
Stochastic Activity Networks
in Mobius

Overview

•Introduction to SAN in Möbius

•Example of Failure-Detection-Repair

•Exercises

Stochastic Activity Networks (SAN)

The Stochastic Activity Networks are a wide-ranging and complex extension to

Petri-Nets

Petri Net = places + transitions + enabling conditions + firing rules

Stochastic Petri Net = Petri Net + stochastic transition delay

Stochastic Activity Network = Stochastic Petri Net + stochastic transition outcome

+ advanced enabling condition + advanced firing rules

SAN in Möbius tool 1/2

NOTE: the terms activity, transition and action will be used interchangeably

Transitions may be timed or instantaneous

Enabling conditions are defined with input gates associated with transitions

Firing rules: user-defined functions specified in input or output gates

SAN in Möbius tool 2/2

Stochastic transition

outcome: Alternative

results of a transition can

be specified as mutually

exclusive cases associated

with the transition

Each case has a probability

defined by a function of the

marking (it may be a

constant)

Elements of Möbius tool

Atomic and Composed model, reward, study, transformer
and solver
are used in the same way they are used for Fault Tree analysis.

Möbius allows to evaluate a Performance Variable
Steady State

Transient (instant of time)

Failure-Detection-Repair

•Two identical CPUs

•Failure of the CPU:

exponentially distributed

with parameter λ

•Fault detection:

exponentially distributed

with parameter δ

•CPU repair:

exponentially distributed

with parameter μ

Atomic Model

Remember to edit three global variables

(lambda, mu and delta)

Set the initial state for places)

(healthy = 2, faulty = 0, detected = 0)

Set the rate of each event as the number

of token in the input place times the rate

of the event

Set the input enabling function, stating

that the activities are enabled if there is at

least one token in the input place

Set the output function, so that it

decreases the number of tokens in the

input place and increases the ones of the

output place by one

Fail example

Reward model

•Create a performance

variable called

availability.

•Express its reward

function according to the

condition of correctness

of the system.

•Set a steady-state Time

option with default

configurations.

Study model

Set a range study
model where all the
three rates vary from
0.1 to 0.5 with a step
of 0.2.

All the possible
combinations lead to
27 experiments

Transformer and Solver

Again use the State Space Generator (NOT Symbolic) as transformer

Then, in order to evaluate the steady state behavior choose a Steady State solver.

For simplicity select the Direct Steady State Solver.

The behavior of different solvers can be found in the Möbius wiki.

Results

Experiment 1:

lambda = 0.1, delta = 0.1, mu = 0.1 è Availability = 0.55555

Experiment 14:

lambda = 0.3, delta = 0.3, mu = 0.3 è Availability = 0.55555

Experiment 4:

lambda = 0.3, delta = 0.1, mu = 0.1 è Availability = 0.2653

Experiment 3:

lambda = 0.1, delta = 0.5, mu = 0.1 è Availability = 0.702

Exercise

A computer is idle, busy, or failed;

jobs arrive at a rate α ;

1000

jobs are completed at a rate β ;

10000

the computer fails at rate λi when idle;

1.0E-7

the computer fails at rate λj when busy.

From 1 x 10-6 to 5 x 10-6

Evaluate availability and then the reliability

References

William H. Sanders and John F. Meyer, ``Stochastic Activity Networks:formal definitions and
concepts'', in Lectures on formal methods and performance analysis: first EEF/Euro summer
school on trends in computer science, 2002.

https://www.mobius.illinois.edu/wiki/index.php/Möbius_Documentation

Thanks to prof. Andrea Domenici for previous version of the slides.

https://www.mobius.illinois.edu/wiki/index.php/M%C3%B6bius_Documentation

