UNIVERSITA DI PISA

Secure Information Flow In Java

bytecode

FMSS 2019-2020

Java bytecode: a simple instruction set

op pop two operands off the stack, perform the
operation, and push the result onto the stack

pop discard the top value from the stack

push k push the constant k onto the stack

load x push the value of variable x onto the stack

store x pop off the stack and store the value into x

if 3 pop off the stack and jump to j if non-zero

goto j jump to j

jsr j at address p, jump to address j and push p+1
onto the operand stack

ret x jump to the address stored in X

halt stop

Standard operational semantics

Constants V Kk, k', ..
Addresses A i, ..
Memories Mem=var—> VUA m, m’, ..
Stacks Stack =(VUA)" S, S, ..

Transition system:
A state consists of: <program counter, memory, operand stack>

State = (A x Mem x Stack)
Transition: rule of the standard operational semantics

Standard Operational Semantics

X:5 state: <program counter, memory, operand stack>
y: 1

(PC,[MEM(z) MEM(y)], STACK)

0 load y (0,[5,1], A)
1if 4 ﬂlrload

2 push 1 (1,[5,1],1)
3 goto 5 digeos

4 push 0 (4,[5,1], A)
5 store x erush

6 halt (5,[5,1],0)
-]fstnr_e

(6,[0,1], A)

Basics of information flow

1 loadx
2 storey explicit flow
3 halt

X is loaded onto the stack, then it is stored into y, that is, y depends explicitly on x

load x

if 5

push 1

goto 6 implicit flow
push 0

storey

halt

] O o W

variable x is loaded onto the stack. Depending on the value of x, either the constant 1
or the constant O is pushed onto the stack, and successively stored onto y

In both cases observing the final value of y reveals information on the value of x

5

Implicit flow

[1]

load x
1f 5
push 1l
goto 6
push 0
store

halt Y [3]]

[2]

S I o M T O 0 I R VO T o T

[4]
Implicit flow starts at [2]

When implicit flow terminates? [6]

[6] is the first instruction that is common to both [7]
branches

The implicit flow terminates at [6]

[6] is the first instruction that is not under the implicit flow

6

Implicit flow

We use the concept of immediate postdominator on the CFG of the program
to handle implicit flows

Immediate postdominator of i: the first node
belonging to all paths from |

ipd(i) =

The implicit flow of an if instruction at address i
terminates at the instruction with address ipd(i)

Implicit flow

What about nested control instructions?
Nested implicit flows

The innest implicit flow if the implicit flow
that terminate first

immediate postdominator of il1: the first
i1 node belonging to all paths from |

ipd(il) = |
IPD stack:

when executing an instruction, the ipd stack
mantains information on the open implict
flows

IPD stack is updated any time a control
instruction is enetered and any time a
control instruction terminates

Implicit flow

Execution of instructions

when an instruction j is executed: if the

instruction j is the top of the ipd stack, the
i1 stack is updated by executing pop (j is
removed from the stack)

...beforei....... Stack of ipd: A
n I. control instruction Stack of ipd: ipd(i)
l I1: control instruction Stack of ipd: ipd(il)
CONTROL REGION ipd()
i‘ifs?rgg"t"igﬁhmg i top ofthe ipd stack Stack of ipd: ipd()

. j: top of the ipd stack Stack of ipd: A

Implicit flow

Execution of instructions

when an instruction j is executed: if the

instruction j is the top of the ipd stack, the
i1 stack is updated by executing pop (j is
removed from the stack)

...beforei....... Stack of ipd: A
n I. control instruction Stack of ipd: ipd(i)
l I1: control instruction Stack of ipd: ipd(il)
CONTROL REGION ipd()
i‘ifs?rgg"t"igﬁhmg i top ofthe ipd stack Stack of ipd: ipd()

. j: top of the ipd stack Stack of ipd: A

Implicit flow

Ipd(i) =

1 ipdin) = 1) [

Basics of information flow

Influence of the implicit flow onto the operand stack

the stack may be manipulated in different ways by the branches of a
branching instruction: they can perform a different number of pop and
push operations, and with a different order.

The length and the content of the operand stack may be a means by which
security leakages can occur

push 1
load x
if 5
pop
halt

I VS e S B

The stack is empty or not, depending on the value of x

12

Basics of information flow

Secure Information flow

load x H={x} L={y}
if 5

push 1

goto 6

push 0

storevy

halt

o I o 2 T Y S WS I 0 T S

A program P = <c, H, L > satisfies secure information flow if the
final value of each low variable does not depend on the initial
value of the high variables.

13

Basics of information flow

Termination Agreement H=(q L={>

1 loadx it is not possible to leak high information by
2 if1 observing the termination of the program
3 halt

Timing Agreement

H={x} L={y}>
1 loadx the number of instructions
2 1f5 executed in a computation may reveal
3 pushl information on the value of the high
4 gotob variables
5 pushoO
6 storey
7 halt

14

Domains of the concrete semantics

Security levels L={L<H} o1, ..
Constants V K, K, ..
Addresses A i, ..
Concrete Values V=vx L (k, o)
Concrete Addresses A=-Ax L (i,0)
Concrete Memories M= var » (VY vd) M, M’, ..
Concrete Stacks S=Voudd)” S, S, ..

Environments E=L c, T, ..

15

Concrete Semantics

STATES LxAx Mx S x U*
<o, PC,M, S, p>

c
PC
M
S
p

IPD
Stack <

environment

program counter

memory

operand stack (o1 on)
ipd stack (j, o).....(J’, o)

there are n open implicit flows
j1 holds the address where first implicit flow terminates
ol holds the level of the environment that must be restored

ifp= A
there are no open implicit flow

16

Transition relation rules

c[i]= load x , MI[x]=(k, 1), not_top(i, p)

load

<o,,MS,p> —>
<o,i+t1,M, (kour)-S,p>

17

Transition relation rules

c[i]= store x , not _top(i, p)

store

<o,i,M, (k1) S, p>—>
<o,i,M[(k,ouT)/x], S, p>

18

Transition relation rules

p=(,1).p

ipd

<o,i,M,S, (,1).p> > <1,i,M,S, p>

| IS the ipd of a control instruction

19

Transition relation rules

c[i]= goto j , not_top(i, p)

goto

<c6,i,M,S,p> —><0o,,M,S,p>

| IS the ipd of a control instruction

20

Transition relation rules

c[i]= if J , not_top(i, p)

if-false

<o,PC,M,(0,7):-S,p> —
<ourt, PC+1, up(M),up(S), (o, ipd(i)) p >

An implicit flow begins, whose level is the least upper bound between
the security environment (o) and the security level of the condition of
the if (t). The new security environmentis (cu 1)

(ipd(pc), o) is pushed on the ipd stack p

up(M) upgrades the value of the variables assigned in the
scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

21

Transition relation rules

c[i]= if j , k!'=0, not top(i, p)

if-true

<o,i,M (k,T)-S,p> —
<ocut,], up(M),up(S), (ipd(), o) . p >

An implicit flow begins, whose level is the least upper bound between
the security environment (o) and the security level of the condition of
the if (t). The new security environmentis (cu7t)

(ipd(pc), o) is pushed on the ipd stack p

up(M) upgrades the value of the variables assigned in the
scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

22

Concrete rules

. p=1(i,t) p
P4 TGS,) — (.7 M.S.70)
o clil=op not _top(i, p)
p {U: f? M? (kl: T].)) (k2: Tﬂ) b S: Jﬂ} — {U:f +]: M: {kl Gp k?.? Tl U T:’_‘.) * S: Iﬂ}
. clil = pop _ not_top(i, p)
PP TG i M, (k,1)- S, p) — (0,i + 1, M, S, p)
ash cli] =pushk not_top(i, p)
P {U,I,M?S,,ﬂ}—}{G’,I—F],M,(.k,fj]S,ﬂ}
load cli] =1locadx M(x)=(k,T) not_top(i,p)
¢ 6 i M. S, p) — (0,i + 1, M, (k,tU0G)-S, p)
¢ cli] = storex not_top(i, p)
N TG i M, (k, 1) - S, p) — (0,1 + 1, M[(k, T)/x1, S, p)
goto clil]=goto j not _top(i, p)

(G-:II?M: S:.ﬂ} —— {:U,j,M,S,_ﬂ}

clil]=1f j not _top(i, p)
iffﬂi.’j‘t’ {U: '!:: M: {D: T) ! S7 ID} —
(t,i + 1, uppy (M, mod” (FF(i)),), ups(S, 1), (ipd(i), o) - p)

clil]=1fj not _top(i, p)
iftrue {ﬂ', I-? M'.' (k ?E 0: T) . 57 ."j} —
(t, j, upp (M, mod® (FP (i), 7), ups(S, 1), (ipd(i), o) - p)

23

Abstract semantics

Abstract constants
Abstract security levels

Abstract Values
Abstract Addresses
Abstract Memories
Abstract Stacks
Abstract Environments
Abstract States:

24

V# =)

LA=L

V# - v x L#* = L
a*=d

MF var > (Lud)
S Lud)y
EF=E=L

ﬂxAx./l/l#xS#x(Au{O})

Abstract operational semantics

the abstract semantics:

* abstracts concrete values into their security level:
o (k,o0)=c

e uses the same rules of the concrete semantics on the
abstract domains

iftyue

Both rules for if are always applied -

iffalse

A(P) : abstract transition system for P

* finite

» multiple path

 each path of C(P) is correctly abstracted onto a path of A(P)

25

Theorem 1

4 N

A program P satisfies SIF if for each state of A(P) such
that c[i] = halt, then for each x : L it s:

M[x] =L (value)
or
M[x]=(i, L) for some i (address)

_ /

26

Theorem 2

@program P satisfies TERM if each state of A(P) A

<o,i,M,S,p> such thats =H

does not belong to a cycle.

o

27

Theorem 3

/Aprogram P satisfies TIME If: \

« all paths in A(P) starting from a state satisfying
top(S)=H and c[i] = if and ending with a state
satisfying PC=ipd(i) have the same length.

o /

28

Another example: concrete semantics

x:(0,H) vy:(1,L)

pd(2) = 5. ipd(6)=10 <ENV, PC, [M(x), M(y)], Stack, IPDstack>

(L, 1, [(0, H)(1, L)], 2, &)

1 loady load
2 if 5 (L,2,[(0, H)(1, L)], (1, L), »)
3 push 3 iftrue
4 store x (L,5,[(0, H)(1,L)], A, (5, L))
5 load x ipd
6 if 9 (L,5,[(0, H)(1, L)], », A)
7 push 1 load
8 goto 10 (L,6,[(0, H)(1,L)], (0, H), A)
9 push 0 iffalce
10 storevy (H,7,[(0, H)(1, L)], A, (10, L))
11 halt push
(H,8,[(0, H)(1,L)], (1, H), (10, L))
gato

(H,10,[(0, H)(1,L)], (1, H), (10, L))
ipd
P (Lﬂlui [(01 H)(]'&L)]} (11 H)})l')
store

(L,11,[(0, H)(1, H)], &, &) -

An example: abstract semantics

Mg(x) = H and MJ(y) =

(L,1,[H L], A, 4)

¥ load

(L,2,|H L], L,4)

'_*_..-'—'_
{L, 3:-[H L].:"l.1 (E,L}} iffalce
‘Jr push
(L.4,[H L], L.(5.L))

+ store

(L,5,[L L], A, (5, L))

v ipd
(L.5,[L L].A, AL
1 load
(L,6,[LL]L,x
iffalze iftrue
(L,7,[L L), *, (m'L/} {Eg,[.-: L], », (10, L))

| push /" push
(L,8,[L L], L, (10, L))

\ goto

(LY10.[L L], L. (10, L))

t ipd
(L,10,[L L'Ii‘, L,A)
Jr store

(L,11,[L L], A, 4)

(L,5,[H L], x, (5, L)}
t ipd
(L,5,[H L], A, &)

{ load
(L.6,[H L], H.

o ifirae

(H.7,[H L., (10, L)} (H,9,[H L].4,(10, L))

t push
(H,8,[H L], H, (10, L)) push
g ZOTO
(H,10,[H L], H. (10, L)}

b ipd
(L.10,[H L], H, &)
* store

(L,11,[H H], A, &)

30

Correctness of the analysis

In the definition of the abstract semantics, we have applied
Abstract Interpretation.

Abstract interpretation is a widely applied method for
designing approximate semantics of programs.

P. Cousot, R. Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2, 1992

31

Example: PINcloner malicious app

The app catches the private information of the user’s Personal
|dentification Number (PIN) without directly assigning of it to the public
variable clone. It achieves this by using a mask that reveals the value of
each bit of the PIN.

The PINcloner (pseudocode)

iInput : PIN

output : clone

clone := 0x0000;

mask := 0x0001;

while(mask > 0)
b :=PIN & mask;
if (b!=0)
clone:=clone || mask;
mask := mask << 1;

32

PINcloner malicious app

Initially the mask has all the bits set to 0 except for the least
significant bit, which is set to 1: this bit shifts one step to the left
after each loop cycle and clones the value of one bit of the PIN
during each cycle.

In particular, the direct assignment of the PIN bits to the clone
variable is avoided by using a variable b.

This last variable is different from O if and only if the i-th bit of the
PIN and of the mask are both equal to 1: the value of b can be
used to set (or not set) the i-th bit of the clone variable.

Once the app has gained the access to the user’s private data,
the access control mechanism is not able to reveal the illicit flow

33

J_PINCloner: pseudocode

PIN read from a file
and copied into
another file

Files:
- PIN: H
- Clone: L

blic class J PINcloner{
final int pin3ize = 6;
FileReader pin file;
FileWriter cloned pin_file;

public J PINcloner(}{
pin file — new FileReader("PIN");
cloned pin file — new FileWriter("clone”);

i

public static void main(String|| args){
J PINcloner p — new J PINcloner();
for(int i = 0; i < p.pinSize; i + +){
int PIN = p.pin_file.read();
int clone = _clone(PIN);
p-clnned_p:i_n_file-write}{:lnna};
p.cloned pin file.flushj);

i

private static int clone(int PIN}{

int mask = 0x0001;
int clone = OxQ000;

while(mask > 0){
int b = (PIN & mask);
if(b! = 0)
clone — clone lm&sk;
mask — mask << 1;
return clone;

i

J_PINCloner: SIF analysis

SIF violated inmethod public static void main(String|| arg

DETAILS :
SIF Violated on Instruction :

41 : invokejava.io.FileWriter.write(I)V

DEPENDENCES :
DEP(41) = 0, 18;
SL[OS =L; SL[18] =L;
env(4i) =1L

BEFORE STATE OF 41
Registers: [L,L,L .H H|
Operand Stack : [H- FL|

SECURITY POLICY :
PIN = FH
clone = FL

SECURITY CONTEXT :
JPINcloner.pinSize =L
J-PINcloner.pin file = FH
J_PINcloner.cloned pin file = FL

J_PINcloner. < init > ()V.argd =L
J_PINcloner. < init > ()V.CALLER =L
J_PINcloner..clone(I)I.argi = H
J.PINclonor.-clone%I{I.roturn =H
J_PINcloner..clone(I)I.CALLER =L
J_PINcloner.main(...)V.argi =L

35

J_PINCloner: SIF analysis

— — — — L1BRARY FUNCTIUNS — — — ——
java.lang.Object. < init > ()V.arg0 =L
java.lang.Object. < init > ()V.CALLER =L

EXECUTION PATH :
0 : new J_PINcloner
3:dup
4 : invoke J_PINcloner. < init > ()V
7 :astore i
21 :aload 1
22 : getfield J PINcloner.pin file
25 : invoke gava.io.FiloRoader.road()I

28 : istore
29:1iload 3

30 : invoke J PINcloner. clone(I)I

33 :1istore 4

35:aload 1

36 : getfield J PINcloner.cloned pin file
39:1locad 4

41 : invoke java.io.FileWriter.write(I)V
FAILED, SIF VIOLATED in J_PINcloner

36

Data Leakage with Exception mechanism

Exceptions are special events used for signaling errors during
the execution of a program.

The rising of an exception is referred as throwing
Every time an exception is thrown, the Java runtime system
breaks the standard execution flow of the program and calls the

handler that catches and manages the exception

The correct handler for a given exception type can be found
searching backwards through the call stack of the method

If no appropriate handler is found the program terminates

37

Data Leakage with Exception mechanism

Java Exception Hierarchy (incomplete)

- Mull Poinder

— Funtime

Index Out Of Bounds

] o

Object
—| Exception || Class Cast
. Class Mot Found
Throwahble
| Virtual Machine Emor |_[] ©utOf Memory
. B Stack Overfiow
— Linkags
— Emaor
- AWT] Unknown

38

Data Leakage with Exception mechanism

A simple example with exceptions

P

import java.io.lOException;
public class Hello {
public static void main(String|[] args) {

s}

public void stampa(String s){
: System. out. println (" Outside ™)

f Lad

10 try { System.out.println("Inside try”);}
i catch (ArithmeticException e) {System.out.println(”"Print catch™);}

13 System. out. println (" Print ...");

14 }

39

HEHE R HHEH

=

Ll
&1

b

Compiled from "Hello. jav
public class Hello {
public Hello();
Code -
0: aload_0

1: invokespecial #1 //Method java/lang/Object.”<<imit >":()¥

4: return

public static void main(java.lang. String []):

Code :
0: return

public void stampa(java.lang. String];

0: getstatic #2 //Field java/lang/System.out: Ljava/io/ PrintStream;
3 ldc #3 //String Outside

5 invokevirtual

B: getstatic

11: 1de

13: invokevirtual
16: goto

19: astore_2

20: getstatic

23: 1de

25 i1nvokevirtual
28: getstatic

il: 1de

33: invokevirtual
36: return

Exception table:

24
#2

#3
#4
28

#2
#1
#4
#2
#8
#4

/! Method java/io/ PrintStream.
/f Field java/lang/System. out:

/f String Inside try

// Method java/io/PrintStream.

/{ Field java/lang/System. out:

/f String Print catch

/! Method java/io/ PrintStream.
/{ Field java/lang/System. out:

/f String Print

/! Method java/io/ PrintStream.

from to target type

8 16 19

4u

println:(Ljava/lang/ String
Ljava/1o/PrintStream;

println :{Ljava/lang/ String

Ljava/1o/PrintStream ;

println:(Ljava/lang/ String
Ljava/10/PrintStream;

println :(Ljava/lang/ String

Class java/lang/ArithmeticException

Y

WV

Y

IV

Data Leakage with Exception mechanism

» From the exception table: instructions from 8 to 16 are executed in a
protected way. Moreover, 19 is the first instruction of the exception
handler. Instruction 8 is protected and it may throw an exception, that
can be captured by an exception handler (executing the code at 19).

Assume that a protected instruction is a control instruction that throws an
exception depending on a high condition.

» The handler of the exception must be executed under a security
environment that is high

» The execution of the exception handler that captures the exception

may reveal information on the value of the high condition, thus causing
a leakage of information

41

Data Leakage with Exception mechanism

SOLUTION:

1. The body of the exception handlers can be thought as
particular extensions of the methods code

2. An extended control flow graph is built
the extended control flow graph is defined as the graph
obtained from the method graph augmented with edges
starting from protected instructions to the first instruction of
the protecting handlers.

42

Data Leakage with Exception mechanism

Extended control flow graph
of the bytecode

invokevirtual

return invokevirtual Idc petstatic

43

PINCloner malicious applet

Let us consider the PINCloner applet, where PIN_FILE file and Clone_File
file are the input and the output files, respectively.

PIN_FILE is a private file containing a secret PIN (a sequence of 0/1
characters, for simplicity).

Let us suppose that the PINCloner application can read from the private file.
The applet clones the user secret PIN with the exception mechanism.

After every character has read, it will be written in a public file by the handler
of the exception.

The PINCloner clones the characters of the PIN_FILE by throwing
different kind of exceptions depending on the value read

- NullPointerException

- ArithmeticException

44

l
5
3

e

we =1

10
11
12
13
14
15
16
17
18
19
20
21

)

PINCloner bytecode (an excerpt)

import java.io.lOException;

public class PinCloner {
public static void main(String[] args) {

}

public void PinCloner(){
try {
int p;
for (...) { // reads a char from PIN_FILE and store it in p;
if (p == 0) { throw new ArithmeticException(); }
else { throw new NullPointerException ()}
}
}
catch (ArithmeticException e) { // write 0 in Clone_File
catch (NullPointerException e) {// write 1 in Clone_File
}
}
b

45

PINCloner bytecode extended CFG

write 1 in
Clone File

l

o

=

istore_1

(O
v QTN

D\

G\

invokespecial | 1g

P

write 0 in

Clone File
athrow 21 .
- @ ©
return)

46

PINCloner bytecode extended CFG

» Instructions from O to 22 are protected by two exception handles
starting at instruction 22 and instruction 34, respectively.
Instruction 3 is an if with four successors:

- the natural successors,
- plus the two entry points of the exception handlers

» The control region of 3 includes the instructions of the exception
handlers, and consequently these instructions are executed in a
security environment given by the condition of the ifne.

» Since the condition depends on the 0/1 value of PIN character
read from a high security file, the implicit flow is high. The
handler of the exception, write such value into the low security
Clone_File file.

47

PINCloner malicious applet

» Security policy:
PIN_FILE H
Clone_file L

» The analysis starts with L assigned to all the other resources

» The application violates the secure information flow because
high security data are written on a public file

» The leakage is detected by the static analysis

48

