State-based models

Attack trees:

do not capture the dependence of security vulnerability on sequences of attaks

State space stochastic methods

Dependence of security vulnerability on sequences of events

state-based methods application in security context

ADversary VIew Security Evaluation - ADVISE

These set of slides are based on the paper:

E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders and C. Muehrcke, "Model-based Security Metrics Using ADversary View Security Evaluation (ADVISE)," *2011 Eighth International Conference on Quantitative Evaluation of SysTems*, Aachen, 2011, pp. 191-200.

ADversary VIew Security Evaluation - ADVISE

Main objective:

- Compare security strenght of different system architectures
- Analyse threats by different adversaries
- 1. Executable state-based security model of a system

2. An adversary (how the adversary can attack the system)

3. Results of the attack

Basic point:

attack decision function

how the adversary selects the most attractive next attack step by

 using the adversary attack preferences and the possible attacks

Attack Execution Graph - AEG

Attack execution graph (AEG) <A, R, K, S, G> A: set of attack steps Attack step R: set of access domains in the system Access

Mobius tool

https://www.mobius.illinois.edu/

K: set of knowledge items relevant to attack the system

S: set of the adversary attack skills / skill

G: set of adversary attack goals revelan to to the system (

Goal

Know

ledge

ADVISE: AEG

Example of AEG taken from paper

E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders and C. Muehrcke, "Model-based Security Metrics Using ADversary Vlew Security Evaluation (ADVISE)," 2011 Eighth International Conference on Quantitative Evaluation of SysTems, Aachen, 2011, pp. 191-200.

Attack Step

 $a_i = \langle B_i, T_i, C_i, O_i, Pr_i, D_i, E_i \rangle$

B_i: X ->{true, false}

precondition to check if the attack is enabled The adversary has the access, the knowledge, and/or skill needed for the attack and the adversary does not have what can be gained when the attack is executed with success

 $\begin{array}{l} T_i: X \ge R+ \ -> [0,1] \\ time \ required \ to \ execute \ the \ attack. \\ T_i (s) \ is \ a \ random \ variable \ defined \ over \ a \ prob. \ distribution \\ function \end{array}$

C_i: X -> R^{>=0} cost of attempting the attack

O_i: finite set of outcomes (e.g., success and failure)

X is defined as the set of all reachable model states $X = \{s1, ..., sn\}$

Pr_i: X x O -> [0, 1] prob. of outcome o after the attack (Σ_o Pr (s, o) = 1)

D_i: X x O -> [0, 1] probability that the attack is detected when outcome o occurs

E_i: X x O -> X next state when the outcome o occurs

Attack Step do-nothing

$a_{DN} = do-nothing$

B_{DN} precondition is always true

 T_{DN} time between two occurrences of do nothing

C_{DN} cost is zero D_{DN} detectability is zero

 E_{DN} (s,o) = s the next state is the same of the current state

 $Pr_{DN}(s, o) = 1$ there is only one outcome, with probability 1

Every AEG contains the aDN attack step

there is always at least one attack step in the AEG whose precondition is satisfied

Model state s

A state s in X reflects the progress of the adversary in attacking the system

 $s = < R_s, K_s, G_s >$

R_s: set of domains that the adversay has access

K_s: set of knowledge of the adversary

G_s: set of attack goals achieved by the adversary

Adversay Profile = $\langle s_0, L, V, w_c, w_P, w_D, U_C, U_P, U_D, N \rangle$

s₀: initial state of the model

L: attack skill level function

V: attack goal value function

w_C, w_P, w_D : attack preference weights for cost, payoff, detection probability

 U_{c} , U_{p} , U_{D} : utility functions for cost, payoff, detection probability

N: planning horizon

Adversay Profile = $\langle s_0, L, V, w_c, w_p, w_D, U_c, U_p, U_D, N \rangle$

s₀: starting point of the adversary attack different for insider (more access and knowledge) and outsider adversary

L is the attack skill level function L : S -> [0, 1] maps each attack skill to a value in [0, 1] (proficiency of the adversary)

V is the attack goal value function V: G -> R^{>=0}, monetary value of each attack goal in the AEG from the adversary viewpoint, more valuable -> larger value

Payoff value P(s) of a state s is a function of the value of all goals V(g) achieved in the model state P(s)=f(V(g))

Adversay Profile = $\langle s_0, L, V, w_C, w_P, w_D, U_C, U_P, U_D, N \rangle$

Attack preference weight: attactiveness in each of the three criteria when deciding an attack. They are a value in [0,1]

W_c: relative attactiveness of decreasing the cost in attemping the attack step

- W_P : relative attactiveness of increasing the payoff for successfully executing the attack step
- W_D : relative attactiveness of decreasing the probability of being detected during or after the attack

Adversay Profile = $\langle s_0, L, V, w_c, w_p, w_D, U_c, U_p, U_D, N \rangle$

Utility functions: map the native value of each attractiveness criterion to a [0, 1] utility scale (higher utility values represent more desirable values)

 U_{c} : R^{>=0} -> [0, 1] map the monetary value of the attack step cost to a [0, 1] lower cost - higher utility value

 U_{P} : R^{>=0} -> [0, 1] map the monetary value of the attack step payoff to a [0, 1] higher payoff - higher utility value

 U_D : [0, 1] -> [0, 1] map the probability of attack step detection to a [0, 1] lower detection probability - higher utility value

ADVISE model: execution

A_s is the set of available attack steps a_i in state s: the attack steps whose precondition is satisfied (B_i(s)=True)

The attractiveness of the all available attack steps is evaluated from the viewpoint of the adversary with the criteria

- Cost
- Detectability
- Expected payoff in the next state

Attack preference weights in the adversary profile are used

ADVISE model: execution

Short sighted adversary attr(a_i , s) = $w_C C_i(s) + w_P P_i(s) + w_D D_i(s)$

linear combination of adversary preferences weights with the data about attack step

$$\begin{array}{l} \mathsf{P}_{i}(s) = \Sigma_{o} \left(\mathsf{P}(\mathsf{E}_{i}(s,o)) \cdot \mathsf{Pr}_{i}(s,o)\right) & \mathsf{D}_{i}(s) = \Sigma_{o} \left(\mathsf{D}_{i}(s,o) \cdot \mathsf{Pr}_{i}(s,o)\right) \\ \downarrow & \downarrow \\ \mathsf{Payoff in the next state} \\ \mathsf{reached by outcome } o (\mathsf{Ei}(s,o)) \end{array}$$

$$\begin{array}{l} \beta(s) \text{ best next attack step} \\ \{a^{*} \text{ in } \mathsf{A}_{s} \mid \mathsf{attr}(a^{*}, s) = \max \ \mathsf{attr}(a_{i}, s) \text{ forall } a_{i} \text{ in } \mathsf{As} \end{array}$$

one of the maximally attractive steps is chosen uniformely

ADVISE model: execution

Utility function $U_C U_P U_D$ are not shown in attr(a, s) for semplicityThey should be applied to move towards a common unit of utility. $C_i(s) --- U_C (C_i(s))$ Ci(s) = 2.01 millionCi(s) = 10.000 $P_i(s) --- U_P (P_i(s))$ Ci(s') = 2.05 millionCi(s') = 50.000 $D_i(s) --- U_D (D_i(s))$ Etter mapped -> sameEtter mapped -> two

utility value

An attack step outcome is randomly generated using the probabilities distributions

The attack step outcomes determine the sequence of state transitions

distinct utility values

ADVISE execution algorithm

ADVISE model execution algorithm

Time <- 0 State <- 0 while Time < τ do Attack_i <- β (State) Outcome <- 0, Time <- Time +t, State <- Ei (State, Outcome) end while

ADVISE metrics specification

State metrics

 τ is the end time [0, τ]

 $\lambda\,$ is the type of state metrics :

EndProb: state occupacy probability at time τ with $\sigma(s)$ =True **AvgTime** : average amount of time spent in state such that $\sigma(s)$ = True in the interval [0, τ]

σ is the state indicator function: s= <R, K, G>
 σ(s) returns True, for states of interest
 e.g., σ(s) = true if goal g1 has been achieved

ADVISE metrics specification

Event metrics

< τ, δ, ε>

- τ is the end time [0, τ]
- δ is the type of event metrics : let ε a set of events **Freq**: the number of occurrences of events in ε in the interval [0, τ] **ProbOcc** : prob. that all the events in ε occur at least once in the interval [0, τ]
- ε is a set of events in the model
 (attack steps, attack step outcomes, access domains, knowledge or goals)

Example Frequency of attack step a_i in the interval $[0, \tau]$ ϵ is equal to $\{a_i\}$

ADVISE model

In the paper:

 more sophisticated adversary decision with a long range planning attack decision function are shown (State Look-Ahead Tree)

- A case study on a SCADA (Supervisory Control and Data Acquisition) architecture is analysed: 2 variants of the architecture and 4 different profiles of adversaries.