
Secure Information Flow in Java

bytecode

FMSS 2019-2020

op pop two operands off the stack, perform the

operation, and push the result onto the stack
pop discard the top value from the stack

push k push the constant k onto the stack

load x push the value of variable x onto the stack

store x pop off the stack and store the value into x

if j pop off the stack and jump to j if non-zero

goto j jump to j

jsr j at address p, jump to address j and push p+1

onto the operand stack
ret x jump to the address stored in x

halt stop

Java bytecode: a simple instruction set

3

Constants V k, k’, ..

Addresses A i, j, ..

Memories Mem= var → V  A m, m’, ..

Stacks Stack = (V  A) * s, s’, ..

Transition system:

Standard operational semantics

A state consists of: <program counter, memory, operand stack>

State = (A x Mem x Stack)

Transition: rule of the standard operational semantics

Standard Operational Semantics

x: 5

y: 1
state: <program counter, memory, operand stack>

5

Secure Information FlowBasics of information flow

explicit flow

implicit flow

x is loaded onto the stack, then it is stored into y, that is, y depends explicitly on x

variable x is loaded onto the stack. Depending on the value of x, either the constant 1

or the constant 0 is pushed onto the stack, and successively stored onto y

In both cases observing the final value of y reveals information on the value of x

6

Secure Information FlowImplicit flow

Implicit flow starts at [2]

When implicit flow terminates?

[6] is the first instruction that is common to both

branches

The implicit flow terminates at [6]

[6] is the first instruction that is not under the implicit flow

[1]

[2]

[3]

[4]

[6]

[5]

[7]

7

The implicit flow of an if instruction at address i

terminates at the instruction with address ipd(i)

immediate postdominator of i: the first node

belonging to all paths from i

ipd(i) = j

i

j

We use the concept of immediate postdominator on the CFG of the program

to handle implicit flows

Implicit flow

i1

i

j

Implicit flow

immediate postdominator of i1: the first

node belonging to all paths from i

ipd(i1) = j

Nested implicit flows

The innest implicit flow if the implicit flow

that terminate first

IPD stack:

when executing an instruction, the ipd stack

mantains information on the open implict

flows

IPD stack is updated any time a control

instruction is enetered and any time a

control instruction terminates

What about nested control instructions?

i1

i

j

Implicit flow

Execution of instructions

when an instruction j is executed: if the

instruction j is the top of the ipd stack, the

stack is updated by executing pop (j is

removed from the stack)

…before i ……. Stack of ipd: l

i: control instruction Stack of ipd: ipd(i)

i1: control instruction Stack of ipd: ipd(i1)

ipd(i)

j: top of the ipd stack Stack of ipd: ipd(i)

j: top of the ipd stack Stack of ipd: l

CONTROL REGION

of a branching

instruction

i1

i

j

Implicit flow

Execution of instructions

when an instruction j is executed: if the

instruction j is the top of the ipd stack, the

stack is updated by executing pop (j is

removed from the stack)

…before i ……. Stack of ipd: l

i: control instruction Stack of ipd: ipd(i)

i1: control instruction Stack of ipd: ipd(i1)

ipd(i)

j: top of the ipd stack Stack of ipd: ipd(i)

j: top of the ipd stack Stack of ipd: l

CONTROL REGION

of a branching

instruction

i1

i

j1

Implicit flow

j
ipd(i) = j

ipd(i1) = (j1)

12

the stack may be manipulated in different ways by the branches of a

branching instruction: they can perform a different number of pop and

push operations, and with a different order.

Basics of information flow

Influence of the implicit flow onto the operand stack

The length and the content of the operand stack may be a means by which

security leakages can occur

The stack is empty or not, depending on the value of x

13

Secure Information flow

Basics of information flow

A program P = <c, H, L > satisfies secure information flow if the

final value of each low variable does not depend on the initial

value of the high variables.

H={x} L={y}

14

Termination Agreement

Basics of information flow

Timing Agreement

it is not possible to leak high information by

observing the termination of the program

the number of instructions

executed in a computation may reveal

information on the value of the high

variables

H={x} L={}>

H={x} L={y}>

15

Security levels L = {L < H} , , ..

Constants V k, k’, ..

Addresses A i, j, ..

Concrete Values V = V  L (k, )

Concrete Addresses A = A  L (i, )

Concrete Memories M = var → (V  A) M, M’, ..

Concrete Stacks S = (V  A) * S, S’, ..

Environments E = L , , ..

Domains of the concrete semantics

16

STATES L  A  M  S  A*

< , PC, M, S, r >

 environment

PC program counter

M memory

S operand stack (1 …. n)

r ipd stack (j, )…..(j’, ‘)

if r = (j1, 1)…..(jn, n)

there are n open implicit flows

j1 holds the address where first implicit flow terminates

1 holds the level of the environment that must be restored

if r = l

there are no open implicit flow

Concrete Semantics

IPD

Stack

r

17

c[i]= load x , M[x] = (k, ), not_top(i, r)

load ___

<  , i, M, S, r > →
<  , i+1, M, (k,   ) · S, r >

Transition relation rules

18

c[i]= store x , not_top(i, r)

store ___

< , i, M, (k, ) · S, r > →
< , i, M[(k,   )/ x], S, r >

Transition relation rules

19

ipd ___

<  , i, M, S, (i, ) . r’> → <  , i , M, S, r’>

r = (i, ) . r’

Transition relation rules

i is the ipd of a control instruction

20

goto ___

<  , i, M, S, r> → <  , j, M, S, r>

c[i]= goto j , not_top(i, r)

Transition relation rules

i is the ipd of a control instruction

21

c[i]= if j , not_top(i, r)

if-false __

<  , PC, M, (0, ) · S, r > →
<    , PC+1, up(M),up(S), (, ipd(i)) r >

An implicit flow begins, whose level is the least upper bound between

the security environment () and the security level of the condition of
the if (). The new security environment is (  )

(ipd(pc), ) is pushed on the ipd stack r

up(M) upgrades the value of the variables assigned in the

scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

Transition relation rules

22

c[i]= if j , k!=0, not_top(i, r)

if-true__

<  , i, M, (k, ) · S, r > →
<    , j, up(M),up(S), (ipd(i), ) . r >

An implicit flow begins, whose level is the least upper bound between

the security environment () and the security level of the condition of
the if (). The new security environment is (  )

(ipd(pc), ) is pushed on the ipd stack r

up(M) upgrades the value of the variables assigned in the

scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

Transition relation rules

23

Concrete rules

24

Abstract constants V# = { · }

Abstract security levels L# = L

Abstract Values V# : V#  L#  L

Abstract Addresses A# = A

Abstract Memories M# : var → (L  A)

Abstract Stacks S# : (L  A)*

Abstract Environments E# = E = L

Abstract States: L  A  M#  S#  (A  { 0 })

Abstract semantics

25

the abstract semantics:

• abstracts concrete values into their security level:

 (k,)=

• uses the same rules of the concrete semantics on the

abstract domains

Both rules for if are always applied -

A(P) : abstract transition system for P
• finite

• multiple path

• each path of C(P) is correctly abstracted onto a path of A(P)

Abstract operational semantics

26

Theorem 1

A program P satisfies SIF if for each state of A(P) such

that c[i] = halt , then for each x : L it is:

M[x] = L (value)

or

M[x]=(i, L) for some i (address)

Results

27

Theorem 2

A program P satisfies TERM if each state of A(P)

<  , i, M, S, r > such that  = H

does not belong to a cycle.

Results

28

Theorem 3

A program P satisfies TIME if:

• all paths in A(P) starting from a state satisfying

top(S)=H and c[i] = if and ending with a state

satisfying PC=ipd(i) have the same length.

Results

29

Another example: concrete semantics
x:(0,H) y:(1,L)

ipd(2) = 5, ipd(6)=10
<ENV, PC, [M(x), M(y)], Stack, IPDstack>

30

An example: abstract semantics

31

Correctness of the analysis

In the definition of the abstract semantics, we have applied

Abstract Interpretation.

Abstract interpretation is a widely applied method for

designing approximate semantics of programs.

P. Cousot, R. Cousot. Abstract interpretation frameworks.

Journal of Logic and Computation, 2, 1992

32

Example: PINcloner malicious app

The app catches the private information of the user’s Personal

Identification Number (PIN) without directly assigning of it to the public

variable clone. It achieves this by using a mask that reveals the value of

each bit of the PIN.

input : PIN

output : clone

clone := 0x0000;

mask := 0x0001;

while(mask > 0)

b :=PIN & mask;

if (b ! = 0)

clone:=clone || mask;

mask := mask << 1;

The PINcloner (pseudocode)

33

PINcloner malicious app

Initially the mask has all the bits set to 0 except for the least

significant bit, which is set to 1: this bit shifts one step to the left

after each loop cycle and clones the value of one bit of the PIN

during each cycle.

In particular, the direct assignment of the PIN bits to the clone

variable is avoided by using a variable b.

This last variable is different from 0 if and only if the i-th bit of the

PIN and of the mask are both equal to 1: the value of b can be

used to set (or not set) the i-th bit of the clone variable.

Once the app has gained the access to the user’s private data,

the access control mechanism is not able to reveal the illicit flow

34

J_PINCloner: pseudocode

PIN read from a file

and copied into

another file

Files:

- PIN: H

- Clone: L

35

J_PINCloner: SIF analysis

36

J_PINCloner: SIF analysis

37

Data Leakage with Exception mechanism

Exceptions are special events used for signaling errors during

the execution of a program.

The rising of an exception is referred as throwing

Every time an exception is thrown, the Java runtime system

breaks the standard execution flow of the program and calls the

handler that catches and manages the exception

The correct handler for a given exception type can be found

searching backwards through the call stack of the method

If no appropriate handler is found the program terminates

38

Data Leakage with Exception mechanism

Java Exception Hierarchy (incomplete)

39

Data Leakage with Exception mechanism

A simple example with exceptions

40

41

Data Leakage with Exception mechanism

➢ From the exception table: instructions from 8 to 16 are executed in a

protected way. Moreover, 19 is the first instruction of the exception

handler. Instruction 8 is protected and it may throw an exception, that

can be captured by an exception handler (executing the code at 19).

Assume that a protected instruction is a control instruction that throws an

exception depending on a high condition.

➢ The handler of the exception must be executed under a security

environment that is high

➢ The execution of the exception handler that captures the exception

may reveal information on the value of the high condition, thus causing

a leakage of information

42

Data Leakage with Exception mechanism

SOLUTION:

1. The body of the exception handlers can be thought as

particular extensions of the methods code

2. An extended control flow graph is built

the extended control flow graph is defined as the graph

obtained from the method graph augmented with edges

starting from protected instructions to the first instruction of

the protecting handlers.

43

Data Leakage with Exception mechanism

Extended control flow graph

of the bytecode

44

PINCloner malicious applet

The PINCloner clones the characters of the PIN_FILE by throwing

different kind of exceptions depending on the value read

- NullPointerException

- ArithmeticException

Let us consider the PINCloner applet, where PIN_FILE file and Clone_File

file are the input and the output files, respectively.

PIN_FILE is a private file containing a secret PIN (a sequence of 0/1

characters, for simplicity).

Let us suppose that the PINCloner application can read from the private file.

The applet clones the user secret PIN with the exception mechanism.

After every character has read, it will be written in a public file by the handler

of the exception.

45

PINCloner bytecode (an excerpt)

46

PINCloner bytecode extended CFG

47

PINCloner bytecode extended CFG

➢ instructions from 0 to 22 are protected by two exception handles

starting at instruction 22 and instruction 34, respectively.

Instruction 3 is an if with four successors:

- the natural successors,

- plus the two entry points of the exception handlers

➢ The control region of 3 includes the instructions of the exception

handlers, and consequently these instructions are executed in a

security environment given by the condition of the ifne.

➢ Since the condition depends on the 0/1 value of PIN character

read from a high security file, the implicit flow is high. The

handler of the exception, write such value into the low security

Clone_File file.

48

PINCloner malicious applet

➢ Security policy:

PIN_FILE H

Clone_file L

➢ The analysis starts with L assigned to all the other resources

➢ The application violates the secure information flow because

high security data are written on a public file

➢ The leakage is detected by the static analysis

