
Formal Methods

Cinzia Bernardeschi

Department of Information Engineering
University of Pisa, Italy

FMSS, 2020-2021

Overview

I Formal methods definition
I Specification languages
I Verification techniques

I model checking
I abstract interpretation
I theorem proving

I Case studies:
I Malware analysis
I Data leakage
I Cyber-physical systems attacks

Formal methods definition

Formal methods are mathematically-based techniques that can be used in
the design and development of computer-based systems.

Formal methods
I allow the analysis of all possible executions of the system
I improve the current techniques based on simulation and testing

(mathematical proof that the system behaves as expected)
I offer the possibility for detecting vulnerability in systems or for building

more secure systems by design.

Formal methods and Safety critial systems

Software used in safety critical systems is required a very high reliability

I For example, for flight-critical avionics systems in civil transport
airplaines the requirement is probability of failure 10−9 per hour of
operation. 1 failure at most every 1.000.000.000 hours of operation.

I Provide evidence of reliability. We cannot run the system for 10−9

hours. Long operational testing and doubts about the
representativeness of the testing.

One of the best hope we have for technological support in building
dependable software is the use of formal methods. (J. Knight,
Fundamentals of Dependable Computing, 2012.)

Formal methods definition

A formal method consists of

I a language
a mathematical notation or a computer language with a formal
semantics

I a set of tools
for proving properties without real executions

I a methodology for its application in industrial practice.

Formal methods definition

Formal methods are more ambitious than traditional approaches, they are
more complex and the associated tools are more difficult to build.

A major problem comes from undecidability result of Computational
complexity theory

I some verification problems are either impossible or very difficult to
solve automatically

I For example, termination problem of programs (in the general case,
there is no decision procedure that can determinate whether a program
P may terminate or not)

I Another example: there is no decision procedure that can determinate
whether a given instruction of program P will ever be executed

Formal methods definition

Strategies to deal with undecidability:

I expressiveness restrictions
identify classes of systems for which verification is decidable at least in
principle (example, finite systems)

I accuracy restrictions
weaker formulation of the problem which is decidable and of interest
(approximation instead of exact solutions)

I automatic restrictions
semi-automatic verification, with human intervention at some point
semi-decision procedures, which may terminate giving the correct
result or not terminate.

Specifications

Specifications are means to describe a system, its components, its
global/local environment.

I declarative specifications
describe what a system should do, but not how it should do it
it is not possible to derive automatically from these constraints an
implementation of the system

I operational specifications
possibly define what a system should do, and definitely define how it
should do it
it should be possible to derive automatically at least a skeleton of an
implementation of the system

Formal methods for modelling and verification

I formal methods for the analysis of programs
I formal methods for the analysis of systems

Formal methods for the analysis of programs

I Semantics of the programming language
the semantics of the language describes mathematically the meaning
of the programs. Operational semantics as semantics of the
programming language.

I Models of programs. (A model of a system is an abstraction that focus
on some part of the system.)
Control flow graphs as models of a program. The control flow graph
represents the control structure of the program.

In the following:
I structured high level language (e.g., C language)
I low level languages (e.g, Java bytecode, assembly code)

A simple high level language

We consider a simple sequential language with the following syntax, where
op stands for the usual arithmetic and logic operations

Instruction set

exp::= const | var | exp op exp
com::= var := exp | if exp then com else com |

while exp do com | com ; com | halt

A program P is a sequence of instructions 〈c〉, where c ∈ com.

Standard Operational semantics

memory mState of the program:
I 〈c,m〉

where c is a command and m is a memory
I 〈m〉

a single memory, in the final state.

The semantics of programs is given by means of a transition system and we call
this semantics execution semantics.

I Var(c) denote the set of variables occurring in c.
I Vε is the domain of constant values, ranged over by k , k ′, . . .,
I for each X ⊆ var , the domainMε

X = X → Vε of memories defined on X ,
ranged over by m,m′,

Transitions

The semantic rules define a relation

−→ε⊆ Qε ×Qε

where Qε is a set of states.

A separate transition

−→ε
expr⊆ (exp ×Mε)× Vε

is used to compute the value of the expressions.

With m[k/x] we denote the memory m′ which agrees with m on all
variables, except on x , for which m′(x) = k .

Operational semantics

Exprconst 〈k ,m〉 −→ε
expr k

Exprvar 〈x ,m〉 −→ε
expr m(x)

Exprop
〈e1,m〉 −→ε

expr k1 〈e2,m〉 −→ε
expr k2 k1 op k2 = k3

〈(e1 op e2),m〉 −→ε
expr k3

Operational semantics

Ass
〈e,m〉 −→ε

expr k
〈x :=e,m〉 −→ε m[k/x]

halt 〈halt,m〉 −→ε 〈m〉

Seq1
〈c1,m〉 −→ε 〈m′〉

〈c1;c2,m〉 −→ε 〈c2,m′〉

Seq2
〈c1,m〉 −→ε 〈c2,m′〉

〈c1;c3,m〉 −→ε 〈c2;c3,m′〉

Operational semantics

Iftrue
〈e,m〉 −→ε

expr true
〈if e then c1 else c2,m〉 −→ε 〈c1,m〉

Iffalse
〈e,m〉 −→ε

expr false
〈if e then c1 else c2,m〉 −→ε 〈c2,m〉

Whiletrue
〈e,m〉 −→ε

expr true
〈while e do c,m〉 −→ε 〈c;while e do c,m〉

Whilefalse
〈e,m〉 −→ε

expr false
〈while e do c,m〉 −→ε 〈m〉

Given a program P = 〈c〉 and an initial memory m ∈Mε
Var(c), we denote by

E(P,m)

the transition system defined by −→ε starting from the initial state 〈c,m〉.

Actually, since the program is deterministic, there exists at most one final state, i.e.
a state 〈m〉 for some memory m.

Transition system

A transition system is a tuple TS = (S,Act ,→, I) such that

I S is a set of states (the state space)

I Act is a set of actions

I →⊆ S × Act × S is a transition relation

s →a s′ if from state s the system moves to state s′ by executing action
a

I I ⊆ S is the set of initial states

Often, transition systems are drawn as directed graphs with states
represented by vertices and transitions represented by edges

An example

1: x:=2;
2: y:=5;
3: if (x>0)
4: then y:=y+y;
5: else y:=0;
6: halt;

x

y

….

….

x:=2;
y:=5;
if (x>0) then

y:=y+y;
else y:=0;

halt;

>
<

x:=2

y:=5

x
y

2
10 ><

if (x>0) then
y:=y+y;
else y:=0;

,

,

s0

s1

s2

s4

E(P, m)

x

y

2

…

y:=5;
if (x>0) then

y:=y+y;
else y:=0;

halt;

>
<

x

y

2

5
if (x>0) then

y:=y+y;
else y:=0;

halt;

>
<

halt;

x
y

2
10

><

s5

skip

s3

x

y

2

5
y:=y+y;

halt;

>
<

y:=y+y

Control Flow Graph

The control flow graph of a program P =< c > is a directed graph (V ;E), where V
is a set of nodes and E : VxV is a set of edges connecting nodes.

Nodes correspond to instructions. Moreover, there is an initial node and a final
node that represent the starting point and the final point of an execution.
E contains the edge (i ; j) if and only if the instruction at address j can be
immediately executed after that at address i .

The control flow graph does not contain information on the semantics of the
instructions.

An example

1 : y :=5;
2 : if y > 1

then
3 : x :=1;

else
4 : x :=0;
5 : z:=x ;
6 :

C++ generation of the CFG with Visual Studio. Gcc developer-options:
-fdump-tree-cfg -blocks -vops

An example

1 : y :=5;
2 : x :=2;
3 : while x > 0
4 : y :=y + y ;
5 : x :=x − 1;
6 : z:=y ;
7 :

Java language

Java bytecode

Java bytecode
A subset of the instruction set

Bytecode instructions operate on the operand stack.
Variables in memory are named registers.

pop Pop top operand stack element.

dup Duplicate top operand stack element.

op Pop two operands off the operand stack,
perform the operation op ∈ { add, mult, compare .. },
and push the result onto the stack.

const d Push constant d onto the operand stack.

Java bytecode

load x Push the value of the register x
onto the operand stack.

store x Pop a value off the operand stack and
store it into local register x .

ifcond j Pop a value off the operand stack, and evaluate it against
the condition cond = { eq, ge, null, ... };
branch to j if the value satisfies cond .

goto j Jump to j .

Standard Operational semantics

The domain of the states of the standard semantics is (A denotes the set of
addresses):

Qε = Aε ×Mε × Sε.

A bytecode B consists of a sequence of instructions (assume 1 is the address of
first instruction), and is executed starting from a memory and an empty operand
stack.

A state is given by the value of three variables, PC, MEM and STACK , where
- PC is the program counter,
- MEM is the memory, and
- STACK is the operand stack (λ is the empty stack).

We denote by 〈i ,m, s〉 the state labeled by PC = i ,MEM = m,STACK = s.

Standard Operational semantics rules

op
c[i] = op

〈i ,m, k1 · k2 · s〉 −→ε 〈i + 1,m, (k1 op k2) · s〉

pop
c[i] = pop

〈i ,m, k · s〉 −→ε 〈i + 1,m, s〉

push
c[i] = push k

〈i ,m, s〉 −→ε 〈i + 1,m, k · s〉

load
c[i] = load x

〈i ,m, s〉 −→ε 〈i + 1,m,m(x) · s〉

Standard Operational semantics rules

store
c[i] = store x

〈i ,m, k · s〉 −→ε 〈i + 1,m[k/x], s〉

iffalse
c[i] = if j

〈i ,m,0 · s〉 −→ε 〈i + 1,m, s〉

iftrue
c[i] = if j

〈i ,m, k 6= 0 · s〉 −→ε 〈j ,m, s〉

goto
c[i] = goto j

〈i ,m, s〉 −→ε 〈j ,m, s〉

Transition system

1: load y
2: if 5
3: push 1
4: goto 6
5: push 0
6: store x
7: halt

E(B, m, l)

><

s0

,
x
y

2
71 ,

….

….….

><

s1

,
x
y

2
72 ,

7

….….

><

s2

,
x
y

2
73 ,

7

….….
><

s3

,
x
y

2
74 ,

1
….

….

><

s4

,
x
y

2

76 ,
1

….

….

><

s5

,
x
y

1

77 ,
1
….

….

><

s6

,
x
y

1
7

1
….

….

A bytecode and its CFG

1: load y
2: if 5
3: push 1
4: goto 6
5: push 0
6: store x
7: halt

[1]

[2]

[3]

[4]

[5]

[6]

[7]

The CFG contains the edge (i , j) if and only if the instruction at address j can be
immediately executed after that at address i . ([6] is the point at which the
branches starting at the conditional instruction [2] join)

Java bytecode Instructions

pop Pop top operand stack element.
dup Duplicate top operand stack element.
αop Pop two operands with type α off the operand stack,

perform the operation op ∈ { add, mult, compare .. },
and push the result onto the stack.

αconst d Push constant d with type α onto the operand stack.
αload x Push the value with type α of the register x

onto the operand stack.
αstore x Pop a value with type α off the operand stack and

store it into local register x .
ifcond j Pop a value off the operand stack, and evaluate it against

the condition cond = { eq, ge, null, ... };
branch to j if the value satisfies cond .

goto j Jump to j .

Java bytecode Instructions

getfield C.f Pop a reference to an object of class C
off the operand stack; fetch the object’s
field f and put it onto the operand stack.

putfield C.f Pop a value k and a reference to an
object of class C from the operand stack;
set field f of the object to k .

invoke C.mt Pop value k and a reference r to an
object of class C from the operand stack;
invoke method C.mt of the referenced
object with actual parameter k .

αreturn Pop the α value off the operand stack and return it

from the method.

The bytecode of a method is a sequence B of instructions.

When a method is invoked (invoke instruction), it executes with a new empty
stack and with an initial memory where all registers are undefined except for the
first one, register x0, that contains the reference to the object instance on which
the method is called, and register x1, that contains the actual parameter.

When the method returns, control is transferred to the calling method: the caller’s
execution environment (operand stack and local registers) is restored and the
returned value, if any, is pushed onto the operand stack.

An example
The bytecode corresponds to a method mt of a class A. Suppose that register x1
(the parameter of A.mt) contains a reference to an object of another class B. Note
that register x0 contains a reference to A. After the bytecode has been executed,
the final value of field f1 of the object of class A is 0 or 1 depending on the value
of field f2 of the object of class B.

0 : aload x0
1 : aload x1
2 : getfield B.f2
3 : ifge 6
4 : iconst 0
5 : goto 7
6 : iconst 1
7 : putfield A.f1
8 : iconst 1
9 : return

