
Model checking and Process algebras

Cinzia Bernardeschi

Department of Information Engineering

University of Pisa

FMSS, 2019-2020

1 / 30

Model checking

Mechanical checking of the satisfaction of a logic formula on the model of the
behaviour of the system

Model construction:

I Kripke structure (Transition System - TS)
S = {s1, · · · sn}
AP = {p1,p2, ...pk} set of atomic propositions
L : S → Powerset(AP)}

I Labelled transition system (LTS)
S = {s1, · · · sn}
A = {a1, ...,am} seo of actions
→: S × A× S

LTS can be generated by process algebras specifications.

2 / 30

Process algebras

Process algebras are a standard tool for the modelling of concurrent systems.

Assume models given using the Calculus of Communicating Processes (CCS)
[Milner, 89].
I A system consists of a set of communicating processes;
I each process executes actions, and synchronizes with other processes.
I Moreover, a special action τ denotes an unobservable action and model

internal process actions or internal communications.

Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)

3 / 30

CCS

Syntax and informal semantics of CCS operators.

stop Inactive process A process which does nothing
a : P Action prefix Action a is performed

and then process P is executed
P + Q Nondeterministic choice Alternative choice between the behaviour

of process P and that of Q
P || Q Parallel Composition Interleaved execution of process P

and process Q
P \ a Action restriction Behaves like P apart from action a

that can only be performed
within a communication

P[a/b] Action renaming Behaves like P apart from action a
that is renamed b

4 / 30

CCS

I The specification is based on a set Act of elementary actions that processes
can perform and on a set of operators that permit to build complex processes
from simpler ones.

I The special action τ , not belonging to Act , represents the unobservable
action and is used to model internal process actions or to hide actions to the
external environment.

I We denote by Obs(P) the set of observable actions of the process P.

5 / 30

CCS

An inactive process is specified by the stop operator.

The action prefix operator specifies the execution of actions in sequence.

The nondeterministic choice operator indicates that a process can choose
between the behaviour of several processes.

Parallel composition of two processes corresponds to the interleaved execution of
the two processes.

The restriction operator is used to specify processes which synchronise on actions
(communication).

A communication transforms the couple of actions executed together into the
internal action τ .

The relabeling operator transforms an action into another action.

6 / 30

Labelled Transition Systems

The semantics of process algebras are Labeled Transition Systems (LTSs) which
describe the behavior of a process in terms of states, and labeled transitions,
which relate states.
An LTS describes sequential nondeterministic behaviours. More formally,

Definition
An LTS is a 4-tuple A = (X , x0,Act ∪ {τ},→), where: X is a finite set of states; x0

is the initial state; Act is a finite set of observable actions;→⊆ X × Act ∪ {τ} × X
is the transition relation.

We denote by x a→ x ′, a ∈ Act ∪ {τ}, the transition from the state x to the state x ′

by executing action a.

7 / 30

Labelled Transition system

Let us consider the process R below. Process R executes action a and then may
execute action b or action c, and then stops.

R = a: (R1 + R2)
R1 = b: stop
R2= c: stop

LTS

8 / 30

Labelled Transition System

Let us consider process Q below. Q, differently from R, executes the choice
between action b and c hen performing action a.

Q = Q1 + Q2
Q1 = a: b: stop
Q2= a: c: stop

LTS

9 / 30

Labelled Transition system
Let us consider the system described by the following process:
P = (R ‖ Q) \ a \ b

LTS of P

Every state of the LTS represents the combined current states of the subsystems
components.
In the initial state, only a can be executed. Since a is a synchronisation action, tau
is shown in the LTS.
Then following the left (right) edge of the LTS of Q, the behaviour of P is described
by the left (right) subtree.

10 / 30

Weak bisimulation equivalence

Definition
Given an LTS A = (X , x0,Act ∪ {τ},→), a weak bisimulation equivalence over X
is a maximal binary symmetric relation S such that, for any x , y ∈ X , we have xSy
if and only if: ∀a ∈ Act ∪ {τ},
1. x a⇒ x ′ → (∃y ′, y a⇒ y ′ ∧ x ′Sy ′)

2. y a⇒ y ′ → (∃x ′, x a⇒ x ′ ∧ x ′Sy ′)

LTS describe the behavior of the processes in details, including their internal
computations.

11 / 30

Weak bisimulation equivalence

A widely used equivalence is weak bisimulation, or observational equivalence, first
introduced by Milner, based on the idea that only the externally observable actions
of a system are relevant in its interaction with the environment

To abstract unobservable moves during observation, the weak transition relation
a⇒ is used.

We have: ∀a ∈ Act , a⇒ = (
τ→)?

a→ (
τ→)?, where ? means zero or any number of

times.

Two states x and y are considered as observational equivalent if and only if x and
y must be able to perform equal sequences of actions evolving to equal (up to S)
states.

12 / 30

Weak bisimulation equivalence

The relation between states of a transition system can be easily extended to a
relation between two distinct transition systems.

Two systems are then observationally equivalent whenever no observation can
distinguish them.

Definition
Given two processes R and Q, they are called observational equivalent if and only
if a weak bisimulation S exists which relates the initial states of the LTSs which
describe their behavior and we write R ≈ Q.

Observational equivalence (≈ in the following) is then defined upon the a⇒ relation.

13 / 30

Weak bisimulation equivalence

Are processes R and Q observational equivalent (R ≈ Q) ?

14 / 30

Graphical notation

The graphical specification of process P is the following.

15 / 30

Weak bisimulation equivalence

Processes R and Q are not observational equivalent, since there exists no state in
Q bisimilar to the state in R reached after having executed action a (in this state
both action b and c can be performed).

16 / 30

Expressing properties

The temporal logic ACTL (Action-based Computation Tree Logic).

ACTL is an action-based version of the branching time temporal logic CTL.

ACTL has the advantage that, since it is based on actions rather than states, it is
naturally interpreted over LTSs.

17 / 30

ACTL

The formulae of ACTL are action formulae, state formulae and path formulae.

An action formula permits expressing constraints on the actions that can be
observed.

A state formula gives a characterization about the possible ways an execution can
proceed after a state has been reached.

A path formula states properties of an execution.

The truth or falsity of a formula refers to a satisfiability relation over LTSs, denoted
|=.

18 / 30

Syntax and informal semantics of the used ACTL operators
Action formulae
χ ::= true any observable action

a the observable action a
∼ χ any observable action different from χ
χ | χ′ either χ or χ′

State formulae
φ ::= true any behaviour is possible
∼ φ φ is impossible
φ & φ′ φ and φ′

Eγ there exists an execution in which γ
Aγ for every execution γ
< a > φ there exists a next state reachable with a, in which φ
[a]φ for all next states reachable with a, φ holds

Path formulae
γ ::= Gφ at any time φ

Fφ there is a time in which φ
[φ{χ}U{χ′}φ′] at any time χ is performed and also φ,

until χ′ is performed and then φ′

19 / 30

ACTL formulae

In the table, a is an action belonging to the set Act of actions executable by the
system, ∼ is the negation operator, E and A are the existential and universal path
quantifiers, while U is the until operators.

For example, the formula:
AG([a](< b > true & < c > true))
states that the system, after having executed the action a, has always the
possibility of performing both b and c. This formula is true on the LTS of process R
and it is false on the LTS of process Q.

The model checker tool provides a counter-example facility. In the case of satisfied
formulae this facility reports a path which verifies the formula; otherwise a path
which does not verify the formula is given.

20 / 30

Alternating-bit protocol

The purpose of the protocol is ensuring reliable communication over a medium
which may loose messages. A possible implementation of the protocol consists of
four processes: the Sender, the Receiver, and two communication channels: one
for the delivery of the message, and another for the acknowledgment of message
reception.

Sender and Receiver use the value of one bit to identify a message, so that the
identifier bit of each message is the complement of the preceding message’s bit; a
new message is not sent until the sender receives acknowledgment of the current
message.

Since the channels can loose messages, both the Sender and the Receiver
resend the same message or, respectively, acknowledgment repeatedly until the
acknowledgment is received.

21 / 30

Protocol schema

a : a0,a1
b : b0,b1
c : c0, c1
d : d0,d1

22 / 30

Actions

Upon an in action at the system’s external interface, the Sender sends the
message to the Receiver through channel A.

Synchronization on action a0 or a1 depending on the current value of the
alternating bit (the first message is identified as 0).

Upon receiving the message, the Receiver executes out , meaning that the
message is available at the interface.

Next, the Receiver sends the acknowledgment by synchronizing with channel B on
action c0 or c1 according to the value of the identifier bit of the received message.

23 / 30

Alternating-bit protocol

P = in.out .P

The system is specified by the process Sys.
Sys = (S0|A|B|R1)\L

- S0 is the Sender whose alternating bit is 0;
- R1 is the Receiver, whose alternating bit is 1;
- A is the delivery channel
- B is the ack channel
- L = {a0,a1,b0,b1, c0, c1,d0,d1}

24 / 30

Questions

Some questions:

Are P and Sys weak bisimulation equivalent ?

P ≈ (S0|A|B|R1)/L

Is it always possible to execute out?

25 / 30

Omission of messages or acknowledgments is represented by the τ actions in the
processes for the channels, which can take a channel from a state to another
without executing the corresponding synchronization action.

For clarity, we use the notation: input action a and output action ā

26 / 30

Sender

S0 = in.S′0
S′0 = a0.S′0 + d1.S′0 + d0.S1

S1 = in.S′1
S′1 = a1.S′1 + d0.S′1 + d1.S0

27 / 30

Receiver

R1 = b0.R′0 + b1.R1 + c1.R1

R′0 = out .R0

R0 = b1.R′1 + b0.R0 + c0.R0

R′1 = out .R1

28 / 30

Delivery channel

A = a0.A′0 + a1.A′1
A′0 = b0.A + τ.A

A′1 = b1.A + τ.A

29 / 30

Ack channel

B = c0.B′0 + c1.B′1
B′0 = d0.B + τ.B

B′1 = d1.B + τ.B

30 / 30

