
Theorem Prover:

Prototype Verification System

Thanks to Prof. Andrea Domenici for providing useful inputs for this slides

Formal system

A formal system is a system that we use to prove the truth of sentences by

deductions, i.e., by showing that a sentence follows through a series of reasoning

steps from some other sentences that are known (or assumed) to be valid.

A formal system consists of:

▪ A set of axioms, selected sentences taken as valid.

▪ A set of inference rules, saying that a sentence of a given structure can be

deduced from sentences of the appropriate structure, independently of the

meaning (semantics) of the sentences.

▪ E.g., if A and B stand for any two sentences, a well-known inference rule says that

from “A” and “A implies B” we can deduce B.

25/8/2020

Elements of a formal system

We have a formal system F with the set of axioms A and the set of inference rules R

We want to prove that a formula s follows from a set H of hypotheses.

A deduction of s from H within F is a sequence of formulae such that s is the last one

and each other formula either:

1. belongs to A; or

2. belongs to H; or

3. is obtained by applying some rules belonging to R to some preceding formulae

35/8/2020

Example of Formal system

▪ A: {∀x∈ R: x0 = 1}

▪ R: {∀x,y∈ 𝑅: (x=y) ֜ (x - y = 0), ∀x∈ R: (a = x) AND (b = x) ֜ (a = b),

(a = b) ֜ (s(a) ֜ s(b))}

▪ H: {a = b}

▪ s: x1
(a-b) = y1

(a-b)

Procedure:

45/8/2020

1. a = b

2. a – b = 0

3. x1
0 = 1

4. y1
0 = 1

5. x1
0 = y1

0

6. x1
(a-b) = y1

(a-b)

Theorem Proving

▪ A theorem prover is a computer program that implements a formal system.

▪ It takes as input a formal definition

▪ of the system that must be verified (H)

▪ of the properties that must be proved (s),

▪ and tries to build a proof by application of inference rules, in an automatic or

semi-automatic way.

▪ Generally speaking a theorem prover provides the base set R of inference rules

along with the base set A of the axioms.

▪ Users provide H and s

55/8/2020

Prototype Verification System

▪ The PVS is an interactive theorem prover developed at Computer Science

Laboratory,SRI International, Menlo Park (California), by S. Owre, N. Shankar, J.

Rushby, and others.

▪ The formal system of PVS consists of a language and the sequent calculus

axioms and inference rules.

▪ PVS has many applications, including formal verification of hardware, algorithms,

real-time and safety-critical CPS.

65/8/2020

Sequent calculus

▪ The sequent calculus works on sentences called sequents, of this form:

A1, A2, . . . , An ⊢ B1, B2, . . . , Bm

where the A's and B's are the antecedents and the consequents, respectively.

▪ The symbol in the middle (⊢) is called a turnstile and may be read as “yields”.

▪ A sequent can then be seen informally as another notation for

A1 ∧ A2 ∧ . . . ∧ An ֜ B1 ∨ B2 ∨ . . . ∨ Bm

75/8/2020

Application of sequent calculus

Proofs are constructed backwards from the goal sequent, which has the form

H ⊢ F
where F is the formula we want to prove and H are our hypothesis.

Inference rules are applied backwards, i.e., given a formula, we find a rule whose

consequence matches the formula, and the premises become the new subgoals.

Since a rule may have two premises, proving a goal produces a tree of sequents,

rooted in the goal, called the proof tree.

The proof is completed when (and if!) all branches terminate with a true sequent

85/8/2020

Proved sequence

A sequent is proved if:

1. any antecedent is false; or

2. any consequent is true;

3. any formula occurs both as an antecedent and as a consequent.

95/8/2020

x y x => y

False False True

False True True

True False False

True True True

PVS Theories

▪ A PVS specification is composed of one or more theories.

<name>: THEORY

BEGIN

<imports>

<type declarations>

<constant and functions declarations>

<formulae>

END <name>

▪ Constructs of different classes may be interleaved (e.g., a type declaration may

follow a variable declaration), but every symbol must be declared before it is

used.

105/8/2020

The PVS Specification Language

▪ Logical connectives: NOT, AND, OR, IMPLIES, . . .

▪ Quantifiers: EXISTS, FORALL.

▪ Complex operators: IF-THEN-ELSE, COND.

▪ Notation for records (i.e. C struct type). . .

▪ Theories: named collections of definitions and formulae. A theory

may be imported(and referred to) by another theory.

▪ A large number of pre-defined theories is available in the prelude

library.

115/8/2020

