
FMSS 2019-2020

Means for dependability

A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr
Basic Concepts and Taxonomy of Dependable and Secure Computing 
IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004



Dependability tree

FMSS, 2019-2020 Dependability: basic concepts and terminology 2

From [Avizienis et al., 2004] 



A combined use of methods can be applied as means for achieving
dependability. 

1. Fault Prevention techniques
to prevent the occurrence and introduction of faults
– rigorous developent, formal methods, testing, 

quality control methods, ...  (write free of bugs code)

– component screening, shielding, …  
(prevent to insert external faults is not possible)

Means for achieving dependability

FMSS, 2019-2020 Dependability: basic concepts and terminology 3



2. Fault Tolerance techniques

deal with faults at run-time 
(zero faults not possible)
deliver correct service in presence of activated faults and errors

Means for achieving dependability

Error
detection

and
processing

Fault 
masking

FMSS, 2019-2020 Dependability: basic concepts and terminology 4



3. Fault Removal techniques

remove faults in such a way that they are no more activated

4. Fault Forecasting techniques

to estimate the present number, the future incidence, and the 
consequences of faults. Try to anticipate faults; do better design
introducing fault tolerance techniques

Means for achieving dependability

FMSS, 2019-2020 Dependability: basic concepts and terminology 5



Organisation of fault tolerance

From [Avizienis et al., 2004] 

FMSS, 2019-2020 Dependability: basic concepts and terminology 6



Phases of fault tolerance:

➢ Error Detection

➢ Error Processing

➢ Fault Treatment

BASIC CONCEPT: 
fault tolerance mechanisms detect error states (not faults)

Techniques involved in fault tolerance

FMSS, 2019-2020 Dependability: basic concepts and terminology 7

Error recovery

Error mitigation



dormant
fault

Error

Normal
operation

Error
Recovery

Error processing

Fault 
activation

Error mitigation

Error
detection

Fault 
Treatment

Techniques involved in fault tolerance

carried out via error detection, error processing and fault treatment

FMSS, 2019-2020 Dependability: basic concepts and terminology 8



Fault treatment

fix the original problem, in such a way that it never occurs again

Fault passivation

- Deactivate a corrupted memory module in a computer

- Broken computer no more used

Techniques involved in fault tolerance

➢ Damage confinement
before we start to use fault tolerance redundancy, we isolate the compromised components

➢ Protective redundancy
additional components or processes that mask/correct errors or faults inside a system so they do 
not become failures.  Signal the problem to the user.

Other important aspects

FMSS, 2019-2020 Dependability: basic concepts and terminology 9



Chain of threats: Faults-Errors-Failures

From [Avizienis et al., 2004] 

FMSS, 2019-2020 Dependability: basic concepts and terminology 10



Error detection: Types of checks

Reasonableness Checks
Acceptable ranges of variables
Acceptable transitions
Divide by 0
Probable results

…………..

Specification checks (use the definition of “correct result”)
Examples
Specification: find the solution of an equation
Check: substitute results back into the original equation

Reversal Checks
assume the specified function of the system is to compute a mathemathical
function output = F(input)
if the function has an inverse function F’(F(x))=x we can  compute  F’(output) and
verify that F’(output) = input

FMSS, 2019-2020 Dependability: basic concepts and terminology 11



Replication  Checks

Based on copies and comparison of the results two or more copies 

- a mechanism that compares them and declares an error if differ

- the copies must be unlikely to be corrupted together in the same way

What is the fault model for sw?  Same input, same bug in the software, 
they have a COMMON CAUSE FAILURE 

In case of software fault, we do not tolerate the error
(design diversity is needed) 

What is the fault model for hw?  Faults are independent.

In case of hardware fault, we tolerate the error. 

Sys

Sys

comparator

Error detection: Types of checks

SW

HW

Assumption on faults is very important. 
most of the time single fault assumption

FMSS, 2019-2020 Dependability: basic concepts and terminology 12



for each unit of data, e.g. 8 bits, add a parity bit so that the total number of 1’s in  the resulting 9 
bits is odd

10100000 1

byte parity
bit

10100100 1

communication
channel one bit flip

Two bit flips are not detected

Codes

add information to data in such a way that errors can be identified

fault: bit flip
mechanism: parity bit 
error detection: data do not satisfy the parity bit

Error detection: Types of checks

FMSS, 2019-2020 Dependability: basic concepts and terminology 13



Error detection: Types of checks

Self-checking component

a component that has the ability to automatically detect the existence of the fault and the 
detection occurs during the normal course of its operations

Typically obtained using coding techniques: 

inputs and outputs are encoded (also different codes can be used)

Applicable to small circuits:

Comparators, Voters, …

Clear error confinement

FMSS, 2019-2020 Dependability: basic concepts and terminology 14



Coverage:
probability that an error is detected conditional on its occurence

Latency:
time elapsing between the occurrence of an error and its detection
(a random variable)
how long errors remain undetected in the system

Damage Confinement:
error propagation path

the wider the propagation, the more likely that errors will spread outside the 
system

Effectiveness of error detection
(measured by)

FMSS, 2019-2020 Dependability: basic concepts and terminology 15



Preventing error propagation:

- “minimum priviledge”

- discriminating on type of use, users, ..
For example, each component examines each request or data item from other
components before acting on it
- each software module checks legality and reasonableness of each request received
- need for providing signalling back to requestor and own strategy for dealing with 

erroneous requests

- Make error confinement areas :
error detection and error processing inside the module. 
If at the boundery, the module can  signal if it is faulty

-> avoid errors spread over the system
-> create barriers at the interface of the faulty module

Effectiveness of error detection
(structural approach) 

FMSS, 2019-2020 Dependability: basic concepts and terminology 16



Error Recovery

There is an error state. We have applied error confinement.  We want to recover.

Forward recovery
transform the erroneous state in a new state from which the system can 
operate correctly

Backward recovery
bring the system back to a state prior to the error occurrence

- for example, recover from sw update by using the backup

FMSS, 2019-2020 Dependability: basic concepts and terminology 17



Requires to assess the damage caused by the detected error or by  errors
propagated before detection

Usually ad hoc

Example of application:

real-time control systems, an occasional missed response to a sensor input is tolerable

The system can recover by skipping its response to the missed sensor input

Forward Error Recovery

FMSS, 2019-2020 Dependability: basic concepts and terminology 18



Requires to store a previous correct state  of the system

- Go backward to the saved state

- Retry
Redo with the same component

Backward Error Recovery

FMSS, 2019-2020 Dependability: basic concepts and terminology 19

A copy of the  global state is called checkpoint.  

State of a computation
- Program visible variables
- Hidden variables (process descriptors, …)
- “External state”:

files, outside words (for example alarm already given to the 
aircraft pilot, …



x

1

2

3

a

b 4

5

c 6

dProcess A

Process B

Process C

e

Checkpoint

x Error

Message passed

domino effect

Backward Error Recovery

FMSS, 2019-2020 Dependability: basic concepts and terminology 20

Consistency of checkpoint in distributed systems
snapshot algorithms:  determine past, consistent, global states



Checkpoints
- may be taken automatically (periodically) or upon request by program
- need to be correct (consistent)
- need eventually to be discarded

- survival of checkpoint data

Basic issues:

- Loss of computation time between the checkpointing and the rollback

- Loss of data received during that interval

- Checkpointing/rollback (resetting the system and process state to the state stored
at the latest checkpoint) need mechanisms in run-time support

- Overhead of saving system state 
(minimize the amount of state information that must be saved)

Backward Error Recovery

FMSS, 2019-2020 Dependability: basic concepts and terminology 21



Backward Error Recovery

FMSS, 2019-2020 Dependability: basic concepts and terminology 22

Class of faults for which checkpoint is useful: 
- transient faults (disapper by themselves)

- used in massive parallel computing, to avoid to restart all things from the beginning
- continue the computation from the checkpoint, saving the state from time to time

Class of faults for which checkpoint is not useful: 
- hardware fault; design faults 

(the system redo the same things)



A general method to achieve fault masking is to perform multiple 
computations through multiple channels, either sequencially or 
concurrently and then apply majority vote on the outputs

Tolerance of physical faults
channels may be of identical design
(we have the assumption that
hardware components fail
independently )

Tolerance of software faults
channels must implement the same
function via separate designs and 
implementations
(design diversity)  

Error mitigation

FMSS, 2019-2020 Dependability: basic concepts and terminology 23

Systematic use of compensation fault masking



Basic issue: loss of protective redundancy

Practical implementations of compensation:   masking and recovery  
(includes error detection and fault handling)

Module 1

Module 3

Module 2
Voter

output

Triple Modular Redundancy (TMR)

- 2/3 of the modules must deliver the correct results

- effects of faults neutralised without notification of their occurrence

- masking of a failure in any one of the three copies

FMSS, 2019-2020 Dependability: basic concepts and terminology 24



Compensating actions may be also necessary

Example: 

A cash dispensing machine gives less money

compenating action:  tell the bank and ask for the money back 

If an external communication is not correct, the computer may still limit
or undo the damage by a compensating action

Compensating actions

FMSS, 2019-2020 Dependability: basic concepts and terminology 25



Example: assume a real-time program communicated with its environment and 
backward error recovery is invoked

Assume the environment would not be able to recover along with the program
and the system would be left in an inconsistent state.

In this case, Forward recovery would help return the system to a consistent
state by sending the environment a message informing it to disregard
previous output from the program.

FMSS, 2019-2020 Dependability: basic concepts and terminology 26

Compensating actions



Fault location

1. can the error detection mechanism identify the faulty component/task 
with sufficient precision?

- LOG and TRACES are important
- diagnostic checks
- …

2. System level diagnosis:

A system is a set of modules:
- who tests whom is described by a testing graph
- checks are never 100% certain

FMSS, 2019-2020 Dependability: basic concepts and terminology 27

Fault handling (fault isolation)



Fault location

What if diagnostic information / testing components are themselves
damaged?  

Suppose A tests B. 
If B is faulty, 

A has a certain probability (we hope close to 100%) of finding out.

But if A is faulty too,
it might conclude B is OK; or says that C is faulty when it isn’t

FMSS, 2019-2020 Dependability: basic concepts and terminology 28

Fault handling



Fault treatment

1. Faulty components could not be left in the system
- faults can add up over time 

2. Reconfigure faulty components out of the system

- physical reconfiguration:
turn off power, disable from bus access, ..

- logical reconfiguration:
don’t talk, don’t listen to it

FMSS, 2019-2020 Dependability: basic concepts and terminology 29

Fault handling



Fault treatment

3. Excluding faulty components will in the end exhaust available redundancy
-insertion of  spares
-reinsertion of excluded component after thorough
testing, possibly repair

4. Newly inserted components may require:
- reallocation of software components
- bringing the recreated components up to current state

FMSS, 2019-2020 Dependability: basic concepts and terminology 30

Fault handling

System recovery = error handling + fault handling



Solid  faults: permanent faults whose activation is reproducible
Elusive faults: permanent faults whose activation is not

systematically reproducible (e.g, conditions that occur
in relation to the system load, pattern sensitive faults 
in semiconductor memories, …)

Intermittent faults: transient physical faults + elusive development faults

FMSS, 2019-2020 Dependability: basic concepts and terminology 31

Various strategies for implementing fault tolerance

From [Avizienis et al., 2004] 



The choice of the strategy depends upon the underlying fault assumption
that is being considered in the development process

The classes of faults that can actually be tolerated depend
- on the fault assumption and 
- on the  independence of the redundancies with respect to the fault 

creation and activation

FMSS, 2019-2020 Dependability: basic concepts and terminology 32

Various strategies for implementing fault tolerance



Fault assumptions play a fundamental role

Fault tolerance applies to all classes of faults

Mechanisms that implements fault tolerance should be protected against

the faults that might affect them

Fault tolerance uses replication for error detection and system recovery

Error detection must be a trustworthy mechanism

Observations

FMSS, 2019-2020 Dependability: basic concepts and terminology 33



Fault tolerance relies on the independency of redundancies with respect to faults

When tolerance to physical faults is foreseen,  the channels may be identical,  
based on the assumption that hardware components fail independently

When tolerance to design faults is foreseen, channels have to provide identical
service through separate designs  and implementation (through design diversity)

Fault masking will conceal a possibly progressive and eventually fatal loss of 
protective redundancy. 

Observations

Practical implementations of masking generally involve error detection (and 
possibly fault handling), leading to masking and error detection and recovery 

FMSS, 2019-2020 Dependability: basic concepts and terminology 34


