
Language-based security

I Data leakage
I Security policy
I Information flow in programs
I Examples of illegal flow of information

1 / 44

Data leakage

GENERAL DATA PROTECTION REGULATION(GDPR) - UE
2016/679

Regulation of the European Parliament and of the Council on
the protection of natural persons with regard to the processing
of personal data and on the free movement of such data

I explicit (private data made publicly available)
I interference between private and public data

2 / 44

Data leakage

3 / 44

Colluding apps

The Independent (British online newspaper)

Taken from: http://www.independent.co.uk/life-style/gadgets-and-tech/news/android-app-
steal-users-data-colluding-each-other-research-cartel-information-a7663976.html

"Android apps are mining smartphone users data by secretly colluding with each other,
according to a new study. Pairs of apps can trade information, a capability that can lead to
serious consequences in terms of security."

4 / 44

Data leakage

5 / 44

Data leakage

6 / 44

Data leakage

7 / 44

Data leakage

Can be studied by defining a security policy and by using the
theory of information flow in programs.

8 / 44

Information flow in programs

Modular programming

Information flow occurs through
I simple variables, input/output files
I array, structures, objects
I pointers, references
I objects allocated in dynamic memory
I global variables
I function calls, parameters by value/ parameters by

reference, return

9 / 44

Multilevel security policy

Multilevel Security policy: a security policy that allows the classification of data and
users based on a set of hierarchical security levels.

Example:

S = {Public,Private}

Private
|

Public

Private level is higher than Public level.

10 / 44

Multilevel security policy

Definition: A multilevel security policy L is a pair that consists of (i) a set of
security levels S and (ii) an ordering relation v between the levels.
Moreover, every pair of elements in S has both:
a greatest lower bound (glb, u) and a least upper bound (lub, t).

L = (S,v)

The relation v is reflexive and transitive. Moreover, v is antisymmetric.

(S,v) is a lattice of security levels.

Example:
L = (S,v)
S = {Public,Private}
v defined as follows: Public v Private.

11 / 44

Multilevel security policy

Example: Educational and Medical are sensitive classes of information of a user.

S = {None,Educational ,Medical ,Educational + Medical}, with v defined as:
None v Educational ; None v Medical ;
Medical v Educational + Medical ; Educational v Educational + Medical

least upper bound (t): Educational tMedical = Educational + Medical

12 / 44

Multilevel security policy

Let ui represents sensitive information of user i .

S = {None,u1,u2,u3,u1 + u2,u1 + u3,u2 + u3,u1 + u2 + u3} with
None v ui ;
ui v ui + uj , j 6= i ;
ui + uj , j 6= i v u1 + u2 + u3

least upper bound (t): u1 t u2 = u1 + u2

13 / 44

Secure Information Flow in programs

We assume a security policy L = (S,v) such that:
I S = {l ,h}
I v defined as: l v h

Input and output of a program are assigned either low level of
security (l) or high level of security (h)

Secure Information Flow property: the low output do not
reveal information on the high level input. Low output are not
assigned high level data.

14 / 44

Non-interference property

Non-interference property: the security domain private is
non-interfering with domain public if no input by private can
influence subsequent outputs that can be seen by public.

A program has the non-interference property if and only if any
sequence of low inputs will produce the same low outputs,
regardless of what the high level inputs are.

The program responds in exactly the same manner on low
outputs whether or not high sensitive data are changed.

The low user will not be able to acquire any information about
data of the high user.

15 / 44

Basics of information flow

High-level language. Let x, y be variables

y := x; explicit flow

variable y is assigned the value of x, there is an explicit flow
from x to y

if (x = 0) implicit flow
then y:=1;
else y:=0;

there is an implicit flow from variable x to y, since y is assigned
different values depending on the value of the condition of the
control instruction (variable x)

16 / 44

Basics of information flow

In both cases observing the final value of y reveals information
on the value of x.

A conditional instruction in a program causes the beginning of
an implicit flow. The implicit flow begins when the conditional
instruction starts (we say that we have an opened implicit
flow); all the instructions in the scope of the if depend on the
condition of the if.

17 / 44

Basics of information flow

If a function call is executed in the scope of a conditional
instruction, the function is executed under the implicit flow.

if (y < 0)
then f();

Function f() is invoked depending on the value of variable y.

Instructions of f() are executed under the implicit flow of the
condition of the if statement.

18 / 44

Abstract interpretation of the operational semantics for secure
information flow in programs

I instrumented semantics that add the the security level to
data and traces the information flow (enhanced semantics)

I abstract semantics that abstract from real value and
execute the program on security level. consider only taking
only the security level of data

I correctness of the abstraction

19 / 44

Enhanced Operational semantics

Given a program P = 〈c,H,L〉 and an initial memory
m ∈Mε

Var(c)

E(P,m) is the transition system defined by −→ε starting from
the initial state 〈c,m〉.

We enrich the standard operational semantics, in such a way
that a violation of security can be discovered.

20 / 44

Enhanced operational semantics

The enhanced semantics is an instrumented semantics
which:
I Handles values (k , σ) annotated with a security level

(k = 0,1,2 · · · and σ ∈ S).

I Executes instructions under a security environment σ ∈ S.

I C(P, M): enhanced transition system for P = 〈c,H,L〉, with
M(x) = (k , σ), for variable x .

21 / 44

Enhanced operational semantics

annotated value (k , σ)
during the execution, σ indicates the least upper bound of
the security levels of the information flows, both explicit and
implicit, on which k depends.

execution environment σ: (e)σ and (c)σ

during the execution, σ represents the least upper bound of
the security levels of the open implicit flows. σ is (possibly)
upgraded when a branching instruction begins and is
(possibly) downgraded when all branches join.

22 / 44

Enhanced Operational semantics

exp::= const | var | exp op exp
com::= var := exp | if exp then com else com |

while exp do com | com ; com | halt

Let (S,v), with S = {l ,h}, be a lattice of security levels, ordered by l v h,
where t denotes the least upper bound between levels.

A program P is a triple 〈c,H,L〉
c ∈ com
H are the high variables of P
L are the low variables of P
H ∪ L = Var(c) and H ∩ L = ∅

23 / 44

Enhanced Operational semantics

Exprconst 〈kσ,M〉 −→expr (k , σ)

Exprvar
M(x) = (k , τ)

〈xσ,M〉 −→expr (k , σ t τ)

Exprop
〈eσ1 ,M〉 −→expr (k1, τ1) 〈eσ2 ,M〉 −→expr (k2, τ2)
〈(e1 op e2)

σ,M〉 −→expr (k1 op k2, τ1 t τ2)

Ass 〈eσ,M〉 −→expr v
〈(x :=e)σ,M〉 −→ M[v/x]

24 / 44

Rules description

I The rules compute the security level of the value of an
expression dynamically using both the security level of the
operands and the security level of the environment.

For example, an integer constant k results in the value
(k , σ), where σ is the security level of the environment
under which k is evaluated.

25 / 44

Enhanced Operational semantics

Iftrue
〈eσ,M〉 −→expr (true, τ)

〈(if e then c1 else c2)
σ,M〉 −→ 〈cτ1 , Impl(M,Mod(c1; c2), τ)〉

Iffalse
〈eσ,M〉 −→expr (false, τ)

〈(if e then c1 else c2)
σ,M〉 −→ 〈cτ2 , Impl(M,Mod(c1; c2), τ)〉

Mod(c) finds the set of variables mod ified in the sequence of instructions c
i.e. those which are on the left of an assignment

Impl upgrades the security level of the values of the previous variables to
take into account an impl icit flow.

26 / 44

Rules description

I Assume that the condition of an if command results in a value (k , τ).

The branch c1 or c2, selected according to k (true or false), is executed
in the memory Impl(M,Mod(c1; c2), τ) under the environment τ .

In particular, if τ = h, the value of every variable assigned in at least
one of the two branches is upgraded to h and the selected branch is
executed in a high environment.

When the conditional command terminates, the security environment is
reset to the one holding before the execution of the command

27 / 44

Whiletrue
〈eσ,M〉 −→expr (true, τ)

〈(while e do c)σ,M〉 −→ 〈(c;while e do c)τ , Impl(M,Mod(c), τ)〉

Whilefalse
〈eσ,M〉 −→expr (false, τ)

〈(while e do c)τ ,M〉 −→ 〈Impl(M,Mod(c), τ)〉

I The while command is handled similarly to the conditional command.

28 / 44

halt 〈haltσ,M〉 −→ 〈M〉

Seq1
〈cσ1 ,M〉 −→ 〈M ′〉

〈cσ1 ;w ,M〉 −→ 〈w ,M ′〉

Seq2
〈cσ1 ,M〉 −→ 〈w ′,M ′〉

〈cσ1 ;w ,M〉 −→ 〈w ′;w ,M ′〉

I The w command is the continuation of the program.

29 / 44

Enhanced Operational semantics

Given a program P = 〈c,H,L〉 and an initial enhanced memory
M ∈MVar(c), the rules define a transition system C(P,M), which is the
enhanced semantics of the program.

We assume that the program starts with a low security environment.

The initial state of C(P,M) is: 〈c l ,M〉.

30 / 44

Correctness

Secure memory. We introduce the definition of a memory
safe for a program:

given a program P = 〈c,H,L〉, an enhanced memory
M ∈MVar(c) is secure for P if and only if each low variable of
P holds a low value in M.

31 / 44

An example
Let be given the program P1〈c,H,L〉 and the enhanced memory M with
M(x) = (1, l) and M(y) = (2,h).

P1 = 〈if y = 0 then x := 0 else x := 1, {y}, {x}〉

The memory in the final state of the transition system is not safe for P1,
because the security level of x is h:

〈(if y = 0 then x := 0 else x := 1)l , [x : (1, l), y : (2,h)]〉

↓

〈(x := 1)h, [x : (1,h), y : (2,h)]〉

↓

〈[x : (1,h), y : (2,h)]〉
32 / 44

An example

Let be given the program P2〈c,H,L〉 and the enhanced memory M with
M(x) = (1, l), M(y) = (2,h) and M(z) = (0,h).

P2 = 〈if x = 1 then y := x else z := 1; x := y, {y,z}, {x}〉

The assignment y:=x assigns a low value to y. Thus the assignment x:=y
assigns a low value to x. The memory in the final state is secure for P2.

33 / 44

An example

The transition system is the following:

〈(if x = 1 then y := x else z := 1)l ; (x := y)l , [x : (1, l), y : (2,h), z : (0,h)] 〉

↓

〈(y := x)l ; (x := y)l , [x : (1, l), y : (2,h), z : (0,h)]〉

↓

〈(x := y)l , [x : (1, l), y : (1, l), z : (0,h)]〉

↓

〈[x : (1, l), y : (1, l), z : (0,h)]〉

34 / 44

An example
Note that if the value of x in the initial memory is equal to 0 (instead of 1 as in the
example above) the memory in the final state is not secure for P2 (in the final state
x holds a high value)

〈(if x = 1 then y := x else z := 1)l ; (x := y)l , [x : (0, l), y : (2,h), z : (0,h)]〉

↓

〈(z := 1)l ; (x := y)l , [x : (0, l), y : (2,h), z : (0,h)]〉

↓

〈(x := y)l , [x : (0, l), y : (2,h), z : (1, l)]〉

↓

〈[x : (2,h), y : (2,h), z : (0,h)]〉

35 / 44

Abstract Operational semantics

The enhanced transition system could be infinite, because
there are infinitely many memories.

The enhanced operational semantics cannot be used as a
static analysis tool.

The purpose of abstract interpretation (or abstract semantics)
is to correctly approximate the enhanced semantics of all
executions in a finite way.

36 / 44

Abstract Operational semantics

I The first step in the construction of the abstract semantics is the
definition of the abstract domains.

I The nodes of the abstract transition system contain abstractions of
states.

I In particular, in our abstract semantics each enhanced value,
composed of a pair of a value and a security level, is approximated by
considering only its security level.

I As a consequence, when dealing with conditional or iterative
commands, the abstract transition system has multiple execution paths
due to the loss of precision of abstract data.

37 / 44

Abstract Operational semantics

Let α the abstraction function. The abstract semantics:

I abstracts enhanced values into their security level: α(k , σ) = σ

I uses the same rules of the enhanced semantics on the abstract
domains. The transition relation of the abstract semantics is denoted
by −→\.

I Both rules for if are always applied, since true and false are both
abstracted to "·"

I Both rules for while are always applied, since true and false are both
abstracted to "·"

38 / 44

Abstract Operational semantics

The abstract semantics:
I let A(P, M]) be abstract transition system for P

- finite
- multiple paths
- each path of C(P, M) is correctly abstracted onto a path of
A(P, M])

39 / 44

Abstract transition system
P2 = 〈if x = 1 then y := x else z := 1;x := y, {y,z}, {x}〉
M](x) = (l), M](y) = (h) and M](z) = (h)

〈(if x = 1 then y := x else z := 1)l ; (x := y)l , [x : (l), y : (h), z : (h)]〉

↓] ↓]

〈(y := x)l ; (x := y)l , [x : (l), y : (h), z : (h)]〉 〈(z := 1)l ; (x := y)l , [x : (l), y : (h), z : (h)]〉

↓] ↓]

〈(x := y)l , [x : (l), y : (l), z : (h)]〉 〈(x := y)l , [x : (l), y : (h), z : (l)]〉

↓] ↓]

〈[x : (l), y : (l), z : (h)]〉 〈[x : (h), y : (l), z : (l)]〉

40 / 44

Abstract Operational semantics

Let P = 〈c,H,L〉 and M \ ∈M\
Var(c) with

M \(x) = l ,∀x ∈ L and M\(x) = h,∀x ∈ H.

If for each final state 〈Mf
\
i 〉 of A(P,M\), it holds that Mf

\
i (x) = l ,

then Secure Information Flow property is satisfied.

The memory in each final state of the abstract transition
system is secure for P.

41 / 44

Secure Information Flow

For each program P = 〈c,H,L〉 and abstract memory
M \ ∈M\

Var(c), A(P,M \) is finite.

To check if a program is secure, we build the abstract
transition system and examine all final states.

For example, the abstract transition system of the program P2
has two final states: 〈[x : l, y : l , z : h]〉 and 〈[x : h, y : h, z : l]〉.
Secure Information Flow property is not satisfied because
x ∈ L and x = h in the second state.

42 / 44

Secure Information Flow

Secure Information Flow (SIF). A program P has secure
information flow if in each final state of A(P), each x : σ holds a
value τ v σ.

This approach is based on a finite-state transition system and
thus has the advantage of being fully automatic.

43 / 44

Exercise

Apply the standard operational semantics, the enhanced and
the abstract operational semantics to the following program

P = 〈c1; c2; · · · ; c5, {x}, {y , z}〉
with m(x) = 2, m(y) = 7, m(z) = 3

c1: z := 0;
c2: while (x > 0)
c3: y:=y*10;
c4: x:=x-1;
c5: z:=y;

Does P satisfy SIF? Why?
44 / 44

