
Organisation of fault tolerance

From [Avizienis et 
al., 2004] 

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 1



Hardware faults
- Hardware components fail
independently
- replicas of the hw component

Software faults
- Replicas of the same sw do 

not fail independently
- Versions of the sw that implement the same

function via separate designs and 
implementations(design diversity)  

Error compensation

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 2

fault masking



Faults in the software

All software defects (faults) 
are design faults

- Faults in the software  design phase

of the software lifecycles 

- Faults in the implementation of the software

- Erroneous outputs from a test case 

Design faults are not introduced maliciously.  

Developers build the software using techniques aimed to produce the right product. 

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 3

sw

input output



Faults in the software

Design faults:

hard to visualize, classify, detect, and correct

Consider the issue of determining the faults in a large software system

- Any phase of the software lifecycle (Requirements analysis, Requirements specification,   
Design,  Implementation, Verification, Deployment), could have introduced faults

- The fault could remain dormant for extended periods, if the sw component affected by the  
fault is not on the execution path

- Complete elimination of design faults is not possible, some faults are expected to remain in 
the system

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 4



Faults in the software

Design faults:

closely related to human factors and the design process, of which 
we don't have a solid understanding

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 5

only some type of inputs will exercise
that fault to cause failures. Number of 
failures depend on how often these
inputs  exercise the sw flaw

apparent reliability of a piece of software is
correlated to how frequently design faults 
are exercised as opposed to number of 
design faults present



SW Fault tolerance techniques

Versions of the software

a simple duplication and comparison procedure or  a N-modular 
redundancy with voting (e.g., TMR) will not detect software faults if the 
replicated software modules are identical

Independent generation of N >= 2 functionally equivalent programs, 
called versions, from the same initial requirements.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 6



SW Fault tolerance techniques

Design  diversity technique

if two or more software are built to provide the same functionality but with different

designs, they might not all fail on the same input

Technique: 

- use independent development teams which do not communicate with each other

- using different sw development tools  (like different programming languages

(compilers), linkers and loaders …

- Using different sw design techniques: functional decomposition, object oriented ….

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 7



SW Fault tolerance techniques

Due to the large cost of developing software, most of the software  dependability
effort has focused on 

fault prevention techniques and testing strategies

Multi-version approaches
mainly used in safety-critical systems  (due to cost)

versions can be organised into different software systems architectures

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 8



Passive SW Fault tolerance techniques: N-version systems

-independently developed versions
of the sw

- the Voter votes on the results
produced by the versions

- there is no delay or interruption of 
the service

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 9

Program

Inputs

Program

Version  1

Program 

Version 2
Voter

Program

Outputs

.

.

.

.

Program 

Version n



Passive SW Fault tolerance techniques: N-version programming

BUT

- all the versions need to be executed along with the Voter -> considerable hw resources needed

- a CLOCK is needed to synchronise the execution of the versions and the Voter, 
or the Voter must implement some sort of communication protocol to wait until all versions
complete  their processing or recognize the versions that do not complete (e.g., omission failure)

- NUMERIC ISSUES. the value supplied by the versions can  be correct but differ because of    
rounding errors or similar numeric issues, e.g., Floating point output values will not be 
bit-for-bit the same

- the degree of differences is specific for each system 

Different values for numeric issues must be distinguished by erroneous values

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 10



Passive SW Fault tolerance techniques: N-version programming

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 11

ALGORITHMIC ISSUES. Two correct output could be different

Example: roots of a polinomial. Assume only one is requested

Two  versions compute the same values, but they can be found in 
different ordering. 

The two versions, retun different values

Example: navigation system (automotive). Heuristics are used to compute routes. 

Routes computed by two versions can be different (both correct)



Passive SW Fault tolerance techniques: N-version programming

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 12

Voting
based on different techniques, specific for each system

- Choose the value supplied by the majority (if possible)

- Choose the median value

- Choose the average of all values

…………………..

→ how can be erroneous values ignored?

value sufficiently different from the other values

The result of previous voting changes if a version is considered faulty



Active SW Fault tolerance techniques: N-self-checking programming

N versions are written
- each version is running simultaneously

and includes its acceptance tests

The selection logic chooses the results
from one of the programs that passes
the acceptance tests

Tolerates N-1 faults (independent faults)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 13

Program

Version 1

Program 

Version N

Acceptance

tests

Accepptance

tests
Selection

Logic

.

.

Program

Inputs

Program

Outputs

Program

Inputs

based on acceptance tests rather than comparison with equivalent versions



Hybrid SW Fault tolerance techniques: Recovery-block

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 14

Basic structure: Ensure T  
By P

else by Q

else error

The versions are referred to as alternates.

Alternates are executed in series until one of them completes the computation successfully

Generally error detection mechanism built into the alternate and a final external error
detection mechanism is present , the Acceptance test.

Accettability of the result is decided by an acceptance test T. 

Primary alternate P, secondary alternates Q

checkpoint

Acceptance 

test

based on an one acceptance test and a single alternate is run at a time 



Hybrid SW Fault tolerance techniques: Recovery-block

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 15

Basic structure: Ensure T  
By P

else by Q

else error

The recovery block-store the system state (checkpoint)

(e.g., variables global to the block which are altered within the block)

If the primary alternate passes the acceptance test, the recovery-block is exited

If the primary alternate fails, the recovery-block restores the system state and executes
the next alternate, which becomes the primary alternate. 

If no more alternatives exist, an error is reported.



Hybrid SW Fault tolerance techniques: Recovery-block

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 16

Primary

Version

Secondary

Version N-1

Secondary

Version 1

Program Outputs

.

.

.

.

Program Inputs

N-to-1

Program

Switch

Acceptance

Tests

Test Result

- releases the programmer from 
determining which variables should
be checkpointed and when

- linguistic structure for recovery 
blocks requires a suitable mechanism
for providing automatic backward
error recovery 

The execution time of a recovery block is unpredictable.



Example: Magnetic disk

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 17

Read failure
To deal with read failure, computes and attaches checksums to each 
sector to verify that data is read back correctly
If data is corrupted, with very high probability stored checksum won’t 
match recomputed checksum

Write failure
Ensure successful writing by reading back sector after writing it

Disk controller – interfaces between the computer system and the disk drive 
hardware

- accepts high-level commands to read or write a sector (block)
- Moves the disk arm to the right track and actually reads or writes the data



Checksumming

• applied to large block of data in 
memories

• coverage: single fault

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 18

dn

dn-1

d2

d1

rn

rn-1

r2

r1

Original data Received data

Checksum on 

Original data
Checksum on 

received data

Received version

of checksum

compare

checksum for a block of n  words  is formed by adding
together all of the words in the block modulo-k, where k 
is arbitrary (one of the least expensive method) 

- the checksum is stored with the data block

- when blocks of data are  transferred (e.g. data transfer 
between mass-storage device) the sum is recalculated and 
compared with the checksum

- checksum is basically the sum of the original data
Code word = block + checksum



Checksumming Code

• Disadvantages
- if any word in the block is changed, the checksum must also be
modified at the same time

- allow error detection, no error location: the detected fault could be in 
the block of s words, the stored checksum or the checking circuitry

- single point of failures for the comparison and encoder/detector
element

• Different methods differ for how summation is executed

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 19



RAID technology

RAID (Redundant Arrays of Independent Disks) technology

disk organization techniques that manage a large numbers of disks, 
providing a view of a single disk of  high capacity and high speed by 
using multiple disks in parallel, and high reliability by storing data 
redundantly 

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 20



RAID

Redundant information stored on multiple disks to recover from failures

• Mirroring

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 21

Disk Mirrored Disk

Every write is carried out on both disks

Reads can take place from either disk

If one disk in a pair fails, data still available in the other



RAID

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 22

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

• Block-level striping + mirrored disks 

Requests for different blocks can run in parallel if the blocks reside on different disks

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

Mirrored DisksDisks



RAID

• Coding: Block-Interleaved Parity

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 23

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

parityblock 8-11

parityblock 4-7

parityblock 0-3

Block-level striping

Parity block on a different disk for detection of  bit errors
ALL 1-BIT ERRORS ARE DETECTED  (Error Detection Code)

Before writing a block, parity data must be computed. Parity block becomes a bottleneck 
for independent block writes since every block write also writes to parity disk



block 17

block 13

block 16

block 12

block 18

block 14

block 19

parityblock 11-15

parityblock 15-19

RAID

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 24

block 8

block 4

parityblock 0-3

block 15

block 9

parityblock 4-7

block 0

parityblock 8-11

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

• Coding: Block-Interleaved Distributed Parity

Partition data and parity among all N + 1 disks, rather than storing data in N disks and parity in 1 disk

For each set of N logical blocks, one of the disks store the parity and the other N disks store the blocks



Hamming Code (I)

Parity bits spread  through all the data word

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 25

Parity bit pj covers all bits whose position has  the j least significant bit equal to 1

Each data bit is included in a unique set of 2 or more parity bits, as determined by  the 
binary form of its bit position

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Data bits
all other bit positions

(number the bit positions starting 
from 1: bit 1, 2, 3, etc..)

Parity bits
all bit positions that are 
powers of two : 1, 2, 4, 8, etc. 



Hamming code (II)

Parity bit p1 covers all bit positions which have the 
least significant bit set: 

bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

Parity bit p2 covers all bit positions which have the 
second least significant bit set: 

bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 26

Parity bit 4 covers all bit positions which have the 
third least significant bit set: 

bits 4–7, 12–15, 20–23, etc.

Parity bit 8 covers all bit positions which have the 
fourth least significant bit set: 

bits 8–15, 24–31, 40–47, etc.

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes



Hamming code (III)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 27

Overlap of control bits:  a data bit is controlled by more than one parity bit 

Minimum Hamming distance: 3

Double-error detection code 
Single-error correction code

SEC-DED code

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes



RAID

FMSS, 2020-2021
Redundancy in Fault Tolerant Computing

28

…

Disk1 Disk2 Disk7 Disk8

1 0 0 0 1 1 0 1

Byte 

0 0 1 0 0 1 1 1 

Byte 

10 00

• Coding: Hamming code

Bit-level striping

N bits written across n disks, one per disk. 



RAID

FMSS, 2020-2021
Redundancy in Fault Tolerant Computing

29

Disk1 Disk2 Disk3 Disk4

10 00

Disk5 Disk6 Disk7

Hamming(7, 4)

• Coding: Hamming code

N bits written across n disks, one per disk. The additional bit needed for error correcting codes
are written across a set of additional disks  one bit at a time

A disk read failure can be masked and a complete disk replaced if necessary, without stopping
the system



Notes

• Fault tolerance relies on the independency of redundancies with respect
to the process of fault creation and activations

• Fault masking will conceal a possibly progressive and eventually fatal loss
of protective redundancy

• Practical implementations of masking generally involve error detection
(and possibly fault handling), leading to masking and error detection and 
recovery 

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 30



Notes

• When tolerance hw faults is foreseen, the replicas may be 
identical, based on the assumption that hardware components
fail independently

• When tolerance to SW faults is foreseen, replicas have to provide
identical service through separate designs  and implementation
(through design diversity)

• Replicas al commonly named «channels»

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 31


