Colluding apps

Java cards:
Secure Interactions in Java cards

Java cards

> Smart cards: embedded systems that allow to store and
process information

» Typical Aplications: Credit cards, Electronic cash, Loalty
systems, Helthcare, Government identification

» Java cards:
Java Virtual machine / applications (applets) are portable

» Multiapplicative Java cards: applets can be downloaded and
installed on card after the card issuance

» Applet’'s sensitive data must be protected against
anouthorised accesses

Java cards

Multiapplicative Java cards

Card read Loyalty Auth. Purse
ara reader applet applet applet

Framework classes

Smart card hardware & native system

Java cards security

» Security in Java cards is a combination of the security mechanisms in
Java and additional security procedures imposed by the card platform

» The Firewall forces the isolation
between objects of applets belonging

— P

PERSISTENT and TRANSIENT objects

Communication between packages

package a o package b
7 foo ()
k.
getsSIO(B) getﬂppletSIf}{A}

S~
javacard.framework

(APDU, JCSystem, ...) o

APls

Limits of the firewall

> Based on access control checks

» Place restrictions on the applets that can access to methods of applets
belonging to other packages

» Does not control the propagation of the information from an applet of a
package towards applets of other packages

file Alnt. java

import javacard.framework Shareable;

public interface AInt extends Shareable|
public short foo(); }

file A. java
import javacard.framework;
import a AInt;
public class A extends Applet implements AInt{
private short balance;
public Shareable getSIO(AID client, byte num){
if(client.equals(B)) return this;
return null:
]
public short fool)|
AID client = getpreviouscontextAID();
if(client.equals(B)) return balance;
return ;
]
}

Fig- 3. Package a

file BInt. java

import javacard.framework.Shareable;

public interface BInt extends Shareable|
public a.AInt bar(); }

file B. java
import javacard. framework;
import a.AInt;
public class B extends Applet implements BInt{
private static AInt AObj;
private short ABalance;
private void work ()
ADb) = (AInt) (JCSystem.getAppletSIOA, §));
ABalance = ADbj.fool);
]
public Shareable getSIOAID client, byte num)|
return this;

J
public AInt bar(){return ACbj;]

Fig- 4. Package b,

Secure Information Flow

> Security levels assigned to A+B+C
packages

» Lattice of security levels

A+C

» Abstract Interpretation framework: abstract execution of the
applets using security levels instead of real data

»Secure Information Flow: Check that information exchanged between
A and B has a security equal to or level lower than A+B

Java Card Information Flow Verifier

JCIFV performs the analysis according to the following main
steps

1. Unique security levels are automatically assigned to packages and shareable
interface objects. An initial security level is assigned to the
other methods and object fields

2. CAP file (native code of an applet) is decoded and saved as a bytecode
3. Abstract interpretation of the bytecode is performed

4. The analysis stops when the state of the abstract interpreter does not longer
change and all methods have been analyzed

5. Secure information flow is checked

Electronic Purse

[l '
purse 2 : - Eé g rentacar
2 8 airmiles E ® getBalance() 5: 8
logFull() e o 5= 2] >
PurseApplet 3 2 > AirMilesApplet %% %% @
o= < - -
‘r-__j‘ s - §- 3 T —
getBalance()
Pyrselojalty I I I
nterfape
getTransaction()
getTransaction()

illicit information flow from Purse to RentACar caused by a method
invocation (no parameters) from AirMiles and RentAcar

Purse: log-full service (logFull()), which notifies registered applets that the
transaction log is going to be over-written.
Airmail: registered for the log-full service

RentACar: not registered for the log-full service

10

Electronic Purse

Assume that AirFrance requests RentACar the amount of miles
(getBalance()) every time Purse notifies AirFrance that the
transaction log is full.

logFull() method implemented by AirFrance contains an invocation of
method getTransaction() of Purse followed by an invocation of method
getBalance() of RentACar.

Applet RentaACar, whenever observes an invocation of getBalance(),
can infer that Purse is going to over-write the transaction log.

Thus, even without subscribing to the log-full service, RentACar
is able to benefit from such a service.

Purse is not able to detect such information flow.

11

The tool

@ Java Card Information Flow Verifier 1.0 @M

File Wiew Tools Help

‘_"_’/ Open =] nnalyze x . Details

.. SECURE
=2 %NF?R:*IATION FLow
r Java Cards =
Help

opyright (c). University of Pisa, Department af Infarmation Engine sring.

18/04/2012 CITEC, University of Bielefeld 12

|%| Report for method number 7 = Elg

Method name: method_294()void

Analysis result: Failed on 2 instruction(s):
117: invokestatic 14

-= level{airfrance, purse }(max={ airfrance, rentacar})
138 invokeinterface 1, 15, 0

-= levelfairfrance, purse ,rentacar § (max=| airfrance, rentacar})

Method body:
0: invokestatic 20 /f

javacardfframework/JCSystem.getPreviousContextAlD()Ljavacard/framework/AlD
3: astore_1

4: aload_1

5. getstatic_a 21
8. sconst_0

9: getstatic_a 21
12: arraylength

AT T

J

Analysis

-

|£4 Detmils Window = | =
F s
method_294() vold ' Failed
*
Fziled on 2 instruclion(s)
Feport
method 473()short ! Failed
Failed on 1 instucion(s)
Report
method_503(byte.short)-void J Verified
The method iz safe =
Report
getshareablelntermacelbjecljavacardmamawork/alb. .. J Vermed
The methnd is safe . :

Discussion

e JCIFV tool is able to certify applets against secure
information flow of sensitive data
saved present on the card

* Verification (Abstract Interpretation)
— JVIFV certifies only secure applets

— some correct applets could also be rejected

* due to the characteristics of the applet code the
percentage of erroneously rejected applets is
very low

