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Outline

• Reliability and Availability

• Failure rate and Repair rate

• Exponential failure law for the hardware 

• Combinatorial models
• Series/Parallel

• Fault Trees

• State based models: Markovian models
• Discrete time Markov chain

• Continuus time Markov chain
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Evaluation of Dependability

Faults are the cause of errors and failures. Does  the arrival time of faults 
fit a probability distribution? 
What are the parameters of that distribution?

Consider the time to failure of a system or component. 
It is not exactly predictable - random variable.
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Failure rate,  Mean Time To Failure (MTTF), Mean Time To Repair (MTTR),   Reliability 
(R(t)) function,  Availability (A(t)) function, ….

probability theory

FMSS, 2020-2021



Evaluation of dependability
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Reliability - R(t)
As a function of time, R(t), is the conditional probability that the system 
performs correctly throughout the interval of time [t0, t], given that the 
system was performing correctly at the instant of time t0 

Availability - A(t) 
As a function of time, A(t), is the probability that the system is operating

correctly and is available to perform its functions at the instant of time t
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Definitions
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f(t) =
dt

dQ(t)
dt

- dR(t)
=

Failure rate function λ(t) 
the failure rate λ(t) at time t is defined by the 
number of failures during Δt in relation to 
the number of correct components at time t

l(t) =
R(t)

f(t)
=

dt
- dR(t)

R(t)

1

Failure probability density function f(t)
the failure density function f(t) at time t  is the 
number of failures in Dt

Reliability R(t)

Unreliability Q(t) Q(t) = 1 – R(t)
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Hardware Reliability
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l(t) constant > 0 
in the useful life period

Constant failure rate l

l = 1/2000   one failure every 2000 hours

Early life phase: there is a higher failure rate due to the 
failures of weaker components (result from defetct or stress 
introduced in the manufacturing process).  
Wear-out phase:  time and use cause the failure rate to increase.  

l(t) is a function of time 
(bathtub-shaped curve )
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approximately
5 weeks

5-25 years



Hardware Reliability
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Constant failure rate  

l(t) = l 

Reliability function

R(t) = e–lt

Probability density function

f(t) = - dR(t) =  le–lt
the exponential relation between  reliability and time is 

known as exponential failure law

time

R(t)

l =
R(t)

f(t)
=

dt

- dR(t)

R(t)

1
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Time to failure of a component  
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• Time to failure of a component can be modeled by  a random variable X

FX (t)  = P[X<=t ] (cumulative distribution function)

FX (t)  unreliability of the component at time t

• Reliability of the component at time t

R (t) = P[X > t] = 1 – P[X <= t] = 1 – FX (t)       

R(t) is the probability of not observing any failure before time t
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Time to failure of a component 
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l = 1/2000 0.0005 per hour 

MTTF = 2000 time to the first failure 2000 hours 

Mean time to failure (MTTF)
is the expected time that a system will operate before the 
first failure occurs (e.g., 2000 hours)

Failure in time (FIT)

failure rate usually expressed in number of failures for million hours
1 FIT     means 1 failure in 109 device hours

MTTF = න
0

∞
𝑡𝑓 𝑡 𝑑𝑡 = න

0

∞
𝑡l𝑒

_l𝑡𝑑𝑡 =
1

l
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Failure Rate
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Commercially available databases
- Military Handbook MIL-HDBK-217F 
- Telcordia, 
- International Eletrotechnical Commission (IEC) Standard 61508

- …

- Handbooks of failure rate data for various components are available from
government and commercial sources. 

- Reliability Data Sheet of product
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Distribution model for permanent faults
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MIL-HBDK-217 (Reliability Prediction of Electronic Equipment -Department of Defence)  
Statistics on electronic components failures studied since 1965 (periodically updated). 
Chip failure rates in the range 0.01-1.0 per million hours

l = τLτQ(C1τT τV + C2τE)

τL = learning factor, based on the maturity of the fabrication process

τQ = quality factor, based on incoming screening of components

τT = temperature factor, based on the ambient operating temperature

and the type of semiconductor process

τE = environmental factor, based on the operating environment

τV = voltage stress derating factor for CMOS devices

C1, C2 = complexity factors (based on number of gates, or bits for memories and number of pins)
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Model-based evaluation of dependability 
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State space representation 
methodologies:
Markov chains, Petri-nets, 
SANs, …

a model is an abstraction of the system that highlights the 
important features for the objective of the study

Methodologies that employ 
combinatorial models: 
Reliability Block Diagrams, 
Fault tree, ….
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Combinatorial models
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Combinatorial models 

offer simple and intuitive methods of the construction and solutions of models

Assumptions: 

• independent components

• each component is associated a failure rate

• model construction is based on the structure of the systems  (series/parallel 
connections of components)

• inadequate to deal with systems that exhibits complex dependencies among 
components and repairable systems
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Combinatorial models 
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Combinatorial models 

If the system does not contain any redundancy, that is any component 
must function properly for the system to work, and if component 
failures are independent, then 

- the system reliability is the product of the component reliability, and 
it is exponential

- the failure rate of the system is the sum of the failure rates of the 
individual components
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Combinatorial models 
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( ) =
N

i 

N!

(N-i)! i! 

Binomial coefficient
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Combinatorial models 

If the system contain redundancy, that is a subset of components must 
function properly for the system to work, and if component failures are 
independent, then 

- the system reliability is the reliability of a series/parallel 
combinatorial model 
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Combinatorial models 

Series/Parallel models

An example: 

Multiprocessor with 2 processors and 
three shared memories

Dependability evaluation 19FMSS, 2020-2021



TMR versus Simplex system
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RTMR > Rm if Rm > 0.5 

i=0

3
i

(e –lt )3-i (1- e –lt )i

l failure rate of module m

Rm = e –lt

Simplex system

Rsimplex = e –lt

TMR system

RV(t) = 1

RTMR = S 1           

= (e –lt )3 + 3(e –lt )2 (1- e –lt )

Taken from: [Siewiorek et al.1998]

V

m1

m2

m3

2 of 3

m
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TMR: reliability function and mission time 
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Taken from: [Siewiorek et al.1998]

Rsimplex = e –lt

MTTFsimplex =

TMR system

RTMR = 3e –2lt  -2e –3lt

MTTFTMR =

TMR worse than a simplex system 
but

TMR has a higher reliability for the  first 6.000 hours

TMR operates at or above 0.8 reliability 
66 percent longer than the simplex  system

S shape curve is typical of redundant systems: above 
the knee the redundant system has components  that tolerate
failures;  after the knee the system has exhausted redundancy

1

l

1

l

3

2l

2

3l
5

6l
- = <
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Hybrid redundancy with TMR
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Symplex system 

l failure rate m

Rm = e –lt

Rsys = e –lt

Hybrid system

n=N+S  total number of components 

S number of spares

Let N = 3               RSDV(t) = 1

l failure rate of on line comp

l failure rate of spare comp

The first system failure occurs if 1) all the 

modules  fail; 2) all but one modules fail

RHybrid =  RSDV(1- QHybrid)

RHybrid =  (1 – ( (1-Rm)n +  n(Rm)(1-Rm)n-1 ))

RHybrid(n+1) – RHybrid(n) >0

adding modules increases
the system reliability under the 
assumption RSDV independent of n

Taken from: [Siewiorek et al.1998]

SDV

m1

m2

mn
...
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Hybrid redundancy with TMR
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Hybrid TMR system reliability RS vs individual module reliability Rm

System with standby failure rate equal to 

on-line failure rate

TMR with one spare is more reliable 

than simplex system if Rm>0.23

S is the number of spares

RSDV =1

System with standby failure rate equal to 

10% of on line failure rate

TMR with one spare is more reliable 

than simplex system if Rm>0.17

Taken from: [Siewiorek et al.1998]
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Non-series/non-parallel models

Succes diagram

From: D. P. Siewiorek R.S. Swarz, Reliable 
Computer Systems, Prentice Hall, 1992

System successfully operational
for each path from X to Y

Reliability computed expanding around one module m:

Rsys =  Rm x P(system works | m works) + (1- Rm) x P(system works | m fails)

Let m = B      

Rsys =  RB x P(system works | B works) + (1- RB) x P(system works | B fails)

P(system works | B fails) = 
{ RD [1 – (1- RARE) (1- RFRC)]}  

P(system works | B works)
must be further reduced

Dependability evaluationFMSS, 2020-2021



Non-series/non-parallel upper-limit

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992 all paths in parallel

Upper-bound:
RSys <= 1- Pi (1-Rpath i)

Upper-bound because paths are not independent, the failure of a single module 
affects more than one path (close approximation if  paths are small) 

Upper-bound:
RSys <= 1- (1- RARBRCRD) (1- RARERD) (1- RFRCRD)

Dependability evaluationFMSS, 2020-2021



Non-series/non-parallel lower-limit

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992

• Minimal cut sets of the 
system

• Minimal cut set : is a list of 
components such that
removal of any component 
from the list will cause the 
system to change from 
operational to failed

Lower-bound:

RSys >= Pi (1 - Qcut i) = Pi  Rcut i

where Qcut i is the probability that the cut i does not occur

Minimal cut sets:

{D}{A,F}{E,C}{A,C}{BEF} 

Dependability evaluationFMSS, 2020-2021



Fault tree analysis

Fault tree analysis (FT) is a failure analysis in which an undesired state of the system (e.g., 
a catastrophic failure) is analyzed using boolean logic to combine a series of lower-level 
events. 

describe the scenarios of occurrence of events  at abstract level, linking the hierarchy of 

levels of events by logical gates

This method allows to study how the system can fail.

Technique applied in industry

Dependability evaluation 27FMSS, 2020-2021



Fault Trees
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A fault tree describes the Top 
Event (status of the system) 
in terms of the status 
(faulty/non faulty) of the Basic 
events.

The basic events are the system’s
components

G0

G3

E1 E2

G2

AND

E4

E3G4

E5

TOP EVENT

GATE SYMBOL

BASIC EVENT SYMBOL

OR

OR

OR
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The analysis of the fault tree evaluates
the probability of occurrence of the 
root event, in terms of the status of the 
leaves (faulty/non faulty)



Fault Trees
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Components are leaves in the tree

Faulty component corresponds to logical
value true, otherwise false

Nodes in the tree are boolen AND, OR 
and k of N gates

The system fails if the root is true

AND

OR

2 of 3

AND gate

OR gate

K of N  gate

True if all the components

are true (faulty)

True if at least k of the components

are true (two or three

components) (faulty)

True if at least one

of the components is true (faulty)

C1 C2 C3

C1 C2 C3

C1 C2 C3

FMSS, 2020-2021
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Fault Trees
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Top event

OR

AND AND

M1 M3
M2

P1 P2

Example

Multiprocessor with 2 
processors and three shared
memories

-> the computer fails if all the 
memories fail or all the 
processors fail

FMSS, 2020-2021



Minimal cut sets
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TOP

G1

AND

1 2

3 4

5

OR

1. A cut is defined as a set of elementary events  that, according to the logic
expressed by  the FT, leads to the occurrence of the root event.

2. To estimate the probability of the root event, 
compute the probability of occurrence for each
of the cuts and combine these probabilities

Cut Sets
Top =   {1}, {2} , {G1} , {5} = {1}, {2} , {3, 4} , {5} 

Minimal Cut Sets
Top = {1}, {2} , {3, 4} , {5} 
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Minimal cut sets

Dependability evaluation 32

QS(t) = probability that all components in the 
minimal cut set S are faulty

QS (t) = q1(t) q2(t) … qn(t)   with S ={1, 2, …, ni}

The numerical solution of the FT is performed by 
computing the probability of occurrence for each of 
the cuts, and by combining those probabilities to 
estimate the probability of the root event

S Q Si (t)
Minimal Cut Sets
Top = {1}, {2} , {3, 4} , {5} 

TOP

G1

AND

1 2

3 4

5

OR

Assumption: independent faults of the components
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Minimal cut sets
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QTop (t) = QS1 (t) + …  + QSn (t) 

n number of mininal cut sets

Minimal Cut Sets
Top = {1}, {2} , {3, 4} , {5} TOP

G1

AND

1 2

3 4

5

OR

S1 = {1} S2 = {2} S3 = {3, 4} S4 = {5}

FMSS, 2020-2021

- minimal cuts with a single event identify a critical situations



Conditional Fault Trees
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Example

Multiprocessor with 2 processors and three memories: 
M1 private memory of P1, M2 private memory of P2, M3 shared memory.

• Assume every process has its own private memory
plus a shared memory

• Operational condition: at least one processor is
active and can access to its private or shared memory

repeat instruction: given a component C whether or not
the component is input to more than one gate, the 
component is unique

AND

AND

OR

AND

OR

Top event

system

FMSS, 2020-2021



Conditional Fault Trees
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If a component C appears multiple times in the FT

Qs(t) = QS|C Fails(t) QC(t) + QS|C not Fails(t) (1-QC(t)) 

where
S|C Fails is the system given that C fails

and
S|C not Fails is the system given that C has not failed

If the same component appears more than once in a fault tree,  the 
independent failure assumption. We use conditioned fault tree is violated

FMSS, 2020-2021



Fault Trees
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FT technique allows the identification of critical paths in the system 

- Definition of the Top event

- Minimal cut set (minimal set of events that leads to the top event) 

Analysis:

- Failure probability of Basic events

- Failure probability of minimal cut sets

- Failure probability of Top event

- Single point of failure of the system: minimal cuts with a single event

FMSS, 2020-2021



Failure Mode Effect Analysis (FMEA) is a failure analysis for identifying the risk of 
failure of a system (or a component)

Vulnerability to single failures is analysed (FMEA does not consider multiple failures)

Combination of knowledge about
all possible failures,  the effects, the cause and the possible actions to be taken

Calculate the risk priority number (RPN), in terms of severity of the failure, 
occurrence of the failure and  detectability of the failure

Technique applied in industry

Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021



• Identify the functionality of the system

• Identify possible failures of the system. In particular, identify all the potential
failure modes.

Define a Table with the following information :

For each failure mode,

1.1) enumerate the potential effects of the failure
identify all the effects (consequences) on the 
components and on  the system.

1.2) rank the severity (S) of each effect. Severity is usually rated on a scale 
from 1 to 10, where 1 is insignificant and 10 is catastrophic. 

Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021



For each failure mode:

2.1 list all possible causes of the failure
identify the reasons for the failure

2.2 rank the occurrence (O) of the cause of the failure.
Occurrence is usually rated on a scale from 1 to 10, 
where 1 is extremely unlikely and 10 is inevitable. 

Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021



For each cause of the failure:

3.1 list the current process controls
tests, procedures or mechanisms that might prevent the cause from happening,      
reduce the probability that it will happen or detect failure after the cause has
already happened but before the customer is affected. 

3.2 Rank the detection rating (D) of the cause or its failure mode before the 
customer is affected. 
Detection is usually rated on a scale from 1 to 10, where 1 means the control 
always detects the problem and 10 means the control does not detect the 
problem (or no control exists). 

Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021



Build the FMA table with the previous information

Calculate the risk priority number, or RPN

RPN = S × O × D.

Calculate Criticality by multiplying severity by occurrence

S × O 

Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021



FMEA 
performed 
by a Bank 
on ATM 
(Automated Teller machine) 
system 

From: http://asq.org/learn-about-quality/process-
analysis-tools/overview/fmea.html

An example

Dependability evaluationFMSS, 2020-2021



FMEA table provides guidance

• for ranking potential failures in the order they should be 
addressed. 

• For identifying recommended actions. These actions may be 
additional controls to improve detection. 

Note that:
FMEA allows to associate a cause, i.e., the failure mode of a 
simple component, to the system failure event.

Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021



• FMEA 
vulnerability to single failures is analysed
(FMEA does not consider multiple failures)

• FT
allows to describe the case in which the occurrence of 
an event depends on multiple failures

Fault-trees often used in conjunction with  FMEA

Fault Trees / Failure mode and effects analysis

Dependability evaluationFMSS, 2020-2021
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State-based models
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State-based models
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“Reliability depends on the frequency of faults and the duration of faults in the system”

Series/Parallel models:  relate the reliability of the system to the system structure and to 
the reliability of its components. If there is a path from the input node to the output 
node the system behaves correctly. If there is a failed component  on a path,   the 
path is broken.  Duration of faults is not considered.

State-based models: enumerate the system states. Can be used for Reliability and 
Availability measures
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Definition of dependability attributes 
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Reliability - R(t)
conditional probability that the system performs correctly throughout the 
interval of time [t0, t], given that the system was performing correctly at the 
instant of time t0 

|-------------------------------|-- no failures in the interval [t0, t]

t0                                         t

Availability - A(t) 
the probability that the system is operating correctly and is available to 
perform its functions at the instant of time t

|-------------XXXXX---------------XXX--------------------------|-- failures and repairs

t0               [t1….t2]               [t3…t4]                              t       in  the interval [t0, t]

f        r                  f       r

FMSS, 2020-2021



State-based models
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Characterize the state of the system changing over time

1. Each state represents a distinct combination of failed and working modules

2. The system goes from state to state as modules fail and repair

3. The state transitions are characterized by the probability of failure and the 
probability of repair

4. The time between a fault and a repair is the duration of the fault inside the 
system 

FMSS, 2020-2021



State-based models
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graph where nodes are all the possible states and arcs are the possible 
transitions between states.  Arcs are labeled with a probability function

Reliability model

0 1

1-pf
pf

pf

pr

1-pr

Availability model

1-pf 1

10

FMSS, 2020-2021

Example: 
System that consists of 
one module

The module can be 
- working (state 0)
- faulty (state 1)

- pf: probability of failure
- pr: probability of repair

State: number working and faulty modules



Random process
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In probability theory,  a random process is defined as a family of random variables 
indexed by numbers expressing points in time

FMSS, 2020-2021

Example of random process:  {Xt}, with time t = {0, 1, 2, 3. …}

Let X be the result of tossing a die. 
{Xt} represents the sequence of results of tossing a die

P[X0 = 4] = 1/6 
P[X4 = 4 | X2 = 2] = P[X4 = 4 ] = 1/6                         P probability

Dependability measures: these variables represent the values of the state of the 
system randomly changing over time

S={1,2,3,4,5,6}  state space

Independent random variables



Markov process
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In a general random process {Xt },  the value of the random variable Xt+1 may depend on 
the values of the previous random variables X0 X1 ............Xt

Markov process

the state of the process at time t+1 depends only on the state at time t, and is  
independent  on any state before t

The conditional probability is called transition probability from state i to state j at time t

Markov property: “the current state is enough to determine the future state”

FMSS, 2020-2021

P{Xt+1=j  | X0=j0 , …, Xt-1=ji-1 , …, Xt=i } = P{Xt+1=j  | Xt=i } 

Basic assumption: the system behavior at any time instant depends  only on the 
current state  (independent of past values)



Markov process
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Steady-state transition probability: the transition probabilities are 

steady-state if for any pair of states i and j, the probability of transition 

between i and j  does not depend by the  time.   

FMSS, 2020-2021

pi j = P {X1=j | X0=i}  

P{Xt+1=j | Xt=i}  =  P {X1=j | X0=i}     for all t >= 0

This probability is called pij



Markov process
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A stochastic process {Xt}, with time t = {0, 1, 2, 3. …}, with a  numerable set  S of 
states, is called Markov chain if satisfies the Markov property

A Markov chain is called homogeneous if satisfies the property of steady-state 
probability, non-homogeneous otherwise

A Makov chain is finite-state if the set of possible states is finite

A finite-state Markov chain has a representation by a matrix

FMSS, 2020-2021

We consider homogeneous Markov chains

if t = {0, 1, 2, 3. …},  we have discrete time Markov chains (DTMC)



DTMC: Transition probability matrix
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The following matrix is called the transition probability matrix P (nxn) 

pi j = probability of moving from state i to state j in one step

row i of P: probability of making a transition starting from initial state i

column j of P: probability of making a transition from any state to final state j 

FMSS, 2020-2021

• n number of states of the chain
• i, j are states (numbered

starting from 1 to n)
• 0 <= pij <= 1 

p11
P = 

pn1 pnn

…
..

….. …
..…..

p1n

…..

j

i

pi j = P {X1=j | X0=i}  



DTMC: Transition probability matrix
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The transition probability matrix P satisfies the following property

This follows by the condition that the sum of the elements of each raw of the matrix is 1

This sum represents the probability of moving from state i into any state in S

Non-negative matrices such that Pu=u are called stochastic matrices 

FMSS, 2020-2021

p11
P = 

pn1 pnn
…

..

….. …
..…..

p1n

…..

j

i

Let u = [1, 1, 1, …, 1]T

P u = u

Sj pij = 1  for all i



DTMC: graph associated to the chain
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1 5

FMSS, 2020-2021

Each state of the Markov chain is a node
Each pi j  >=0 corresponds to a directed
Edge from node i to node j

p11
P = 

pn1 pnn

…
..

….. …
..…..

p1n

…..

j

i

p11
p15



Example: simplex system

Dependability evaluation 57

0 1

1-pf
pf

State 0 : working
State 1: failed

pf Failure probability

{Xt }  t=0, 1, 2, ….     S={0, 1}

- all state transitions occur at fixed intervals
- probabilities assigned to each transition

1-pf
pf

0 1
P = 

current
state

next
state

0

0

1

1

- pij = probability of a transition from state i to state j
- pij >=0
- the sum of each row must be one

FMSS, 2020-2021

Transition probability matrix P

1



DTMC:  transition probability after n steps 
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P{Xt+n=j | Xt=i}  =  P {Xn=j | X0=i}     for all t >= 0

Theorem
For each pair of states i and j, and n >= 0: 

Steady-state transition probabilities after n steps : 

=    P {Xn=j | X0=i}     for all t >= 0pij
(n)



DTMC:  transition probability after n steps 
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= P {X0=j | X0=i}  = pij
(0)

1 if i=j  

0  otherwise

=  P {X1=j | X0=i}  = pij
(1) pij

<= 1  for all i,jpij
(n)0 <=

Definitions

=    P {Xn=j | X0=i}     for all t >= 0pij
(n)

Properties

Sj pij =
(n)

Sj P {Xn=j | X0=i} = 1    for all i 



DTMC:  transition probability after n steps 
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pij

(n+m)
Sk pik

(n) (m)
pkj=

It can be proved that: P
(n+m)

= P
(n)

P
(m)

P

(1)

n

P
(n)

= P . … P = P 

Since P
(k)

= P
(k-1)

P P
(k-1)

P=

Theorem (Chapman-Kolmogorov)
For each pair of states i and j, and for each n, m  >= 1: 

the n-th power of P 

P
(0)

= I

= P
(1)

n

P
(n)

= P

is a stochastic matrix:      P u = P Pu = P u = …. P u = u
(n-1)(n) (n -1)(n)

P



DTMC:  sojourn time in a state i
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Random variable T   i

P{Ti=n} = pii (1-pii)

Probability that, when the system enter the state i, the system remains  in 
state i for n >=1 consecutive steps

Geometric distribution of parameter 

P{Ti > n} = pii

pii

(n)

E[Ti]=
(1-pii)

1

(n-1)



DTMC: probability distribution at time t 
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p(2) = p(1) P

= (p0      , p1 (0),  … )p(0) (0)

State occupancy vector at time t      p(t) = [p0(t), p1(t) , …]

p(1) = p(0) P

Initial state occupancy vector

FMSS, 2020-2021

Probability of being in a given state after a number of time steps 

pi(t)  is the probability that {Xt = i}where

States numbered starting
from 0 for readbility

state occupancy vector after one step

state occupancy vector after t stepp(t) = p(t-1) P
…………….



DTMC: transient analysis
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A Markov process can be specified in terms of the state occupancy vector  p and 
the transition probability matrix P (transient behavior)

FMSS, 2020-2021

p(t) = p(0) Pt



Simplex system with repair
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0 1

1-pf
pf

pr

1-pr

State 0 : working
State 1: failed

pf

pr
Repair probability

Failure probability

1-pf pf

pr 1- prP = 
current
state

next
state

0

0

1

1

FMSS, 2020-2021



Simplex system with repair
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probability of being in a state  after  1  time-step

1-pf pf

pr 1- pr

1-pf pf

pr 1- pr

probability of being in a state  after  t  time-steps

0 1

1-pf
pf

pr

1-pr

FMSS, 2020-2021

p(1) = p(0)

p(t) = p(t-1)

= (p0      , p1 )p(0) (0) (0)    

probability of being in a state  at the beginning



Simplex system with repair
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0.9 0.1

0.5 0.5

[ 1, 0]

= [ 0.9, 0.1]

initial state: working

0 1

1-pf
pf

pr

1-pr

FMSS, 2020-2021

p(0) =

p(1) = [ 1, 0]
probability of being in state 0
after  1  time-step is 0.9

0.9 0.1

0.5 0.5P =  

DTMC

S={0, 1}   
{Xt} t=0, 1,2 … 

X0 = 0  prob. 1
X0 = 1  prob. 0

X1 = 0  prob. 0.9
X1 = 1  prob. 0.1
……………………….

Xt = 0  prob that 
the system ‘s 
state is 0 
at time t

[ 0.9, 0.1]
0.9 0.1

0.5 0.5
p(2) = = [ 0.86, 0.14]

probability of being in state 0
after  2  time-step is 0.86

0.86 0.14

0.70 0.3P2=  



DTMC: Limiting behaviour
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The limiting behaviour of a DTMC depends on the  characteristics of its states.  

The limiting behaviour of a DTMC (steady-state behaviour)

FMSS, 2020-2021

lim p(t) 
t→∞



DTMC: classification of states
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A state j is said to be accessible from state i if there exists t >0  such that

Pij > 0,      we write i->j

A Markov chain is irreducible if for all the states i, j: 
- state i is accessible from j in a  finite number of time steps
- and state j is accessible from i in a  finite number of time steps 

for each i, j:   i -> j   and j -> i 

A irriducible Markov chain consists of only one equivalence class of communicating
states

(t)



DTMC: classification of states
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A state i is recurrent if
for each j: (i->j)  implies (j->i)
process moves again to state i with probability 1

A state i is transient if
exists (j!=i)  such that (i->j)  and not (j->i)

A state i is absorbent if
pii=1 

An absorbent state is also a recurrent state



Given a recurrent state, let d be the greatest common divisor of all the 
integers m such that Pii

(m) > 0

A recurrent state  i is periodic if d > 1

A recurrent state  i is aperiodic if d = 1: it is possible to move to the same state 
in one step

1 2

state 1 is periodic with period d=2

state 2 is periodic with period d=2

1

1

DTMC: classification of states

If pii > 0  then the state i is aperiodic
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DTMC: Steady-state behaviour

THEOREM:  For irreducible aperiodic Markov chain
for each j

exists and the solution is independent from p(0) 

lim p(t)

t→∞
j
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The steady-state behaviour of the Markov chain is given by the fixpoint of 
the equation:

p(t) = p(t-1) P

with 
Sj pj =1



Time-average state space distribution

Measures of dependability and security 72

Markov chains with periodic states

Compute the time-average state space distribution, sometimes called

p(0) = (1,0)

p(1) = p(0) P   =    (1,0)

p(2) = p(1) P   =    

………..

0   1
1   0 

0 1

p(0) =(1,0)

state i is periodic with period d=2

1

1

p*

FMSS, 2020-2021

=    (0,1)

0   1
1   0 

=    (1,0)(0,1)   

Initial state: working



Limiting behaviour: time-average space distribution
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We calculate the time-average state space distribution

FMSS, 2020-2021

P
(*)

= lim i=1.. t
p(i)

t

Irreducible Markov chain with periodic states: the periodic state oscillates 
periodically. The limiting behaviour does not exist (caused by the probability of 
the periodic state)

t→∞

S



From discrete-time to continuous-time Markov chain (CTMC)

74

• state transitions may  occur at any time (random intervals) 

• transitions are assigned transition rates 

Markov property assumption

the length of time already spent in a state does not influence 

- either the probability distribution of the next state or 

- the probability distribution of remaining time in the same state before the next 
transition 

FMSS, 2020-2021 Dependability evaluation

{Xt}, with t in T (an interval of real numbers)



From discrete-time to continuous-time Markov chain (CTMC)
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{Xt}, with t in T ={t1, t2, …}    (T  is an interval of real numbers)

We consider steady-state transition probability (homogeneous chain)
for each t1, t2, … and for all t >= 0

P{Xt+t=j | Xt=i}  =  P {Xt=j | X0=i}

The chain has a transition probability matrix.  



Continuous-time Markov chain (CTMC)
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the time spent in a stateTi

Ti

For the Markov property assumption, 
is a continuous random variable with exponential distribution  

The value of this variable characterizes the behaviour of the CTMC

Thus the Markov model naturally fits with the standard assumptions 
that failure rates are constant, leading to exponential distribution of 
interarrivals of failures



Continuous-time Markov chain (CTMC)
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the time spent in a stateTi

The value of this variable characterizes the behaviour of the CTMC

For each state i,     = e (a) 

if a=0, the state is absorbent

if a =    ,  the state is instantaneous 

if  0 < a <    , the state is stable

∞

∞



Continuous-time Markov chain (CTMC)
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state 0: working

state 1: failed 

l failure rate

m  repair rate                   

Simplex system
with repair

0 1

l

m

Probability of being in state 0 at time t1: 
- minus the flow out of state 0 times the probability of being in state 0 at time t0,
- plus the flow into state 0 from state 1 times the probability of being in state 1 at time t0.
Similarly for state 1.

p(t0) =[1, 0]

Q= 
−l l

m −m

p(t1) =[?,  ?]

A CTMC can be specified in terms of the occupancy probability vector p and the 
state-transition-rate matrix Q

Flow 
- out of a state
- into a state

flow 
out of 
state 0

flow 
into
state 0

Self-loops are not shown in the graph



State-transition rate matrix Q

The matrix Q is defined as follows

qij = 

rate of going from 
state i to state j      

- Sk!=i qik
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if (i != j)  

otherwise

the sum of each row must be zero 



CTMC: transient and steady-state analysis
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Mobius provides simulation and numerical solvers

• Simulation solver (to solve all models)

statistically accurate solutions within a confidence interval

• Numerical solver  (to solve models with exponential/deterministic distribution)
limited to models that have small state-space 
numerical solvers provide exact solutions



Simplex system with repair: Availability
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The availability consists of a steady-
state term and an exponential 
decaying transient term 

p1(t) =  

p0(t) =  

FMSS, 2020-2021

steady-state
term

A(t) = p0(t) 

p(t) =(p0(t), p1(t))

p0(t)  is the probability that the system is in the operational state at time t, availability at time t

0 1

l

m+

l

l + m

m

l + m

- (l + m) t
e

-

l

l + m

l

l + m

- (l + m) t
e



Availability as a function of time 
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l = 0.001   (1/1000)

m = 0.1       (1/10)

The steady-state value is 
reached in a very short time

Taken from: [Siewiorek et al.1998]

FMSS, 2020-2021



Continuous-time Markov models: Reliability
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failed state as  trapping state  

Single system without repair

Q =

l = failure rate

Reliability   R(t) = 

Unreliability Q(t) = 

−l l

0 0

p0(t)  = e –lt 

p1(t)  = 1 - e –lt 

FMSS, 2020-2021

p(t0) =[1, 0]

0 1

l



TMR system with repair
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Rates: l and m

Identification of states: 
3 processors working, 0 failed
2 processors working, 1 failed
1 processor working, 2 failed

Reliability   R(t) = 1- p2(t)

p(0) = [1, 0, 0]

Q =
−3l 3l 0

m −2l−m 2l

0 0 0

FMSS, 2020-2021

0 1

3 l

m

2
2 l



Comparison with nonredundant system and TMR without/with  
repair 
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Taken from: [Siewiorek et al.1998]

FMSS, 2020-2021



Dual processor system with repair: Availability model
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p(0) = [1, 0, 0]

Availability A(t) = 1- p2(t)       

Q =
−2l 2l 0

m −(l+m) l

0 m -m

FMSS, 2020-2021

0 1

2 l

m

2

l

m

Steady-state Availability Ass =
2 l m + m 2

2 l 2 + 2 l m + m 2

A, B processors    
Failure rates: l
Repair rate: m

Identification of states: 
A, B working: state 0
B working, A failed: state 1
A working, B failed: state 1
A, B failed: state 2

Build the model assuming different failure/repair rates for A and B



Dual processor system with repair: Reliability model
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p(0) = [1, 0, 0]

Reliability R(t) = 1- p2(t)       
R(t) = p0(t) + p1(t)

making state 2 a trapping state

Q =
−2l 2l 0

m −(l+m) l

0 0 0

FMSS, 2020-2021

0 1

2 l

m

2
l



Another example of modelling (CTMC)
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X random process that represents the  number of operational memories and the 

number of  operational processors at time t

Given a state (i, j): 

i is the number of operational memories; 

j is the number of operational processors

lm failure rate for memory

lp failure rate for processor

Multiprocessor system with  2 processors and 3 shared memories system.

System is operational if at least one processor and  one memory are operational.

S = {(3,2), (3,1), (3,0), (2,2), (2,1), (2,0), (1,2), (1,1), (1,0), (0,2), (0,1)}



A example of modelling (CTMC): Reliability
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(3, 2) -> (2,2)  failure of one memory

(3,0), (2,0), (1,0), (0,2), (0,1)  are absorbent states

lm failure rate for memory

lp failure rate for processor



A example of modelling (CTMC): Availability

Dependability evaluationFMSS, 2020-2021 90

Assume that faulty components are replaced and we evaluate the probability that the 

system is operational at time t

Constant repair rate m (number of expected repairs in a unit of time)

Strategy of repair:

only one processor or one memory at a time can be substituted

The behaviour of components (with respect of being operational or failed) is not 

independent:  it depends on whether or not other components are in a failure state.  



A example of modelling (CTMC): Availability
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Strategy of repair:

only one component can be substituted at a time

lm failure rate for memory

lp failure rate for processor

mm repair rate for memory 

mp repair rate for processor



A example of modelling (CTMC): Availability
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An alternative strategy of repair:

- only one component can be substituted at a time  and processors have  higher priority

- exclude the lines mm representing memory repair in the case where there has been a process failure



Safety - avoidance of catastrophic consequences -
As a function of time, S(t), is the probability that the system either behaves correctly 
or will discontinue its functions in a manner that causes no harm (operational or Fail-
safe)

Coverage – The coverage is the measure c of the system ability to reach a fail-
safe state after a fault. 

Modeling coverage in a Markov chain means 
that every un-failed  state has two transitions to 
two different states, one of which is fail-safe, 
the other is fail-unsafe.

Fail-safe

Fail-unsafe

cl

(1-c)l

Fs

Fu

op

Safety
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A example of modelling (CTMC): Safety
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c = probability of coincident failures of two components 

the system  can be in a safe state although the failures of two components, if the 
output of the three components disagree

0

3l

2(1-c)l

2cl

1 42

3

3cl

3cl

3(1-c)l

0  three correct components

1 one faulty component

2 two faulty components (no coincident failures)

3 two faulty component coincident failures

4 three faulty components (no coincident failures)

S(t) = 1- p3(t)

R(t) = p0(t) + p1(t)

S(t) = p0(t) + p1(t) + p2(t) + p4(t)

Fail-unsafe state

Fail-safe state

Fail-safe state



MTTR - The Mean Time To Repair  is the average time required  to repair the system.   

MTTR is expressed in terms of a repair  rate  m which is the average number of repairs that 
occur per time  period, generally number of repairs per hours

m = 1/MTTR

op faulty

m

Maintenability - M(t) is the conditional probability that the system is repaired throughout the 

interval of time [0, t], given that the system was faulty at time 0

M(t) = 1 - e-mt

with m constant repair rate.

Summary
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Reliability - R(t), is the conditional probability that the system performs correctly

throughout the interval of time [0, t], given that the system was performing correctly
at time 0

R(t) = e-lt

with l constant failure rate.

Failure rate - The failure rate is the expected number of failures of a type of device per a 

given time period 
(e.g. l = 1/1000,  one failure per 1000 hours)

MTTF – The Mean Time To Failure is the expected time that a system will operate before 

the first failure occurs (e.g., 1000 hours)
MTT = 1/l 

Summary

op
faulty

l
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MTTR - The Mean Time To Repair  is the average time required  to repair the system.   

MTTR is expressed in terms of a repair  rate  m which is the average number of repairs that 
occur per time  period, generally number of repairs per hours

m = 1/MTTR

op faulty

m

Maintenability - M(t) is the conditional probability that the system is repaired throughout the 

interval of time [0, t], given that the system was faulty at time 0

M(t) = 1 - e-mt

with m constant repair rate.

Summary
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MTTF MTTFMTTR MTTR

correct correct correct

Mean Time Between Failures - The MTBF is the average time between failures of the 
system, including the time required to repair the system and place it back into an 
operational status

MTBF = MTTF + MTTR

MTBF

Summary

if m =0

Steady-state Availability
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