
Model checking of CTL formulae

FMSS, 2019-2020

1 / 20

Example: Hanoi Tower

I Three rods (a, b, c) and three disks with different size in
order on rod a. The largest disk at the bottom of a.

I Move the entire stack of disks from rod a to rod c,
assuming the following rules:
I only one disk can be moved at a time
I no larger disk may be placed on top of a smaller disk

https://en.wikipedia.org/wiki/Tower_of_Hanoi

2 / 20

Hanoi Tower: steps

3 / 20

Transition System
State: list of positions in disk increasing size (possmall ,posmedium,poslarge)

4 / 20

Transition System

TS = (S, I,→,AP,L) where:
- S sequences of three letters chosen among a, b, c ;
- I = aaa;
-→ is the transition relation;
- AP = S atomic propositions same as the set of states;
- L(s) = s

We can check if along every path it is always possible to reach
the configuration "all disks on rod c". Let φ = ccc.

A state formula φ holds on a TS if it holds for all initial states:
∀σ ∈ I : σ |= φ

5 / 20

Computation Tree Logic

CTL

STATE FORMULAE

φ ::= tt | ap | φ1 ∧ φ2 | ¬φ | EΨ | AΨ

PATH FORMULAE

Ψ ::= Xφ | Fφ | Gφ | φ1Uφ2

φ1Uφ2

path formula which requires that exists a state s such that φ2

holds and φ1 holds in all states up to the state s

6 / 20

Computation Tree Logic

Other formulae

ff for ¬tt
φ1 ∨ φ2 for ¬((¬φ1) ∧ (¬φ2))
φ1 =⇒ φ2 for ((¬φ1) ∨ φ2)

7 / 20

Semantics of state formulae

σ |= tt iff true
σ |= ap iff ap ∈ L(σ)
σ |= φ1 ∧ φ2 iff (σ |= φ1) ∧ (σ |= φ2)
σ |= ¬φ iff σ 6|= φ
σ |= EΨ iff π : π ∈ Path(σ) ∧ π |= Ψ
σ |= AΨ iff ∀π : π ∈ Path(σ) =⇒ π |= Ψ

8 / 20

Semantics of path formulae

σ0σ1 · · ·σn · · · |= Xφ iff σ1 |= φ ∧ n > 0
σ0σ1 · · ·σn · · · |= Fφ iff σn |= φ ∧ n ≥ 0
σ0σ1 · · ·σn · · · |= Gφ iff ∀i : σi |= φ
σ0σ1 · · ·σn · · · |= φ2

⋃
φ2 iff ((σn |= φ2 ∧ n ≥ 0)

∧(∀i ∈ {0, ,n − 1} : σi |= φ1))

9 / 20

Definitions

I state s is stuck if there are no transitions leaving s.
I a path Π in a transition system is a sequence of states
σ0σ1 · · ·σn · · · such that ∀i > 0 : σi−1 → σi and the path is
as long as possible.
Path(σ0) denotes the set of paths Π = σ0σ1 · · ·σn · · · ,
starting in σ0.
If σ′ is a stuck state, then Path(σ′) = σ′.

10 / 20

Definitions

I Given S0 ⊆ S, Reach1(S0) = {σ1 | σ0σ1 · · · σn · · · ∈ Path(σ0)
and σ0 ∈ S0}
states reachable from a state in S0 in one step.

I Given S0 ⊆ S, Reach(S0) = {σn | σ0σ1 · · ·σn · · · ∈ Path(σ0)
and σ0 ∈ S0 and n ≥ 0}
states reachable from a state in S0 in zero or more steps.

I Reach(I) is the set of reachable states.

11 / 20

Model checker
Model checker: an automatic program that can check if a property holds on the
system.
The complexity of model checking for CTL depends on the product of the size of
the transition system (TS) and the size of the formula φ.

size (TS) = number of states plus number of transitions plus sum over all states of
the number of atomic propositions

size(φ) = number of symbols

The complexity increases when the TS is constructed by a program graph and the
memory represents a set of variables.
Assumptions:
I S is a finite set of states
I there are transitions leaving all reachable states (this reduces the complexity,

for example: AXφ is the same as ¬(EX (¬φ))) We add self-loops on stuck
states.

12 / 20

A model checking algorithm

Sat(φ) = {σ | σ |= φ}
Simple cases:
I Sat(tt) = S
I Sat(ap) = {σ ∈ S | ap ∈ L(σ)}
I Sat(φ1 ∧ φ2) = Sat(φ1) ∪ Sat(φ2)

I Sat(¬φ) = S − Sat(φ)

I Sat(EXφ) = {σ | Reach1({σ}) ∩ Sat(φ) 6= {}}
I Sat(AXφ) = {σ | Reach1({σ}) ⊆ Sat(φ)}

13 / 20

A model checking algorithm

I Sat(EFφ) = {σ | Reach({σ}) ∩ Sat(φ) 6= {}}
I Sat(AGφ) = {σ | Reach({σ}) ⊆ Sat(φ)}

More complex cases (not shown):
I Sat(EGφ)

I Sat(AFφ)

I Sat(E(φ1
⋃
φ2))

14 / 20

Analysis of programs

Program = Control Flow Graph (CFG) + Data
I CFG represents the control structure of the program.
I memory represents the data structure on which the

program operates.
I the semantics of the programs is based on the memory

and the program point. When we execute an instruction we
move from a pair (pp,m) to another pair (pp′,m′). The
value of pp′ and m′ depends on the values pp and m and
the semantics of the instruction that is executed.

15 / 20

Analysis of programs

An example

Assume x can take value : 0, 1, 2, 3
Memory m: (x ,0),(x ,1), (x ,2), (x ,3)
Program point pp: [1], [2], [3], [4]

16 / 20

Transition System TS

I S = {(pp,m) | pp ∈ {[i], i = 1,2,3,4}∧
m ∈ {(x , i), i = 0,1,2,3}}

I I = {([1], (x , i)), i = 0,1,2,3}
I →
I AP = {@[i], i = 1,2,3,4}∪{@(x , i), i = 0,1,2,3}∪

{start} ∪ {end}
I L([1], (x , i)) = {@1,@(x , i), start}

L([2], (x , i)) = {@2,@(x , i)}
L([3], (x , i)) = {@3,@(x , i)}
L([4], (x , i)) = {@4,@(x , i),end}

17 / 20

Transition System TS

transition system obtained by the program control flow graph

18 / 20

Analysis of programs

How many states? How many reachable states?

Consider the set of states where the following formula holds:
@[3]
@(x ,2)
@[1] ∧ @(x ,2)

Termination of the system
start =⇒ EF end

for each initial state it is possible to terminate
start =⇒ AF end

for each initial state it is certain to terminate

19 / 20

Analysis of programs

When the transition system is built by the program control flow
graph, and the memory has k variables taking values in
{0, · · · ,n − 1}, the complexity of the model checking is
exponential in the number of variables.
The complexity depends on the product of the size of the
program points, the size of the formula and nk .

20 / 20

