
Malware Analysis II

Francesco Mercaldo

University of Molise, IIT-CNR

francesco.mercaldo@unimol.it

Formal Methods for Secure Systems, University of Pisa - 08/04/2020

Ethics

• "Pursuant to art. 615-ter of the Italian penal code, it constitutes a crime
committed by someone who illegally enters an IT or telematic system
protected by security measures or remains there against the express or
tacit will of those who have the right to exclude it. »

• "The ordinary penalty for the crime is imprisonment of up to 3 years"

• … But in some cases it can go up to 5 years

• «Never run security tools against systems that you do not have express
written permission to do so»

Malware creation

• Let’s start our KALI distro

• User: kali

• Pwd: kali

Some setting

• setxkbmap -layout it

• italian keyboard symbol‘ => english keyboard symbol -

MSFVenom
• A tool for generating standalone payload

• A payload repository…

The payload

• We aim to open a shell on the target machine
• A «reverse shell» i.e., a shell connected with the attacker machine

• In the simulation the attackers and the target machine is the same
• i.e., our Kali distro

The Malware

• The information we need for malware generation
• The payload

• -p <payload>

• The attacker host
• LHOST=<host>

• The attacker port
• LPORT=<port>

• The format of the generated file
• -f elf > <nomefile>.elf

the list of the
available
payloads

Finding reverse_tcp payload

• msfvenom -l payload | grep -E 'linux.*x86.*reverse_tcp'

MsfVenom

• Payload generation

• The example is taken from https://www.offensive-
security.com/metasploit-unleashed/msfvenom/

MsfConsole

• In the attacker shell

• The example is taken from: https://www.offensive-
security.com/metasploit-unleashed/msfconsole/

Load the exploit

• Set the attacker machine

in waiting state

The example is taken from: https://www.offensive-
security.com/metasploit-unleashed/msfconsole/

Enable msf to
handlers payload

lanched outside of
the framework

Load the
payload

Payload
configuration

Run the attacker exploit

Try our malware

• From the target machine
• Typical example of file, for instance, obtained from email…from the web…

• In meanwhile in the Attacker shell…

Exploring the target

The example is taken from: https://www.offensive-security.com/metasploit-
unleashed/meterpreter-basics/

Exploring the target

• The example is taken from: https://www.offensive-
security.com/metasploit-unleashed/meterpreter-basics/

Creating a Trojan

• With the –x <executable> option you can inject into a legitimate
application the malicious payload
• To generate a Trojan ☺

• With the –k option you can allow your payload to run in a separate
new thread
• Allowing normal continuation of the executable while the payload is activated

Automatic execution

• It is also possible to automatically execute this kind of attack
• Without the social engineering step

• In this case requested to run the executable payload…

• We need an exploit
• Exploiting some vulnerabilities
• For instance in a service/daemon

• Penetration testing
• IP scanning
• Looking for exploit
• Attach the payload to the exploit
• Execute the attack

Android application

• APKs file

Dissecting an Android sample

• Filename: fd694cf5ca1dd4967ad6e8c67241114c.apk

• MD5: fd694cf5ca1dd4967ad6e8c67241114c

• SHA256:
8a918c3aa53ccd89aaa102a235def5dcffa047e75097c1ded2dd2363bae7
cf97

We recall that the techniques and the tools that we will discuss are for
informational and educational purpose only.

The toolchain

• APKParser – a tool for making humane readable the Manifest file
• https://github.com/jaredrummler/APKParser

• dex2jar - a set of tools that reads Dalvik Executable files and outputs .jar
files
• https://github.com/pxb1988/dex2jar

• JD-GUI graphical utility that displays Java source codes of .jar files
• http://java-decompiler.github.io/

• JD-GUI is for Java programs
• Try to decompile your programs (it accepts .class files and .jar file) ☺

https://github.com/jaredrummler/APKParser
https://github.com/pxb1988/dex2jar
http://java-decompiler.github.io/

Checking Internet connection…

Download the lesson archive

• Use the Firefox browser embedded into the KALI distro
• https://mega.nz/file/gRkzHJJY#SKio7GpoBkoABl8-

xostbEVWf3491u0Z3ssXHC8L1NQ

Manifest reading

From dex2jar

Opening JD-GUI

a brief look…

• Main: calls MainService

• MainService: calls TorService (used to connect to the anonymous TOR network)

• MainService: calls FilesEncryptor

• FilesEncryptor: encrypts all images and videos, renames their extensions to .enc

• Constants: contains variable EXTENSIONS_TO_ENCRYPT which contains the following file
extensions: "jpeg", "jpg", "png", "bmp", "gif", "pdf", "doc", "docx", "txt", "avi", "mkv", "3gp",
"mp4"

• FilesEncryptor calls AesCrypt and finds all images, videos and documents on the phone's SD card

• AesCrypt contains a method called encrypt() which uses AES encryption and cipher password
"jndlasf074hr" (found in Constants)

• HTTPSender: connects to http://xeyocsu7fu2vjhxs.onion/ to send data about phone. Uses
127.0.0.1 port 9050 as proxy

• Utils: gathers information such as IMEI, OS, phone model and manufacturer

In a nutshell

• This app is looking for images, documents and videos to encrypt.
After encrypting the files it will then rename their file extensions to
.enc

• The app has a C&C (command and control) server on the TOR
network

• The app collects information about the phone (IMEI, OS, phone
model, manufacturer) to send to a server

• Maybe the C&C server can send decryption instructions to the app..

Deep static analysis

• The main function being carried out
by this app is the file encryption
• which occurs in the

classes FilesEncryptor and AesCrypt.

• The class FilesEncryptor contains a
method called getFileNames().

• This code extract from the
ransomware iterates through all files
on the SD card.

• Line 16 calculates the file extension of
each file on the SD card

• Line 17 checks if the file extension is in
the list of pre-determined file
extensions to encrypt (found in the
class Constants).

Deep static analysis
• This method iterates over all the files which

were added to the array in the previous
method (getFileNames()), as seen on line 10.

• Each file is encrypted on line 20 where a call
is made to the encrypt() method of
the AesCrypt class.

• The encrypt() method from the AesCrypt class
requires two parameters: name/location of
file to be encrypted and name/location of the
encrypted output file.

• Line 20 uses the name of the file and then
appends the extension .enc to the end of the
file to write.

• Finally, line 21 deletes the original
unencrypted file.

Deep static analysis

• The class AesCrypt carries out the actual encryption and decryption
of files.

• This code snipped shows that the ransomware uses AES encryption
using AES/CBC/PKCS7Padding.

Deep static analysis
• The AesCrypt class contains

a method called crypt() : this

is where the file encryption

takes places within the app.

• Lines 5 and 6 create

variables used for the file

input and output.

• Line 7 initialises the cipher

(to encrypt data).

• Line 8 is where the

encryption occurs

• Line 20 writes the encrypted

byes to the output file.

Deep static analysis

• the same class also
contains a method
called decrypt() which
is very similar to
the encrypt() method

• this method carries
out the decryption on
the input file and
produces the
decrypted output file.

