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op pop two operands off the stack, perform the 

operation,  and push the result onto the stack
pop discard the top value from the stack

push k push the constant  k  onto the stack

load x push the value of variable  x  onto the stack

store x pop off the stack and store the value into x 

if j pop off the  stack and jump to  j  if non-zero 

goto j jump to   j 

jsr j at address  p, jump to address  j  and push p+1  

onto the operand stack
ret x jump to the address stored in  x

halt stop

Java bytecode: a simple instruction set
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Constants V            k, k’, ..           

Addresses A           i, j, ..

Memories Mem= var → V  A m, m’, ..

Stacks Stack = (V  A) * s, s’, ..

Transition system:

Standard operational semantics

A state consists of:   <program counter, memory, operand stack>

State =  (A x Mem x Stack)

Transition: rule of the standard operational semantics



Standard Operational Semantics

x: 5

y: 1
state:  <program counter, memory, operand stack>
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Secure Information FlowBasics of information flow

explicit flow

implicit flow

x is loaded onto the stack, then it is stored into y, that is, y depends explicitly on x

variable x is loaded onto the stack. Depending on the value of x, either the constant 1 

or the constant 0 is pushed onto the stack, and successively stored onto y

In both cases observing the final value of y reveals information on the value of x
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Secure Information FlowImplicit flow

Implicit flow starts at [2] 

When implicit flow terminates?

[6] is the first instruction that is common to both 

branches

The implicit flow terminates at [6]

[6] is the first instruction that is not under the implicit flow

[1]

[2]

[3]

[4]

[6]

[5]

[7]
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The implicit flow of  an if instruction  at address i 

terminates at the instruction with address ipd(i)

immediate postdominator of i: the first node 

belonging to all paths from i 

ipd(i) = j 

i

j

We use the concept of immediate postdominator  on the CFG of the program  

to handle implicit flows

Implicit flow



i1   

i

j

Implicit flow

immediate postdominator of i1: the first 

node belonging to all paths from i 

ipd(i1) = j 

Nested implicit flows

The innest implicit flow if the implicit flow 

that terminate first 

IPD stack: 

when executing an instruction, the ipd stack 

mantains information on the open implict 

flows

IPD stack  is updated any time a control 

instruction is enetered and any time a 

control instruction terminates

What about nested control instructions?



i1   

i

j

Implicit flow

Execution of instructions

when an instruction j is executed: if the 

instruction j  is the top of the ipd stack, the 

stack is updated by executing pop (j is 

removed from the stack)

…before i ……. Stack of ipd: l

i: control instruction Stack of ipd: ipd(i)

i1:  control instruction Stack of ipd:          ipd(i1)

ipd(i)

j:  top of the ipd stack Stack of ipd: ipd(i)

j:  top of the ipd stack Stack of ipd: l

CONTROL REGION  

of a branching 

instruction



i1   

i

j

Implicit flow

Execution of instructions

when an instruction j is executed: if the 

instruction j  is the top of the ipd stack, the 

stack is updated by executing pop (j is 

removed from the stack)

…before i ……. Stack of ipd: l

i: control instruction Stack of ipd: ipd(i)

i1:  control instruction Stack of ipd:          ipd(i1)

ipd(i)

j:  top of the ipd stack Stack of ipd: ipd(i)

j:  top of the ipd stack Stack of ipd: l

CONTROL REGION  

of a branching 

instruction



i1   

i

j1

Implicit flow

j
ipd(i) = j

ipd(i1) = (j1)
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the stack may be manipulated in different ways by the branches of a 

branching instruction: they can perform a different number of pop and 

push operations, and with a different order.

Basics of information flow

Influence of the implicit flow onto the operand stack

The length and the content of the operand stack may be a means by which 

security leakages can occur

The stack is empty or not, depending on the value of x
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Secure Information flow

Basics of information flow

A program P = <c, H, L > satisfies secure information flow if the 

final value of each  low variable  does not depend  on the initial 

value of the high variables.     

H={x}   L={y}
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Termination Agreement

Basics of information flow

Timing Agreement

it is not possible to leak high information by 

observing the termination of the program

the number  of instructions 

executed in a computation may reveal 

information on the value of the high 

variables

H={x}   L={}>

H={x}   L={y}>
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Security levels L = {L < H} , , ..

Constants V            k, k’, ..           

Addresses A           i, j, ..

Concrete Values V = V  L ( k,  )

Concrete Addresses A = A  L         ( i,  )

Concrete Memories M = var → ( V  A ) M, M’, ..

Concrete Stacks S = ( V  A ) * S, S’, ..

Environments E = L , , ..

Domains of the concrete semantics
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STATES            L  A  M  S  A* 

< , PC, M, S, r >

 environment

PC program counter

M memory

S operand stack (1 …. n)

r ipd stack (j,  )…..(j’, ‘)

if r = (j1, 1 )…..(jn, n)

there are n open implicit flows 

j1 holds the address where first implicit flow terminates

1 holds the level of the environment that must be restored

if r =  l

there are no open implicit flow

Concrete Semantics

IPD 

Stack

r
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c[i]= load x , M[x] = (k, ),  not_top(i, r )

load ___________________________________________

<  , i, M, S, r >    →
<  , i+1, M, (k,   ) · S, r >

Transition relation rules
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c[i]= store x , not_top(i, r ) 

store _______________________________________________

< , i, M, (k, ) · S, r > →
< , i, M[ (k,   )/ x ], S, r >

Transition relation rules
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ipd ___________________________________________

<  , i, M, S, (i, ) . r’>  → <  , i , M, S, r’>

r = (i, ) . r’

Transition relation rules

i is the ipd of a control instruction 



20

goto ___________________________________________

<  , i, M, S, r>  → <  , j, M, S, r> 

c[i]= goto j , not_top(i, r ) 

Transition relation rules

i is the ipd of a control instruction 
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c[i]= if j , not_top(i, r ) 

if-false ______________________________________________

<  , PC, M, (0, ) · S, r >    →
<    , PC+1, up(M),up(S), (, ipd(i)) r >

An implicit flow begins, whose level is the least upper bound between 

the security environment () and the security level of the condition of 
the  if ( ). The new security environment is (   )

(ipd(pc),  ) is pushed on the ipd stack r

up(M) upgrades the value of the variables assigned in the 

scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

Transition relation rules
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c[i]= if j , k!=0, not_top(i, r ) 

if-true______________________________________________

<  , i, M, (k, ) · S, r >    →
<    , j, up(M),up(S), (ipd(i), ) . r >

An implicit flow begins, whose level is the least upper bound between 

the security environment () and the security level of the condition of 
the  if ( ). The new security environment is (   )

(ipd(pc),  ) is pushed on the ipd stack r

up(M) upgrades the value of the variables assigned in the 

scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

Transition relation rules
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Concrete rules
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Abstract constants V#  =  { · }

Abstract security levels L# = L

Abstract Values V# : V#  L#    L 

Abstract Addresses A# = A

Abstract Memories M# : var → (L  A )

Abstract Stacks S# : (L  A )*

Abstract Environments E# = E = L

Abstract States: L  A  M#  S#  (A  { 0 })

Abstract semantics
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the abstract semantics:

• abstracts concrete values into their security level: 

 (k,)=

• uses the same rules of the concrete semantics on the 

abstract domains

Both rules for if are always applied -

A(P) : abstract transition system for P
• finite

• multiple path

• each path of C(P) is correctly abstracted onto a path of A(P)

Abstract operational semantics
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Theorem 1

A program  P  satisfies  SIF  if for each state of A(P) such 

that  c[i] = halt , then for each x : L it is:

M[x] = L   (value)

or

M[x]=(i, L) for some i     (address)

Results
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Theorem 2

A program  P satisfies  TERM  if  each state of A(P) 

<  , i, M, S, r >   such  that  = H

does not belong to a cycle.

Results
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Theorem 3

A program P  satisfies TIME  if:

• all paths in  A(P)  starting from a state satisfying

top(S)=H and c[i] = if and ending with a state

satisfying PC=ipd(i)  have the same length.

Results
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Another example: concrete semantics
x:(0,H)   y:(1,L)

ipd(2) = 5, ipd(6)=10
<ENV, PC, [M(x), M(y)], Stack, IPDstack>
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An example: abstract semantics
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Correctness of the analysis

In the definition of the abstract semantics, we have applied 

Abstract Interpretation.

Abstract interpretation is a widely applied method for 

designing approximate semantics of programs.

P. Cousot, R. Cousot.  Abstract interpretation frameworks. 

Journal of Logic and Computation, 2, 1992



32

Example: PINcloner malicious app 

The app catches the private information of the user’s Personal 

Identification Number (PIN) without directly assigning of it to the public 

variable clone.  It achieves this by using a mask that reveals the value of 

each bit of the PIN.

input : PIN

output : clone

clone := 0x0000;

mask := 0x0001;

while(mask > 0)

b :=PIN & mask;

if (b ! = 0)

clone:=clone || mask;

mask := mask << 1;

The PINcloner (pseudocode)



33

PINcloner malicious app 

Initially the mask has all the bits set to 0 except for the least 

significant bit, which is set to 1: this bit shifts one step to the left 

after each loop cycle and clones the value of one bit of the PIN 

during each cycle. 

In particular, the direct assignment of the PIN bits to the clone 

variable is avoided by using a variable b. 

This last variable is different from 0 if and only if the i-th bit of the 

PIN and of the mask are both equal to 1: the value of b can be 

used to set (or not set) the i-th bit of the clone variable.

Once the app has gained the access to the user’s private data, 

the access control mechanism is not able to reveal the illicit flow
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J_PINCloner: pseudocode

PIN read from a file

and copied into

another file

Files:

- PIN: H

- Clone: L
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J_PINCloner: SIF analysis
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J_PINCloner: SIF analysis



37

Data Leakage with Exception mechanism

Exceptions are special events used for signaling errors during 

the execution of a program. 

The rising of an exception is referred as throwing

Every time an exception is thrown, the Java runtime system

breaks the standard execution flow of the program and calls the 

handler that catches and manages the exception 

The correct handler for a given exception type can be found 

searching backwards through the call stack of the method

If no appropriate handler is found the program terminates
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Data Leakage with Exception mechanism

Java Exception Hierarchy (incomplete)
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Data Leakage with Exception mechanism

A simple example with exceptions
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Data Leakage with Exception mechanism

➢ From the exception table: instructions from 8 to 16 are executed in a 

protected way.  Moreover, 19 is the first instruction of the exception 

handler. Instruction 8 is protected and it may throw an exception,  that 

can be captured by an exception handler (executing the code at 19).

Assume that a protected instruction is a control instruction that throws an 

exception depending on a high condition. 

➢ The handler of the exception must be executed under a security 

environment that is high

➢ The execution of the exception handler that captures the exception 

may reveal information on the value of the high condition, thus causing 

a leakage of information
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Data Leakage with Exception mechanism

SOLUTION:

1. The body of the exception handlers can be thought as 

particular extensions of the methods code 

2. An extended control flow graph is built

the extended control flow graph is defined as the graph 

obtained from the method graph augmented with edges 

starting from protected instructions to the first instruction of 

the protecting handlers.
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Data Leakage with Exception mechanism

Extended control flow graph

of the bytecode
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PINCloner malicious applet 

The PINCloner clones the characters of the PIN_FILE by throwing 

different kind of exceptions depending on the value read 

- NullPointerException

- ArithmeticException

Let us consider the PINCloner applet, where PIN_FILE file and Clone_File

file are the input and the output files, respectively. 

PIN_FILE is a private file containing a secret PIN (a sequence of 0/1 

characters, for simplicity). 

Let us suppose that the PINCloner application can read from the private file. 

The applet clones the user secret PIN with the exception mechanism. 

After every character has read, it will be written in a public file by the handler 

of the exception.



45

PINCloner bytecode (an excerpt)
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PINCloner bytecode extended CFG
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PINCloner bytecode extended CFG

➢ instructions from 0 to 22 are protected by two exception handles 

starting at instruction 22 and instruction 34, respectively. 

Instruction 3 is an if with four successors: 

- the natural successors, 

- plus the two entry points of the exception handlers

➢ The control region of 3 includes the instructions of the exception 

handlers, and consequently these instructions are executed in a 

security environment given by the condition of the ifne. 

➢ Since the condition depends on the 0/1 value of PIN character 

read from a high security file, the implicit flow is high. The 

handler of the exception, write such value into the low security 

Clone_File file. 
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PINCloner malicious applet

➢ Security policy: 

PIN_FILE   H

Clone_file L

➢ The analysis starts with L assigned to  all the other resources

➢ The application violates the secure information flow because 

high security data are written on a public file

➢ The leakage is detected by the static analysis


