
Formal Methods

Cinzia Bernardeschi

Department of Information Engineering
University of Pisa, Italy

FMSS, 2019-2020

Overview

I Relation between dependability and security
I Formal methods definition
I Specification languages
I Verification techniques

I model checking
I abstract interpretation
I theorem proving

I Case studies:
I Malware analysis
I Data leakage
I Cyber-physical systems attacks

2 / 25

Formal methods definition

Formal methods are mathematically-based techniques that can be used in
the design and development of computer-based systems.

Formal methods
I allow the analysis of all possible executions of the system
I improve the current techniques based on simulation and testing

(mathematical proof that the system behaves as expected)
I offer the possibility for detecting vulnerability in systems or for building

more secure systems by design.

3 / 25

Formal methods definition

A formal method consists of

I a language
a mathematical notation or a computer language with a formal
semantics

I a set of tools
for proving properties of the system

I a methodology for its application in industrial practice.

4 / 25

Formal methods for modelling and verification

I formal methods for the analysis of systems
I formal methods for the analysis of programs

5 / 25

Formal methods for the analysis of programs

I Semantics of the programming language
I Control flow graph of a program

The semantics of the language describes mathematically the behaviour of
the program.

The control flow graph represents the control structure of the program.

In the following:
I structured high level language (e.g., C language)
I low level languages (e.g, Java bytecode, assembly code)

6 / 25

A simple high level language

We consider a simple sequential language with the following syntax, where
op stands for the usual arithmetic and logic operations

Instruction set

exp::= const | var | exp op exp
com::= var := exp | if exp then com else com |

while exp do com | com ; com | skip

A program P is a sequence of instructions 〈c〉, where c ∈ com.

7 / 25

Control Flow Graph

The control flow graph of a program P =< c > is a directed graph (V ;E), where V
is a set of nodes and E : VxV is a set of edges connecting nodes.

Nodes correspond to instructions. Moreover, there is an initial node and a final
node that represent the starting point and the final point of an execution.
E contains the edge (i ; j) if and only if the instruction at address j can be
immediately executed after that at address i .

The control flow graph does not contain information on the semantics of the
instructions.

8 / 25

An example

1 : y :=5;
2 : if y > 1

then
3 : x :=1;

else
4 : x :=0;
5 : z:=x ;
6 :

C++ generation of the CFG with Visual Studio. Gcc developer-options:
-fdump-tree-cfg -blocks -vops

9 / 25

An example

1 : y :=5;
2 : x :=2;
3 : while x > 0
4 : y :=y + y ;
5 : x :=x − 1;
6 : z:=y ;
7 :

10 / 25

Standard Operational semantics

memory mState of the program:
I 〈c,m〉

where c is a command and m is a memory
I 〈m〉

a single memory, in the final state.

The semantics of programs is given by means of a transition system and we call
this semantics execution semantics.

I Var(c) denote the set of variables occurring in c.
I Vε is the domain of constant values, ranged over by k , k ′, . . .,
I for each X ⊆ var , the domainMε

X = X → Vε of memories defined on X ,
ranged over by m,m′,

11 / 25

Transitions

The semantic rules define a relation

−→ε⊆ Qε ×Qε

where Qε is a set of states.

A separate transition

−→ε
expr⊆ (exp ×Mε)× Vε

is used to compute the value of the expressions.

With m[k/x] we denote the memory m′ which agrees with m on all
variables, except on x , for which m′(x) = k .

The symmetric rule for the conditional command (false condition) are
omitted.

12 / 25

Operational semantics

Exprconst 〈k ,m〉 −→ε
expr k

Exprvar 〈x ,m〉 −→ε
expr m(x)

Exprop
〈e1,m〉 −→ε

expr k1 〈e2,m〉 −→ε
expr k2 k1 op k2 = k3

〈(e1 op e2),m〉 −→ε
expr k3

Ass
〈e,m〉 −→ε

expr k
〈x :=e,m〉 −→ε m[k/x]

Skip 〈skip,m〉 −→ε 〈m〉

13 / 25

Operational semantics

Iftrue
〈e,m〉 −→ε

expr true
〈if e then c1 else c2,m〉 −→ε 〈c1,m〉

Whiletrue
〈e,m〉 −→ε

expr true
〈while e do c,m〉 −→ε 〈c;while e do c,m〉

Whilefalse
〈e,m〉 −→ε

expr false
〈while e do c,m〉 −→ε 〈m〉

Seq1
〈c1,m〉 −→ε 〈m′〉

〈c1;c2,m〉 −→ε 〈c2,m′〉 Seq2
〈c1,m〉 −→ε 〈c2,m′〉

〈c1;c3,m〉 −→ε 〈c2;c3,m′〉

14 / 25

Given a program P = 〈c〉 and an initial memory m ∈Mε
Var(c), we denote by

E(P,m)

the transition system defined by −→ε starting from the initial state 〈c,m〉.

Actually, since the program is deterministic, there exists at most one final state, i.e.
a state 〈m〉 for some memory m.

15 / 25

Java language

16 / 25

Java bytecode

17 / 25

Java bytecode
Instruction set

pop Pop top operand stack element.
dup Duplicate top operand stack element.
αop Pop two operands with type α off the operand stack,

perform the operation op ∈ { add, mult, compare .. },
and push the result onto the stack.

αconst d Push constant d with type α onto the operand stack.
αload x Push the value with type α of the register x

onto the operand stack.
αstore x Pop a value with type α off the operand stack and

store it into local register x .
ifcond j Pop a value off the operand stack, and evaluate it against

the condition cond = { eq, ge, null, ... };
branch to j if the value satisfies cond .

goto j Jump to j .

18 / 25

Java bytecode Instruction set

getfield C.f Pop a reference to an object of class C
off the operand stack; fetch the object’s
field f and put it onto the operand stack.

putfield C.f Pop a value k and a reference to an
object of class C from the operand stack;
set field f of the object to k .

invoke C.mt Pop value k and a reference r to an
object of class C from the operand stack;
invoke method C.mt of the referenced
object with actual parameter k .

αreturn Pop the α value off the operand stack and return it
from the method.

19 / 25

The bytecode of a method is a sequence B of instructions.

When a method is invoked (invoke instruction), it executes with a new empty
stack and with an initial memory where all registers are undefined except for the
first one, register x0, that contains the reference to the object instance on which
the method is called, and register x1, that contains the actual parameter.

When the method returns, control is transferred to the calling method: the caller’s
execution environment (operand stack and local registers) is restored and the
returned value, if any, is pushed onto the operand stack.

20 / 25

An example
The bytecode corresponds to a method mt of a class A. Suppose that register x1
(the parameter of A.mt) contains a reference to an object of another class B. Note
that register x0 contains a reference to A. After the bytecode has been executed,
the final value of field f1 of the object of class A is 0 or 1 depending on the value
of field f2 of the object of class B.

0 : aload x0
1 : aload x1
2 : getfield B.f2
3 : ifge 6
4 : iconst 0
5 : goto 7
6 : iconst 1
7 : putfield A.f1
8 : iconst 1
9 : return

21 / 25

A code and its CFG

0 :
1 : load x
2 : ifge 5
3 : iconst_1
4 : istore_2
5 : goto 6
6 :

22 / 25

Standard Operational semantics

23 / 25

Standard Operational semantics

24 / 25

Standard Operational semantics

25 / 25

