
Analysis of programs

Proving properties of programs can be automated BUT we
must abstract from the exact behaviour

I Correctness of the abstraction with respect to the property
we are considering.

I We consider abstract memories. For example,
I odd/even numbers
I signs (+, -)
I

We execute the commands of the program on abstract
memories.
We define an abstract operational semantics of the
language.

.
1 / 57

Confidentiality property

I Data leakage
I Security policy
I Information flow in programs
I Examples of illegal flow of information

2 / 57

Data leakage

GENERAL DATA PROTECTION REGULATION(GDPR) - UE
2016/679

Regulation of the European Parliament and of the Council on
the protection of natural persons with regard to the processing
of personal data and on the free movement of such data

I explicit (private data made publicly available)
I interference between private and public data

3 / 57

Data leakage

4 / 57

Colluding apps

The Independent (British online newspaper)

Taken from: http://www.independent.co.uk/life-style/gadgets-and-tech/news/android-app-
steal-users-data-colluding-each-other-research-cartel-information-a7663976.html

"Android apps are mining smartphone users data by secretly colluding with each other,
according to a new study. Pairs of apps can trade information, a capability that can lead to
serious consequences in terms of security."

5 / 57

Data leakage

Can be studied by defining a security policy and by using the
theory of information flow in programs.

6 / 57

Information flow in programs

Modular programming

Information flow occurs through
I simple variables, input/output files
I array, structures, objects
I pointers, references
I objects allocated in dynamic memory
I global variables
I function calls, parameters by value/ parameters by

reference, return

7 / 57

Multilevel Security policy

a security policy that allows the classification of data and users
based on a system of hierarchical security levels.

Lattice.
Let be given a set S and order relation v on S.
(S, v) is a lattice if every pair of elements in S has both a
greatest lower bound (glb, u) and a least upper bound (lub, t).

S = {l ,h}, with l < h

Public data: l Private data: h

Inputs and outputs are classified as either low sensitive
(public) or high sensitive (private).

8 / 57

Non-interference property

the security domain private is non-interfering with domain
public if no input by private can influence subsequent
outputs seen by public

A program has the non-interference property if and only if any
sequence of low inputs will produce the same low outputs,
regardless of what the high level inputs are.

The program responds in exactly the same manner on low
outputs whether or not high sensitive data are changed. The
low user will not be able to acquire any information about data
and the activities (if any) of the high user.

9 / 57

Basics of information flow

High-level language. Let x, y be variables

y := x; explicit flow

variable y is assigned the value of x, there is an explicit flow
from x to y

if (x = 0) implicit flow
then y:=1;
else y:=0;

there is an implicit flow from variable x to y, since y is assigned
different values depending on the value of the condition of the
control instruction (variable x)

10 / 57

Basics of information flow

In both cases observing the final value of y reveals information
on the value of x.

A conditional instruction in a program causes the beginning of
an implicit flow. The implicit flow begins when the conditional
instruction starts (we say that we have an opened implicit
flow); all the instructions in the scope of the if depend on the
condition of the if.

11 / 57

Basics of information flow

If a function call is executed in the scope of a conditional
instruction, the function is executed under the implicit flow.

if (y < 0)
then f();

Function f() is invoked depending on the value of variable y.

Instructions of f() are executed under the implicit flow of the
condition of the if statement.

12 / 57

Secure information flow checking

1. Typing approach [1].
the security information of a variable belongs to its type, and
secure Information flow is checked by means of a type system.
Hierarchy between types.
Types = {h, l}. l:= h typing error h:= l correct

2. Semantic-based approach [2]
execute the program (high complexity)

3. Abstract interpretation of the operational semantics
approach [3]
execute the program on abstract domains

13 / 57

Secure information flow checking

[1] D. Volpano, G. Smith, C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3), 1996, pp. 167-187.

[2] Rajeev Joshi, K.Rustan M.Leino A semantic approach to secure information
flow Science of Computer Programming, Volume 37, Issues 1â3, May 2000, High
compexity in space and time

[3] Roberto Barbuti, Cinzia Bernardeschi, Nicoletta De Francesco Abstract
interpretation of operational semantics for secure information flow. Inf. Process.
Lett. 83(2): 101-108 (2002)

14 / 57

Secure information flow checking

An advantage of abstract interpretation approach with respect
to those based on typing is that it is semantics based and thus
keeps information on the dynamic behaviour of programs,
allowing to check more precisely the desired properties.

y:=x;
y:0;

rejected by the typing approach

if (0) then y:=x; else skip;

rejected by the typing approach; rejected by abstract
interpretation approach; accepted by semantics approach

15 / 57

Abstract interpretation of the operational semantics for secure
information flow in programs
I concrete instrumented semantics recording the information

flow (collecting semantics)
I abstract semantics taking only what concerns the

information flow
I correctness of the abstraction
I model checking

16 / 57

Standard Operational semantics

Given a program P = 〈c,H,L〉 and an initial memory
m ∈Mε

Var(c), we denote by E(P,m) the transition system
defined by −→ε starting from the initial state 〈c,m〉.

The semantics of programs is given by means of a transition
system.
The semantic rules define a relation −→ε⊆ Qε ×Qε, where Qε

is a set of states. Each state is either a pair 〈c,m〉 of a
command and a memory, or a single memory 〈m〉.

Actually, since the program is deterministic, there exists at
most one final state, i.e. a state 〈m〉 for some memory m.

17 / 57

Concrete operational semantics

We enrich the standard operational semantics, in such a way
that a violation of security can be discovered.

The concrete semantics is an instrumented semantics which:
I Handles values (k , σ) annotated with a security level

(k = 0,1,2 · · ·).
I Executes instructions under a security environment σ.
I C(P, M): concrete transition system for P

18 / 57

Concrete operational semantics

(k , σ)
during the execution, σ indicates the least upper bound of
the security levels of the information flows, both explicit and
implicit, on which k depends.

(e)σ and (c)σ

during the execution, σ represents the least upper bound of
the security levels of the open implicit flows. σ is (possibly)
upgraded when a branching instruction begins and is
(possibly) downgraded when all branches join.

19 / 57

Concrete Operational semantics

exp::= const | var | exp op exp
com::= var := exp | if exp then com else com |

while exp do com | com ; com | skip

Let (S,v), with S = {l ,h}, be a lattice of security levels,
ordered by l < h, where t denotes the least upper bound
between levels.
A program P is a triple 〈c,H,L〉
c ∈ com
H are the high variables of P
L are the low variables of P
H ∪ L = Var(c) and H ∩ L = ∅

20 / 57

Concrete Operational semantics

Exprconst 〈kσ,M〉 −→expr (k , σ)
Exprvar

M(x) = (k , τ)
〈xσ,M〉 −→expr (k , σ t τ)

Exprop
〈eσ1 ,M〉 −→expr (k1, τ1) 〈eσ2 ,M〉 −→expr (k2, τ2)

〈(e1 op e2)
σ,M〉 −→expr (k1 op k2, τ1 t τ2)

Ass
〈eσ,M〉 −→expr v

〈(x :=e)σ,M〉 −→ M[v/x]
Skip 〈skipσ,M〉 −→ 〈M〉

Iftrue
〈eσ,M〉 −→expr (true, τ)

〈(if e then c1 else c2)
σ,M〉 −→ 〈cτ1 , Impl(M,Mod(c1) ∪Mod(c2), τ)〉

21 / 57

Whiletrue
〈eσ,M〉 −→expr (true, τ)

〈(while e do c)σ,M〉 −→ 〈(c;while e do c)τ , Impl(M,Mod(c), τ)〉

Whilefalse
〈eσ,M〉 −→expr (false, τ)

〈(while e do c)τ ,M〉 −→ 〈Impl(M,Mod(c), τ)〉

Seq1
〈cσ1 ,M〉 −→ 〈M ′〉

〈cσ1 ;w ,M〉 −→ 〈w ,M ′〉 Seq2
〈cσ1 ,M〉 −→ 〈w ′,M ′〉

〈cσ1 ;w ,M〉 −→ 〈w ′;w ,M ′〉

Mod finds the set of variables mod ified in a command i.e. those which are on the
left of an assignment
Impl possibly upgrades the security level of the values of the variables to take into
account an impl icit flow.

22 / 57

Rules description

I The rules compute the security level of the value of an
expression dynamically using both the security level of the
operands and the security level of the environment.

For example, an integer constant k results in the value
(k , σ), where σ is the security level of the environment
under which k is evaluated.

23 / 57

Rules description

I Assume that the condition of an if command results in a
value (k , τ).

The branch c1 or c2, selected according to k , is executed in
the memory Impl(M,Mod(c1) ∪Mod(c2), τ) under the
environment τ .

In particular, if τ = H, the value of every variable assigned
in at least one of the two branches is upgraded to H and
the selected branch is executed in a high environment.

When the conditional command terminates, the security
environment is reset to the one holding before the
execution of the command

24 / 57

Concrete Operational semantics

I The while command is handled similarly to the
conditional one.

Given a program P = 〈c,H,L〉 and an initial concrete memory
M ∈MVar(c), the rules define a transition system C(P,M),
which is the concrete semantics of the program.

We assume that the program starts with a low security
environment: the initial state of C(P,M) is 〈c l ,M〉.

25 / 57

Correctness

We introduce the definition of a memory safe for a program:
given a program P = 〈c,H,L〉, a concrete memory
M ∈MVar(c) is safe for P if and only if each low variable of P
holds a low value in M.

26 / 57

An example

P1 = 〈if y = 0 then x := 0 else x := 1, {y}, {x}〉

and the concrete memory M with M(x) = (1, l) and M(y) = (2,h).

The memory in the final state of the concrete transition system is not safe for P1,
since the security level of x is h:

〈(if y = 0 then x := 0 else x := 1)l , [x : (1, l), y : (2,h)]〉
↓

〈(x := 1)h, [x : (1,h), y : (2,h)]〉 Impl() sets x to h
〈[x : (1,h), y : (2,h)]〉

27 / 57

An example

P2 = 〈if x = 1 then y := x else skip;x := y, {y}, {x}〉 with M(x) = (1, l) and
M(y) = (2,h)
The concrete transition system is the following:

〈(if x = 1 then y := x else skip)l ; (x := y)l , [x : (1, l), y : (2,h)]〉
↓

〈(y := x)l ; (x := y)l , [x : (1, l), y : (2,h)]〉
↓

〈(x := y)l , [x : (1, l), y : (1, l)]〉
↓

〈[x : (1, l), y : (1, l)]〉

The assignment y:=x assigns a low value to y. Thus the assignment x:=y
assigns x a low value. The final state is safe for P2. P2 is secure, with I(x) = 1.

28 / 57

An example

Note that P2 is not secure for x = 0 (in the final state x holds a high value):

〈(if x = 1 then y := x else skip)l ; (x := y)l , [x : (0, l), y : (2,h)]〉
↓

〈skipl ; (x := y)l , [x : (0, l), y : (2,h)]〉
↓

〈(x := y)l , [x : (0, l), y : (2,h)]〉
↓

〈[x : (2,h), y : (2,h)]〉

29 / 57

Abstract Operational semantics

The concrete operational semantics cannot be used as a static
analysis tool.

In fact the concrete transition system could be infinite,
because there are infinitely many memories.

The purpose of abstract interpretation (or abstract semantics)
is to correctly approximate the concrete semantics of all
executions in a finite way.

30 / 57

Abstract Operational semantics

I The first step in the construction of the abstract semantics
is the definition of the abstract domains.

I The abstract domains adequately describe sets of values
of the concrete ones.

I The abstract semantics is a transition system whose paths
represent executions and whose nodes display the
program’s states.

I The nodes of the abstract transition system contain
abstractions of states.

31 / 57

Abstract Operational semantics

In particular, in our abstract semantics each concrete value,
composed of a pair of a value and a security level, is
approximated by considering only its security level.

As a consequence, when dealing with conditional or iterative
commands, the abstract transition system has multiple
execution paths due to the loss of precision of abstract data.

32 / 57

Abstract Operational semantics

Let α the abstraction function. The abstract semantics:
I abstracts concrete values into their security level:
α(k , σ) = σ

I uses the same rules of the concrete semantics on the
abstract domains. The transition relation of the abstract
semantics is denoted by −→\.

I Both rules for if are always applied, since true and false are
both abstracted to "·"

33 / 57

Abstract Operational semantics

The abstract semantics:
I A(P, M]) : abstract transition system for P

- finite
- multiple path
- each path of C(P, M) is correctly abstracted onto a path of
A(P, M])

34 / 57

Abstract transition system

P2 = 〈if x = 1 then y := x else skip;x := y, {y}, {x}〉
M](x) = (l) and M](y) = (h)

〈(if x = 1 then y := x else skip)l ; (x := y)l , [x : (l), y : (h)]〉
↓] ↓]

〈(y := x)l ; (x := y)l , [x : (l), y : (h)]〉 〈skipl ; (x := y)l , [x : (l), y : (h)]〉
↓] ↓]

〈(x := y)l , [x : (l), y : (l)]〉 〈(x := y)l , [x : (l), y : (h)]〉
↓] ↓]

〈[x : (l), y : (l)]〉 〈[x : (h), y : (l)]〉

35 / 57

Abstract Operational semantics

Let P = 〈c,H,L〉 and M \ ∈M\
Var(c) with Low(M \) = L. If for

every final state 〈M ′\〉 of A(P,M\), it holds that M ′\ is safe for
P, then P is secure.

36 / 57

Secure Information Flow

For each program P = 〈c,H,L〉 and abstract memory
M \ ∈M\

Var(c), A(P,M \) is finite.

To check if a program is secure, we build the abstract
transition system and examine all final states.

For example, the abstract transition system of the program P2
of the previous section has two final states: 〈[x : l , y : l]〉 and
〈[x : h, y : h]〉, where the second one is not safe for P2.
Therefore P2 is not secure.

37 / 57

Secure Information Flow

Secure Information Flow. A program P has secure
information flow if in each final state of A(P), each x : σ holds a
value τ v σ.

This approach can be put at an intermediate level between a
syntactic approach and a fully semantic one.
On one side, it is dynamic and thus allows us to be more
permissive than a syntactic approach. On the other side, it is
based on a finite-state transition system and thus has the
advantage of being fully automatic.

38 / 57

Data leakage

39 / 57

Data leakage

40 / 57

Data leakage

41 / 57

Multilevel security policy

Security lattice (S,v)
every pair of elements in S has both a greatest lower bound (glb, u) and a least
upper bound (lub, t). Moreover, v is reflexive and transitive. v is antisymmetric

Confidentiality: S = {Public,Private}, with Public < Private

Private
|
|

Public

SIF guarantees that:
information in public variables not depend on information in private variables

42 / 57

Multilevel security policy

Integrity: S = {None,Trusted} with Trusted < None

None
|
|

Trusted

SIF guarantees that:
information in trusted variables not depend on information in not trusted variables

43 / 57

Multilevel security policy

Educational and Medical are sensitive classes of information of a user.

S = {None,Educational ,Medical ,Educational + Medical}, with
None < Educational ;None < Medical ;
Medical < Educational + Medical ;Educational < Educational + Medical

least upper bound (t): Educational tMedical = Educational + Medical

44 / 57

Multilevel security policy

Let ui represents sensitive information of user i .
S = {None,u1,u2,u3,u1 + u2,u1 + u3,u2 + u3,u1 + u2 + u3} with

None < ui ;
ui < ui + uj , j 6= i ;
ui + uj , j 6= i < u1 + u2 + u3

least upper bound (t): u1 t u2 = u1 + u2

45 / 57

Exercise

Apply the standard operational semantics, the concrete and
the abstract operational semantics to the following program

P = 〈c1; c2; · · · ; c5, {x}, {y , z}〉
with m(x) = 2, m(y) = 7, m(z) = 3

c1: z := 0;
c2: while (x > 0)
c3: y:=y*10;
c4: x:=x-1;
c5: z:=y;

Does P satisfy SIF? Why?
46 / 57

Secure Information Flow

A variable can represent
I input/output file
I a port for network connections
I

47 / 57

Other properties

SIF analyses the variables when the program terminates.

Other possibilities:
I check the variables at given program points
I check properties of execution paths

48 / 57

Other properties

Termination Agreement. A program P satisfies Termination
Agreement if it is not possible to leak high information by
observing the termination of the program
while (h > 0) do skip

Timing Agreement. A program P satisfies Timing Agreement
if it is not possible to leak high information by observing the
number of instructions executed

49 / 57

Data propagation

Propagation caused by global variables
type x;
type f(· · ·);
type g(· · ·);

Propagation caused by actual parameter/ return of a function

50 / 57

Data propagation

Propagation caused by global variables
type x;
type f(· · ·);
type g(· · ·);

Propagation caused by actual parameter/ return of a function

51 / 57

The security context

I For each global variable: the highest level of data stored
var_name : σ

I For each function: the highest level of input/output parameters, return and the
security environment of each invocation

fun_name(param1, · · · ,paramn) : return, calling_evironment

fun_name(σ1, · · · , σn) : σ, σ
′

52 / 57

The security context

Secure information flow studied by using a security context

I For each global variable: the highest level of data stored
var_name : σ

I For each function: the highest level of input/output parameters, return and the
security environment of each invocation

fun_name(param1, · · · ,paramn) : return, calling_evironment

fun_name(σ1, · · · , σn) : σ, σ
′

53 / 57

Iterative analysis

Iterative analysis until fixpoint is reached

A: security context
R: set of all functions
EXEC: the abstract execution interpreter of a function

The algorithm

A:= A0

T:= R
while (T 6= ∅)

select f ∈ T
T := T - {f}
A′ := EXEC(f ,A)
if (A′ 6= A)

A := A′;
T:=R

54 / 57

Iterative analysis

Each function is executed starting from the abstract memory
and the context file, and applying the abstract rules

The analysis terminates, since security levels in the context file
can only be upgraded, and the number of security levels is
finite

55 / 57

Context file

During the analysis,
I for each variable, the context file maintains the maximum

security level of data stored in the variable

I for each function, the context file maintains how the
function is called in terms of the maximum level of the
calling environment, the actual parameter and the return

56 / 57

Iterative analysis

During the analysis,
I functions are analysed one at a time;
I the context file is update accordingly;
I at the end of the analysis of a function, if the context file is

changed, all functions must be re-analysed starting from
the new context file.

I the analysis terminates when, stating from a context file, all
functions are analysed and the context file is unchanged (a
fixpoint is reached).

57 / 57

