossible
φ & φ′ φ and φ′

Eγ there exists an execution in which γ
Aγ for every execution γ
< a > φ there exists a next state reachable with a, in which φ
[a]φ for all next states reachable with a, φ holds

Path formulae
γ ::= Gφ at any time φ

Fφ there is a time in which φ
[φ{χ}U{χ′}φ′] at any time χ is performed and also φ,

until χ′ is performed and then φ′

53 / 114

ACTL formulae

In the table, a is an action belonging to the set Act of actions executable by the
system, ∼ is the negation operator, E and A are the existential and universal path
quantifiers, while U is the until operators.

For example, the formula:
AG([a](< b > true & < c > true))
states that the system, after having executed the action a, has always the
possibility of performing both b and c. This formula is true on the LTS of process R
and it is false on the LTS of process Q.

The model checker tool provides a counter-example facility. In the case of satisfied
formulae this facility reports a path which verifies the formula; otherwise a path
which does not verify the formula is given.

54 / 114

Relation between models

Definition (Traces equivalence)
Traces equivalence considers as equivalent those systems that perform the same
sequences of actions.

Q and R have the same traces.

Traces of Q: {ab,ac}
Traces of R: {ab,ac}

55 / 114

Relation between models
In general, system S2 simulates system S1 means that S2 observable behaviour
is at least as rich as that of S1.

The following definition does not cover unobservable behavior, internal
computations or hidden communications (τ action).

Definition (Strong simulation)
Let be given a labelled transition system A = (Q,q0,Act ,→).Let S be a binary
relation over Q. Then S is called a strong simulation over (Q,Act ,→) if, whenever
pSq, if p a→ p′ then there exists q′ ∈ Q such that q a→ q′ and p′Sq′.

p S q
↓a ↓a
p′ S q′

We say that q strongly simulates p if there exists a strong simulation S such that
pSq.

56 / 114

Strong simulation

The relation between states of a transition system can be easily extended to a
relation between two distinct transition systems.

57 / 114

Strong simulation: an example

R strongly simulates Q: exists a strong simulation S such that q0Sr0.
e.g., q0

a→ q1 and there exists r1 such that r0
a→ r1 and q1Sr1

and q0
a→ q2 and there exists r1 such that r0

a→ r1 and q2Sr1.

R observable behaviour is as reach as that of Q.
58 / 114

The converse S−1 of any binary relation S is the set of pairs (y , x) such that
(x , y) ∈ S

Definition (Strong bisimulation)
Let be given a labelled transition system A = (Q,q0,Act ,→).
Let S be a binary relation over Q.
Then S is called a strong bisimulation over (Q,Act ,→) if both S and its converse
S−1 are strong simulations.

There may be several relations that satisfy strong bisimulation.
Let ∼ be the maximal strong bisimulation relation.

We say that the states p and q are strongly equivalent, written p ∼ q.

59 / 114

Strong bisimulation: an example

S−1 is not a strong simulation: Q does not simulate R
State r1 in R does not have a strongly similar state in Q:
- r1 is not simulated by q1, because action c cannot be executed starting by q1
- r1 is nor simulated by q2, because action b cannot be executed starting by q1

Q 6∼ R

60 / 114

Strong bisimulation

Definition
Given two processes Q and R, they are strongly bisimilar if and only if a strong
bisimulation S exists which relates the initial states of the LTSs which describe
their behavior and we write Q ∼ R.

61 / 114

Strong Bisimulation

Strong Bisimulation ∼
I respects non-determinism. Intuitively, Q ∼ R means that Q can do everything

that R can do, and vice versa, at every step of the computation
I is an equivalence relation

- reflexivity: p ∼ p
- simmetry: p ∼ q implies q ∼ p
- transitivity: p ∼ q and q ∼ r imply p ∼ r

Moreover
I we can check bisimulation
I there exist algorithms and tools that can generate relations that satisfy the

property of being a bisimulation.

62 / 114

Weak bisimulation equivalence

A widely used equivalence is weak bisimulation, or observational equivalence,
which is defined over the set Act ∪ τ . The motivation is that only the externally
observable actions of a system are relevant in its interaction with the environment.

To abstract unobservable moves during observation, the weak transition relation
a⇒ is used.

We have: ∀a ∈ Act a⇒ = (
τ→)?

a→ (
τ→)?, where ? means zero or any number of

times.

Two systems are then observationally equivalent whenever no observation can
distinguish them.

63 / 114

Weak bisimulation equivalence

Definition (Weak bisimulation)
Let be given a labelled transition system A = (Q,q0,Act ,→).
A weak bisimulation equivalence over Q is a maximal binary bisimulation relation
S such that for every p,q ∈ Q we have pSq if and only if: ∀a ∈ Act ∪ {τ}:

1. p a⇒ p′, =⇒ ∃q′ such that q a⇒ q′ and p′Sq′.
2. q a⇒ q′, =⇒ ∃p′ such that p a⇒ p′ and p′Sq′.

Definition (observational equivalence)
Given two processes Q and QR, they are called observational equivalent if and
only if a weak bisimulation S exists which relates the initial states of the LTSs
which describe their behavior and we write Q ≈ R.

Observational equivalence is then defined upon the a⇒ relation.

64 / 114

Observational equivalence

Processes Q and R defined above are not observational equivalent (Q 6≈ R),
because there exists no state in Q bisimilar to the state in R reached after having
executed action a (in this state both action b and c can be performed)

Example of processes which are observational equivalent: Q ≈ R

q0
b⇒ q2 r0

b⇒ r1

q0
c⇒ q3 r0

c⇒ r2

65 / 114

Analysis of models

The LTS describe the behavior of the processes in details, including their internal
computations.

I equivalences relations between models
I model checking

correctness properties are expressed as temporal logic formulae

Assume we use the same formalism to model what is required of a system (its
specification) and how it can actually be built (its implementation). Theories based
on equivalences can be used to prove that a particular concrete description is
correct with respect to a given abstract one.

Similarly, in fault-tolerance and security analysis, the main goal is verifying that a
system works correctly in the presence of a given set of anticipated faults or
attacks.

66 / 114

Alternating-bit protocol

The purpose of the protocol is ensuring reliable communication over a medium
which may loose messages. A possible implementation of the protocol consists of
four processes: the Sender, the Receiver, and two communication channels: one
for the delivery of the message, and another for the acknowledgment of message
reception.

Sender and Receiver use the value of one bit to identify a message, so that the
identifier bit of each message is the complement of the preceding message’s bit;
a new message is not sent until the sender receives acknowledgment of the
current message.

Since the channels can loose messages, both the Sender and the Receiver
resend the same message or, respectively, acknowledgment repeatedly until the
acknowledgment is received.

67 / 114

Protocol schema

the content of the message is not modeled
alternatig bit
a: a0,a1
b : b0,b1
c : c0, c1
d : d0,d1

68 / 114

Actions

Upon an in action at the system’s external interface, the Sender sends the
message to the Receiver through channel A.

Synchronization on action a0 or a1 depending on the current value of the
alternating bit (the first message is identified as 0).

Upon receiving the message, the Receiver executes out , meaning that the
message is available at the interface.

Next, the Receiver sends the acknowledgment by synchronizing with channel B on
action c0 or c1 according to the value of the identifier bit of the received message.

69 / 114

Omission of messages or acknowledgments is represented by the τ actions in the
processes for the channels, which can take a channel from a state to another
without executing the corresponding synchronization action.

For clarity, given an action a, we use the notation:
- a to denote the sending action
- ā to denote the complementary receiving action

Moreover we used the character . for the action prefix operator
the notation | for the parallel operator.

The specification is given in the language of the Concurrency Workbench (CWB)
model checker.

70 / 114

Alternating-bit protocol

P = in.out .P

The system is specified by the process Sys.
Sys = (S0|A|B|R1)\L

- S0 is the Sender whose alternating bit is 0;
- R1 is the Receiver, whose alternating bit is 1;
- A is the delivery channel
- B is the ack channel
- L = {a0,a1,b0,b1, c0, c1,d0,d1}

71 / 114

Questions

Some questions:

Are P and Sys weak bisimulation equivalent ?

P ≈ (S0|A|B|R1)/L

For all paths, is it always possible to execute out?

72 / 114

Sender

S0 = in.S′0
S′0 = a0.S′0 + d1.S′0 + d0.S1

S1 = in.S′1
S′1 = a1.S′1 + d0.S′1 + d1.S0

73 / 114

Receiver

R1 = b0.R′0 + b1.R1 + c1.R1

R′0 = out .R0

R0 = b1.R′1 + b0.R0 + c0.R0

R′1 = out .R1

74 / 114

Delivery channel

A = a0.A′0 + a1.A′1
A′0 = b0.A + τ.A

A′1 = b1.A + τ.A

75 / 114

Ack channel

B = c0.B′0 + c1.B′1
B′0 = d0.B + τ.B

B′1 = d1.B + τ.B

76 / 114

The system Sys

LTS of the process Sys is generated automatically by the network of processes.

77 / 114

Properties

P = in.out .P
Sys = (S0|A|B|R1)\L

- P is observational equivalent to Sys: P ≈ Sys

Using bisimulation, infinite loops of τ could not be detected.

Introduce model checking to complement techniques based on
bisimulation.

78 / 114

Properties
- For example, we can express the property that action out will eventually be
executed.

P is a model for the formula, but the implemenattion, Sys, is not a model of the
formula.

This is caused by the fact that channels may drop messages or acknowledgments
indefinitely by executing τ actions.

Concurrency Workbench of the New Century
Version for MS Windows (.zip): https://sourceforge.net/projects/cwb-nc/
Free Software license.

The logic for expressing properties is µ− calculus.
Examples are available in the archive of CWB-NC.

Matthew Hennessy. Reactive Systems: How to use the Concurrency Workbench;
2008. (https://www.scss.tcd.ie/Matthew.Hennessy/rsexternal/notes/HowTo.pdf)

79 / 114

Running Running CWB-NC

cwb-nc ccs
activates the tool with language CCS

load filename.ccs
reads the input model

eq -S trace P Q
Trace equivalence between P and Q

eq -S bisim P Q
strong bisimulation equivalence between P and Q

eq -S obseq P Q
weak bisimulation equivalence between P and Q

80 / 114

Running CWB-NC

load filename.mu
reads the formulae

chk P fname
checks if P is a model of the formula fname

quit
stops the program

81 / 114

A model checker based on transition systems and CTL

NuSMV: a symbolic model checker
Free Software license.

NuSMV home page: http://nusmv.fbk.eu/

I Modelling the system
I Modelling the properties
I Verification

I simulation
I checking of formulae

82 / 114

NuSMV 2.6 documents

NuSMV 2.6 Tutorial.
R. Cavada, A. Cimatti et al., FBK-IRST
Distributed archive of NuSMV (/share/nusmv/doc/tutorial.pdf)

NuSMV 2.6 User Manual.
R. Cavada, A. Cimatti et al., FBK-IRST
Distributed archive of NuSMV (examples/nusmv.pdf)

Examples are available in the archive of NuSMV.

Examples are available also at the URL
<http://nusmv.fbk.eu/examples/examples.html>

Some examples below are taken from the tutorial.

83 / 114

Modelling language

I A system is a program that consists of one or more modules.
I A module consists of

I a set of state variables;
I a set of initial states;
I a transition relation defined over states.

I Every program starts with a module named MAIN
I modules are instantiated as variables in other modules
I Modules can be Synchronous or Asynchronous

84 / 114

Data types

The language provides the following types
I booleans
I enumerations (cannot contain any boolean value (FALSE, TRUE))
I bounded integers
I words: unsigned word[.] and signed word[.] types are used to model vector of

bits (booleans) which allow bitwise logical and arithmetic operations
(unsigned and signed)

I Arrays
lower and upper bound for the index, and the type of the elements
array 0..3 of boolean
array 10..20 of {OK, y, z}

I

85 / 114

Operators

I Logical and Bitwise
&, |, xor, xnor, ->, <->

I Equality (=) and Inequality (!=)
I Relational Operators >, <, >=, <=
I Arithmetic Operators +, -, * , /
I mod (algebraic remainder of the division)
I Shift Operators «, »
I Index Subscript Operator []
I

86 / 114

Other expressions

I Case expression
case
cond1 : expr1;
cond2 : expr2;
...
TRUE: exprN;
esac

I Next expression
refer to the values of variables in the next state
next(v) refers to that variable v in the next time step
next((1 + a) + b) is equivalent to (1 + next(a)) + next(b)
next operator cannot be applied twice, i.e. next(next(a))

87 / 114

Finite state machine-FSM

I Variables
I state variables
I input variables
I frozen variables

variables that retain their initial value throughout the evolution of the state
machine

I transition relation describing how inputs leads from one
state to possibly many different states

FMS = finite transition system

88 / 114

Finite Transition system

I Initial state:
init(<variable>) := <simple_expression> ;
variables not initialised can assume any value in the domain of the type of the
variable

I Transition relation:
next(<variable>) := <simple_expression> ;
simple_expression gives the value of the variable in the next state of the
transition system

89 / 114

More on variables

I state variables (VAR)
I input variables (IVAR)

are used to label transitions of the Finite State Machine.
input variables cannot occur in left-side of assignments
IVAR i : boolean;
ASSIGN
init(i) := TRUE; – legal
next(i) := FALSE; – illegal

I frozen variables (FROZENVAR)
variables that retain their initial value throughout the evolution of the state
machine
ASSIGN
init(a) := d; – legal
next(a) := d; – illegal

90 / 114

Constraints

- DECLARATION of variables (VAR, IVAR, FROZENVAR)

- ASSIGNMENTS that define the inital states

- ASSIGNMENTS that define the transition relation

Assignments describe a system of equations that say how the FSM evolves
through time.

ASSIGN a := exp;
ASSIGN init(a) := exp
ASSIGN next(a) := exp

91 / 114

Constraints

DEFINE is used for abbreviations
DEFINE <id> := <simple_expression> ;
no constraint on order where a declaration of a variable should be placed

FAIRNESS constraint
A fairness constraint restricts to fair execution paths. Paths that satisfy the
expression simple_expr below, which is assumed to be boolean.
When evaluating formulae, the model checker considers path quantifiers to apply
only to fair paths.

FAIRNESS simple_expr ;

92 / 114

Module declaration

A module declaration is a collection of declarations, constraints and specifications
(logic formulae).

A module can be reused as many times as necessary. Modules are used in such a
way that each instance of a module refers to different data structures.

A module can contain instances of other modules, allowing a structural hierarchy
to be built.

module :: MODULE identifier [(module_parameters)] [module_body]

93 / 114

A simple program

A system can be ready or busy. Variable state is initially set to ready. Variable
request is an external uncontrollable signal. When request is TRUE and variable
state is ready, variable state becomes busy. In any other case, the next value of
variable state can be ready or busy: request is an unconstrained input to the
system.

MODULE main
VAR
request : boolean;
state: {ready, busy };
ASSIGN
init(state) := ready;
next(state) := case

state = ready & request = TRUE : busy;
TRUE: {ready, busy };
esac;

94 / 114

A simple program
Build the transition system (also named Finite state machine - FSM)
4 states
2 initial states
14 transitions

95 / 114

Running NuSMV
./NuSMV -int
activates an interactive shell for simulation

read_model [-i filename]
reads the input model

go
reads and initializes NuSMV for simulation

reset
resets the whole system

help
shows the list of all commands

quit
stops the program

96 / 114

Simulation

pick_state [-v] [-r | -i]
picks a state from the set of initial states
-v prints the chosen state.
-r pick randomly
-i pick interactively

simulate [-p | -v] [-r | -i] -k
generates a sequence of at most k steps
starting from the current state
-p prints only the changed state variables
-v prints all the state variables
-r at every step picks the next state randomly
-i at every step picks the next state interactively

97 / 114

Simulation

goto state state label
makes state label the current state (it is used to navigate along traces).

show_traces [-v] [trace number]
shows the trace identified by trace number or the most recently generated trace. -v
prints prints all the state variables.

print_current_state [-v]
prints out the current state.
-v prints all the variables

98 / 114

An interactive session

./NuSMV -int
read_model -i file.smv
go
pick_state -r
print_current_state -v
simulate -v -r -k 3
show_traces -t
show_traces -v

——
pick with constraint
pick_state -c "request = TRUE" -i

99 / 114

Verification

Specifications written in CTL can be checked on the FSM .

OPERATORS:
EX p
AX p
EF p
AF p
EG p
AG p
E[p U q]
A[p U q]

A CTL formula is true if it is true in all initial states.

100 / 114

Checking properties

1. Specify the formula:

MODULE ...
.....

SPEC ... CTL formula

2. Invoke NuSMV as follows:

./NuSMV file.smv

101 / 114

An example
(– is a commented line in the file .smv)

MODULE main
VAR
request : boolean;
state: {ready, busy };
ASSIGN
init(state) := ready;
next(state) := case

state = ready & request = TRUE : busy;
TRUE: {ready, busy };
esac;

SPEC AG (state = busy | state= ready);
SPEC EF (state = busy);
SPEC EG (state = busy);
– SPEC AG (state=ready & request=true) -> AX state = busy;

102 / 114

A system with more than one module

MODULE instantiation

An instance of a module is created using the VAR declaration. In the declaration
actual parameters are specified

In the following example, the semantic of module instantiation is similar to
call-by-reference (the variable a below is assigned the value TRUE)

MODULE main
VAR
a : boolean;
b : foo(a);
...

MODULE foo(x)
ASSIGN
x := TRUE;

103 / 114

MODULE instantiation

In the following example, the semantic of module instantiation is similar to
call-by-value

MODULE main
...
DEFINE
a := 0;
VAR
b : bar(a); b is a module of type bar declared inside module main
...

MODULE bar(x)
DEFINE
a := 1;
y := x;

The value of y is 0
104 / 114

Composition of modules

MODULE mod
VAR
out: 0..9;
ASSIGN
next(out) := (out + 1) mod 10;

MODULE main
VAR
m1 : mod;
m2 : mod;
sum: 0..18;
ASSIGN sum := m1.out + m2.out;

. used to access the components of modules (e.g., variables)
self used for the current module

105 / 114

Composition of modules

Module declarations may be parametric.

MODULE mod(in)
VAR out: 0..9;
...

MODULE main
VAR
m1: mod(m2.out);
m2 : mod(m1.out);
...

106 / 114

Composition of modules

I modules have parameters (input/output parameters)
I variables declared in a module are local to the module
I synchronous composition: all modules move at each step (by default)
I aynchronous composition (modules instantiated with the keyword process):

one process moves at each step (it is possible to define a collection of parallel
processes, whose actions are interleaved, following an asynchronous model
of concurrency)

107 / 114

Processes

One process is non-deterministically chosen, and the assignment statements
declared in that process are executed in parallel. Variables not assigned by the
process remains unchanged. Next process to execute is chosen
non-deterministically.

running: a special variable of each process - TRUE if and only if that process is
currently executing. It can be used in a fairness constraint (formula true infinitely
often).

108 / 114

Exercise: A synchronous three bit counter.

MODULE main
VAR
bit0 : counter_cell(TRUE);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

MODULE
counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value) := FALSE;
next(value) := value xor carry_in;
DEFINE
carry_out := value & carry_in;

SPEC AG AF bit2.carry_out

109 / 114

Exercise: A mutual exclusion problem

Implement mutual exclusion between two processes, using a boolean variable
semaphore.

Each process has four states: idle, entering, critical and exiting.

The entering state indicates that the process wants to enter its critical region.

If the variable semaphore is FALSE, it goes to the critical state, and sets
semaphore to TRUE.

On exiting its critical region, the process sets semaphore to FALSE again.

110 / 114

Exercise

MODULE main
VAR
semaphore : boolean;
proc1: process user(semaphore);
proc2: process user(semaphore);

ASSIGN
init(semaphore) := FALSE;

MODULE user(semaphore)
VAR
state : {idle, entering, critical, exiting};
............

111 / 114

MODULE user(semaphore)
VAR state : {idle, entering, critical, exiting};

ASSIGN
init(state) := idle;
next(state) := case

state = idle : {idle, entering}
state = entering & !semaphore : critical
state = critical : {critical, exiting}
state = exiting : idle
TRUE : state
esac;

next(semaphore) := case
state = entering : TRUE
state = exiting : FALSE
TRUE : semaphore
esac;

FAIRNESS
running

112 / 114

Exercise

Properties

1. It never is the case that the two processes proc1 and proc2 are at the same
time in the critical state

AG ! (proc1.state = critical & proc2.state = critical)

2. if proc1 wants to enter its critical state, it eventually does - a liveness property

AG (proc1.state = entering -> AF proc1.state = critical)

Counter-example path. It can happen that proc1 never enters its critical region.

113 / 114

Another way to model a system

I INIT constraint
The set of initial states of the model is determined by a boolean expression
under the INIT keyword.

I INVAR constraint
The set of invariant states can be specified using a boolean expression under
the INVAR key- word.

I TRANS constraint
The transition relation of the model is a set of current state/next state pairs.
Whether or not a given pair is in this set is determined by a boolean
expression, introduced by the TRANS keyword.

114 / 114

