
Atomic Actions

FMSS 2019-2020

Atomic actions

Basic building blocks in Fault Tolerant distributed systems 2

Atomic action: an action that either is executed in full or has no effects at all

• Atomic actions in distributed systems:

- an action is generally executed at more than one node

- nodes must cooperate to guarantee that

- either the execution of the action completes successfully at each node
or the execution of the action has no effects

• The designer can associate fault tolerance mechanisms with the underlying atomic actions:

- limiting the extent of error propagation when faults occur and

- localizing the subsequent error recovery

An example: Transactions in databases

Basic building blocks in Fault Tolerant distributed systems 3

• Transaction: a sequence of changes to data that move the data base from a
consistent state to another consistent state.

• A transaction is a unit of program execution that accesses and possibly updates
various data items

• Transactions must be atomic:

all changes are executed successfully or data are not updated

Transactions in databases

Basic building blocks in Fault Tolerant distributed systems 4

Transaction T

T can access data at distinct nodes : distributed transaction

Transactions in databases

Basic building blocks in Fault Tolerant distributed systems 5

t: begin transaction
UPDATE account
SET balance=balance + 500

WHERE account_number=45;

UPDATE account
SET balance=balance - 500
WHERE account_number=35;

commit
end transaction

COMMIT
Termination with success of the transaction
All operations are executed and changes to the database are persistent

Transfer of 50 from account A to account B

Transactions in databases

Basic building blocks in Fault Tolerant distributed systems 6

t: begin transaction
UPDATE account
SET balance=balance + 500 WHERE account_number=45;

UPDATE account
SET balance=balance – 500 WHERE account_number=35;

SELECT balance INTO V FROM account WHERE account_number=35;
if V >= 0 then commit else abort;

end transaction

ABORT or ROLLBACK
abort of the transaction
None operation is exected

Transfer of 50 from account A to account B. Abort if balance of A less than 500.

Transactions in databases and failures

Basic building blocks in Fault Tolerant distributed systems 7

1) A failure before the termination of the transaction, results into a rollback (abort)
of the transaction

2) A failure after the termination with success (commit) of the transaction must
have no consequences

Transaction T

Banking application

Basic building blocks in Fault Tolerant distributed systems 8

Account =(account_name, branch_name, balance)

t1: distributed transaction (access data at different sites)

t1: begin transaction

UPDATE account

SET balance=balance + 500

WHERE account_number=45;

UPDATE account

SET balance=balance - 500

WHERE account_number=35;

commit

end transaction

branch1 branch2

t11: UPDATE account
SET balance=balance + 500
WHERE account_number=45;

site1

t12:UPDATE account
SET balance=balance - 500
WHERE account number=35;

site2

t1

Client:
t1

account_number 45
……………..
……………..

account_number 35
……………..
……………..

Each branch responsable
of data on local accounts

Atomicity requirement

Basic building blocks in Fault Tolerant distributed systems 9

• Atomicity requirement
• if the transaction fails after the update of 45 and before the update of 35,

money will be “lost” leading to an inconsistent database state
• the system should ensure that updates of a partially executed transaction are

not reflected in the database

• Atomicity of a transaction:

Commit protocol + Log in stable storage + Recovery algorithm

A programmer assumes atomicity of transactions

A main issue: atomicity in case of failures of various kinds, such as
hardware failures and system crashes

Two-phase commit protocol

Basic building blocks in Fault Tolerant distributed systems 10

Tolerates: loss of messages

crash of nodes

- One transaction manager TM
- Many resource managers RM
- Log file (persistent memory)
- Time-out

Prepare

ReadyPrepare
msg

Ready
msg

TMComplete

Local
decision

Decision
msg

Ack
msg

Global
decision

RM

………………

………………

………………

Uncertain period:
if the transaction manager crash, a participant with Ready

in its log cannot terminate the transaction

Stable storage

Three-phase commit

Basic building blocks in Fault Tolerant distributed systems 11

Prepare CompletePre-commit Global Commit

Local
Commit

Pre
CommitReady

Precommit phase is added. Assume a permanent crash of the coordinator.
A participant can substitute the coordinator to terminate the transaction.

A participant assumes the role of coordinator and decides:

- Global Abort, if the last record in the log Ready
- Global Commit, if the last record in the log is Precommit

Recovery and Atomicity

Basic building blocks in Fault Tolerant distributed systems 12

Physical blocks: blocks residing on the disk.
Buffer blocks: blocks residing temporarily in main memory

Block movements between disk and main memory through the following operations:
- input(B) transfers the physical block B to main memory.
- output(B) transfers the buffer block B to the disk

Transactions
- Each transaction Ti has its private work-area in which local copies of all data items accessed
and updated by it are kept.
-perform read(X) while accessing X for the first time;
-executes write(X) after last access of X.

System can perform the output operation later.
Let BX denote block containing X.

output(BX) need not immediately follow write(X)

Data Access

Basic building blocks in Fault Tolerant distributed systems 13

X

Y

A

B

x1

y1

main memory : buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)
disk

work area
of T1

work area
of T2

transaction
private
memory

x2

From: [Silberschatz et. al,2005]

Physical Blocks

Recovery and Atomicity

• Several output operations may be required for a transaction

• A transaction can be aborted after one of these modifications have been made
permanent (transfer of block to disk)

• A transaction can be committed and a failure of the system can occur before all
the modifications of the transaction are made permanent

• To ensure atomicity despite failures, we first output information describing the
modifications to a Log file in stable storage without modifying the database itself

Log-based recovery

Basic building blocks in Fault Tolerant distributed systems 14

Log file

Records in the log file:

Start: <T1 start>

Update: <T1, C, 700, 600> previous value:700 new value 600

Commit: <T1 commit>

Abort: <T1 abort>

Basic building blocks in Fault Tolerant distributed systems 15

DB Modification: an example

Basic building blocks in Fault Tolerant distributed systems 16

Log Write Output

<T0 start>

<T0 , A, 1000, 950>

A = 950

<To , B, 2000, 2050>

B = 2050

Output(BB)

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

Output(BC)

Transactions executed in sequence

FMSS 2019-2020 17

CRASH
CRASH

CRASH

DB Modification: concurrent transactions

Basic building blocks in Fault Tolerant distributed systems 18

Log Write Output

<T0 start>

<T0 , A, 1000, 950>

A = 950

<To , B, 2000, 2050>

B = 2050

Output(BB)

<T1 start>

<T0 commit>

<T1, C, 700, 600>

C = 600

Output(BC)

CRASH

Recovery actions

- undo (T1) A reset to 950
B reset to 2050

- redo (T0) C is restored to 700

Checkpointing

Basic building blocks in Fault Tolerant distributed systems 19

CK(T1,T2)

Crash

<T1 start>
<T2 start>

<T2 commit> <T3 start>

<T3,…><T1, Z, …><T1,Y, …>

dump

<T2,X, … >

<T1 abort>

<T1, W, …>

CK(T1,T3)

CHECKPOINT operation:
output all modified buffer blocks of committed transactions to the disk
CK(Ti, …, Tk) record in the Log, where Ti, …, Tk are the transactions active

at the checkpoint

Checkpointing

Basic building blocks in Fault Tolerant distributed systems 20

CK(T1,T2)

Crash

<T1 start>
<T2 start>

<T2 commit> <T3 start>

<T3,…><T1, Z, …><T1,Y, …>

dump

<T2,X, … >
<T1 abort>

<T1, W, …>

CK(T1,T3)

To Recover from system failure:
- consult the Log
- redo all transactions in the checkpoint or started after the checkpoint that committed;
- undo all transaction in the checkpoint or started after the checkpoint that are not committed

To recover from disk failure:
- restore database from most recent dump
- apply the Log Recovery

Recovery algorithm

FMSS 2019-2020 21

Redo={} Undo={}

Scan the Log backword until checkpoint:
<T commit> -> add T to Redo
<T start> if T is not in Redo, add T to Undo

For each T acticve at the checkpoint,
if T is not in Redo, add T to Undo

Redo={} Undo={}

Redo={T3} Undo={}

Redo={T3} Undo={T1, T2}

Log file

FMSS 2019-2020 22

Log file in a stable storage

Moreover:
before the commit of a transaction,

save the block of the Log file contaning the records of the transaction on disk

before updating the database,
save the block of the Log file containing the update record on disk

It is always possible to execute Undo and it is always possible to execute Redo
of a transaction if needed

Atomic actions

Advantages of atomic actions:

a designer can reason about system design as

1) no failure happened in the middle of a atomic action

2) separate atomic actions access to consistent data
(property called “serializability”, concurrency control).

Basic building blocks in Fault Tolerant distributed systems 23

