
A case study: secure information flow in AUTOSAR models

FMSS 2019-2020 1

Over 80 different embedded processors,
interconnected with each other.

Key ECUs (Electronic Control Unit):
• Engine Control Modul (ECM)
• Electronic Brake Control Module (EBCM)
• Transmission Control Module (TCM)
• Vehicle Vision System (VVS)
• Navigation Control Module (NCM)
• …

Modern automotive electronics systems are real-time embedded system running over networked
Electronic Control Units (ECUs) interconnected by wired networks such as the Controller
AreaNetwork (CAN) or Ethernet.

A case study: secure information flow in AUTOSAR models

Recent research has shown that it is possible for external intruders to
compromise the proper operation of safety functions getting access to
the infotainment system.

FMSS 2019-2020 2

Low criticality
Infotainment system, ..

Automotive systems: Mixed-criticality safety critical systems

High criticality
Braking system, Throttle
system, …

Low security level data must not compromise
the computation of high criticality functions

A case study: secure flow in AUTOSAR models

AUTomotive Open Systems ARchitecture: open industry standard for automotive software
architectures, spanning all levels, from device drivers, to operating system, communication
abstraction layers and the specification of application-level components

FMSS 2019-2020 3

Mixed-criticality

FMSS 2019-2020 4

Autonomous drivingPath Planning, Lane Keeping and
Lane Departure Warning are
active safety functions that
receive such data and send
commands to actuators
(steering, throttle and brakes).

AUTOSAR models are extended with security annotations.

- Throttle component is
assigned the high trust level;

- Throttle request link is
assigned the integrity security
requirement.

Mixed-criticality

FMSS 2019-2020 5

Data received by Throttle on the link Throttle_request must satisfy
integrity security requirement

The point is that:
the way in which security annotations are specified must consider the causal
dependencies between data that traverse the model.

If Throttle requires integrity on its input data sent by Path Planning,
then integrity must be guaranteed also along the path from the data originator
(GPS) to Path Planning (the Vehicle_position link),
otherwise, the security constraint cannot be satisfied and the set of annotations
is not correct.

AUTOSAR security annotations

FMSS 2019-2020 6

The simplest solution assigns integrity to all links
directly or indirectly connected to

Throttle_request.

In order to obtain a more efficient solution,
information flow theory can be exploited

AUTOSAR architecture

FMSS 2019-2020 7

A fundamental concept of AUTOSAR is the separation between:

• application and

• infrastructure.

An application in AUTOSAR consists of Software Components interconnected by connectors

Runnables

FMSS 2019-2020 8

C

• Runnables define the behavior of components

• Runnables are entry points to code-fragments and are
(indirectly) a subject for scheduling by the operating system.

Control flow graph

FMSS 2019-2020 9

runnable1 runnable2

Visual Studio C++
gcc -fdump-tree-cfg

AUTOSAR runnable interaction

Runnable interaction

Global variables

Ports define interaction points between (runnables belonging to)
different SWCs.

For interactions among runnables belonging to the same component

Inter Runnable Variables (IRVs)

The RTE provides protection mechanisms for IRVs (as opposed to
global variables)

FMSS 2019-2020 10

AUTOSAR Secure Flow analysis

FMSS 2019-2020 11

An AUTOSAR model satisfies data secure flow if data sent on a link at run-time,
always have a security requirement not lower than those specified by the security
annotations.

For each link, we compute:

- the security requirement of data sent on the link

The abstract interpreter: EXEC

Each runnable is executed starting from the abstract
memory and the context file, and applying the abstract rules.

All branches of conditional/iterative instructions are
always executed, due to the loss of real data in the
abstract semantics

FMSS 2019-2020 12

Abstract semantics

A PORT is a variable.

RTE function for reading from or writing onto ports are mapped to
read and write of the port variable.
For simplicity, the name of the port variable is equal to the name
of the port.

RTE functions that invoke remote services trigger the runnable that
implements the service. The function implementing the service is
invoked

FMSS 2019-2020 13

Abstract semantics

A POINTER is assumed to be simple variable, that maintains the
dependencies of the pointer, plus the dependencies of the pointed
data in the abstract execution.

An ARRAY is assumed to be a simple variable, that maintains the whole
dependencies of each element in the array.

A STRUCTURED VARIABLE is mapped to a set of simple variables, one
for each member (we use the notation, as usual). If we have a
variable data that is a structure with two fields a and b, we map such
variable into two simple variables, data:a and data:b, respectively.

FMSS 2019-2020 14

Iterative analysis

FMSS 2019-2020 15

Iterative analysis until fixpoint is reached

A: security context
R: set of all runnables

An example: Front Light Manager

FMSS 2019-2020 16

Safety Use Case Example, release 4.2.2. http://www.autosar.org/fileadmin/files/
releases/4-2/software-architecture/safety-and security/auxiliary/
AUTOSAR_EXP_SafetyUseCase.pdf

Front Light Manager

FMSS 2019-2020 17

Security annotations: Daytime_running_lights : High FLM_TO_DRL : integr

Data secure flow
is not satisfied

data sent on the
link FLM_TO_DRL
are not protected
along the path
from the sources to
the destination

An example of component: Front_light_manager

FMSS 2019-2020 18

Information for generating the context

FMSS 2019-2020 19

% global variables
int HR_voltage_threshold1;
int HR_voltage_threshold2;
int DLR_voltage_threshold1;
...
% inter runnable variables
int16_t FLM_IRV1;
int16_t FLM_IRV2;
int16_t DLR_IRV1;
...

% ports
int in1;
int in2;
...
int out1;
int out2;
...
% functions
void flm_Runnable1() 0;
void flm_Runnable2() 0;
.....
% links
out2 -> in7;
out1 -> in6;

Annotated model

FMSS 2019-2020 20

the output port of Front
light manager
connected to the
Daytime_running_lights
(out5 in our
implementation) does
not depend on the
input port connected to
the Headlight request
component (in6 in our
implementation)

Model satisfies Secure flow property

