
Model checking

Cinzia Bernardeschi

Department of Information Engineering

University of Pisa

FMSS, 2019-2020

1 / 32

NuSMV

NuSMV is a symbolic model checker
OpenSource tool
Free Software license.

NuSMV home page: http://nusmv.fbk.eu/

I Modelling the system
I Modelling the properties
I Verification

I simulation
I checking of formulae

2 / 32

Modelling language

I A system is a program that consists of one or more modules.
I A module consists of

I a set of state variables;
I a set of initial states;
I a transition relation defined over states.

I Every program starts with a module named MAIN
I modules are instantiated as variables in other modules
I Modules can be Synchronous or Asynchronous

- DECLARATION of variables
- ASSIGNMENTS that define the inital states
- ASSIGNMENTS that define the transition relation

3 / 32

Data types

The language provides the following types
I booleans
I enumerations (cannot contain any boolean value (FALSE, TRUE))
I bounded integers
I words: unsigned word[.] and signed word[.] types are used to model vector of

bits (booleans) which allow bitwise logical and arithmetic operations
(unsigned and signed)

I Arrays
lower and upper bound for the index, and the type of the elements
array 0..3 of boolean
array 10..20 of OK, y, z

I

DEFINE is used for abbreviations
DEFINE <id> := <simple_expression> ; no constraint on order such as in C where
a declaration of a variable should always be placed in text above the variable

4 / 32

Operators

I Logical and Bitwise
&, |, xor, xnor, ->, <->

I Equality (=) and Inequality (!=)
I Relational Operators >, <, >=, <=
I Arithmetic Operators +, -, * , /
I mod (algebraic remainder of the division)
I Shift Operators «, »
I Index Subscript Operator []
I

5 / 32

Other expressions

I Case expression
case
cond1 : expr1;
cond2 : expr2;
...
TRUE: exprN;
esac

I Next Expression
refer to the values of variables in the next state
next(v) refers to that variable v in the next time step
next((1 + a) + b) is equivalent to (1 + next(a)) + next(b).
next operator cannot be applied twice, i.e. next(next(a))

6 / 32

Finite state machine-FSM

I Variables
I state variables
I input variables
I frozen variables

variables that retain their initial value throughout the evolution of the state
machine

I transition relation describing how inputs leads from one
state to possibly many different states

I Fairness conditions that describe constraints on the valid
paths of the execution of the FSM

FMS = finite transition system

7 / 32

Finite Transition system

I Initial state:
init(<variable>) := <simple_expression> ;
variables not initialised can assume any value in the domain of the type of the
variable

I Transition relation:
next(<variable>) := <simple_expression> ;
simple_expression gives the value of the variable in the next state of the
transition system

8 / 32

More on variables

I state variables (VAR)
I input variables (IVAR)

are used to label transitions of the Finite State Machine.
input variables cannot occur in left-side of assignments
IVAR i : boolean;
ASSIGN init(i) := TRUE; – legal
next(i) := FALSE; – illegal

I frozen variables (FROZENVAR)
variables that retain their initial value throughout the evolution of the state
machine
ASSIGN
init(a) := d; – legal
next(a) := d; – illegal

9 / 32

Constraints

I INIT constraint
The set of initial states of the model is determined by a boolean expression
under the INIT keyword.

I INVAR constraint
The set of invariant states can be specified using a boolean expression under
the INVAR key- word.

I TRANS constraint
The transition relation of the model is a set of current state/next state pairs.
Whether or not a given pair is in this set is determined by a boolean
expression, introduced by the TRANS keyword.

10 / 32

Constraints

I ASSIGN Constraint

ASSIGN a := exp;
ASSIGN init(a) := exp
ASSIGN next(a) := exp

Assignments describe a system of equations that say how the FSM evolves
through time.

11 / 32

Constraints

I FAIRNESS Constraints
A fairness constraint restricts to fair execution paths. Paths that satisfy the
expression simple_expr below, which is assumed to be boolean.
When evaluating formulae, the model checker considers path quantifiers to
apply only to fair paths.

FAIRNESS simple_expr ;

12 / 32

Module declaration

A module declaration is a collection of declarations, constraints and specifications
(logic formulae).

A module can be reused as many times as necessary. Modules are used in such a
way that each instance of a module refers to different data structures.

A module can contain instances of other modules, allowing a structural hierarchy
to be built.

module :: MODULE identifier [(module_parameters)] [module_body]

13 / 32

MODULE instantiation

An instance of a module is created using the VAR declaration. In the declaration
actual parameters are specified

In the following example, the semantic of module instantiation is similar to
call-by-reference (the variable a below is assigned the value TRUE)

MODULE main
VAR
a : boolean;
b : foo(a);
...

MODULE foo(x)
ASSIGN
x := TRUE;

14 / 32

MODULE instantiation

in the following example, the semantic of module instantiation is similar to
call-by-value

MODULE main
...
DEFINE
a := 0;
VAR
b : bar(a); b is a module of type bar declared inside module main
...

MODULE bar(x)
DEFINE
a := 1;
y := x;

The value of y is 0
15 / 32

Composition of modules

MODULE mod
VAR
out: 0..9;
ASSIGN
next(out) := (out + 1) mod 10;

MODULE main
VAR
m1 : mod;
m2 : mod;
sum: 0..18;
ASSIGN sum := m1.out + m2.out;

. used to access the components of modules (e.g., variables)
self used for the current module

16 / 32

Composition of modules

Module declarations may be parametric.
MODULE mod(in)
VAR out: 0..9;
...

MODULE main
VAR
m1: mod(m2.out);
m2 : mod(m1.out);
...

17 / 32

Composition of modules

I modules have parameters (input/output parameters)
I variables declared in a module are local to the module
I synchronous composition: all modules move at each step (by default)
I aynchronous composition (modules instantiated with the keyword process):

one process moves at each step (it is possible to define a collection of parallel
processes, whose actions are interleaved, following an asynchronous model
of concurrency)

One process is non-deterministically chosen, and the assignment statements
declared in that process are executed in parallel. Variables not assigned by the
process remains unchanged. Next process to execute is chosen
non-deterministically.

18 / 32

Example

MODULE main
VAR
semaphore : boolean;
proc1: process user(semaphore);
proc2: process user(semaphore);
............

running: a special variable of each process - TRUE if and only if that process is
currently executing. It can be used in a fairness constraint (formula true infinitely
often).

19 / 32

NuSMV 2.6 documents

NuSMV 2.6 Tutorial.
R. Cavada, A. Cimatti et al., FBK-IRST
Distributed archive of NuSMV (/share/nusmv/doc/tutorial.pdf)

NuSMV 2.6 User Manual.
R. Cavada, A. Cimatti et al., FBK-IRST
Distributed archive of NuSMV (/share/nusmv/doc/nusmv.pdf)

example available also at the URL
<http://nusmv.fbk.eu/examples/examples.html>
Examples below are taken from the tutorial.

20 / 32

A simple program

A system can be ready or busy. Variable state is initially set to ready. Variable
request is an external uncontrollable signal. When request is TRUE and variable
state is ready, variable state becomes busy. In any other case, the next value of
variable state can be ready or busy: request is an unconstrained input to the
system.

MODULE main
VAR
request : boolean;
state: {ready, busy };
ASSIGN
init(state) := ready;
next(state) := case

state = ready & request = TRUE : busy;
TRUE: {ready, busy };
esac;

21 / 32

A simple program

Build the transition system (also named Finite state machine - FSM)

22 / 32

Running NuSMV

./NuSMV -int
activates an interactive shell

read_model [-i filename]
reads the input model

go
reads and initializes NuSMV for verification or simulation

reset
resets the whole system

help
shows the list of all commands

quit
stops the program

23 / 32

Simulation

simulate [-p | -v] [-r | -i] -k steps
generates a sequence of at most steps states starting from the
current state
-p prints only the changed state variables
-v prints all the state variables
-r at every step picks the next state randomly
-i at every step picks the next state interactively

24 / 32

Simulation

show_traces [-v] [trace number]
shows the trace identified by trace number or the most recently
generated trace. -v prints prints all the state variables.

print_current_state [-v]
prints out the current state. -v prints all the variables

25 / 32

go
pick_state -r
print_current_state -v
simulate -r -k 3
show_traces -t
show_traces -v

pick with constraint
pick_state -c "request = TRUE" -i

26 / 32

Verification

Specifications written in CTL can be checked on the FSM .

OPERATORS:
EX p
AX p
EF p
AF p
EG p
AG p
E[p U q]
A[p U q]

A CTL formula is true if it is true in all initial states.

Checking properties:
NuSMV file.smv

27 / 32

An example

MODULE main
VAR
request : boolean;
state: {ready, busy };
ASSIGN
init(state) := ready;
next(state) := case

state = ready & request = TRUE : busy;
TRUE: {ready, busy };
esac;

SPEC AG (state = busy | state= ready);
SPEC EF (state = busy);
SPEC EG (state = busy);
– SPEC AG (state=ready & request=true) -> AX state = busy;

28 / 32

Exercise

Mutual Exclusion

Implement mutual exclusion between two processes, using a boolean variable
semaphore.

Each process has four states: idle, entering, critical and exiting.

The entering state indicates that the process wants to enter its critical region.

If the variable semaphore is FALSE, it goes to the critical state, and sets
semaphore to TRUE.

On exiting its critical region, the process sets semaphore to FALSE again.

29 / 32

Exercise

MODULE main
VAR
semaphore : boolean;
proc1: process user(semaphore);
proc2: process user(semaphore);

ASSIGN
init(semaphore) := FALSE;

MODULE user(semaphore)
VAR
state : {idle, entering, critical, exiting};
............

30 / 32

MODULE user(semaphore)
VAR state : {idle, entering, critical, exiting};

ASSIGN
init(state) := idle;
next(state) := case

state = idle : {idle, entering}
state = entering & !semaphore : critical
state = critical : {critical, exiting}
state = exiting : idle
TRUE : state
esac;

next(semaphore) := case
state = entering : TRUE
state = exiting : FALSE
TRUE : semaphore
esac;

FAIRNESS
running

31 / 32

Exercise

Properties

1. It never is the case that the two processes proc1 and proc2 are at the same
time in the critical state

AG ! (proc1.state = critical & proc2.state = critical)

2. if proc1 wants to enter its critical state, it eventually does - a liveness property

AG (proc1.state = entering -> AF proc1.state = critical)

Counter-example path. It can happen that proc1 never enters its critical region.

32 / 32

