
J Comput Virol Hack Tech manuscript No.
(will be inserted by the editor)

Verifying data secure flow in AUTOSAR models by static
analysis

Received: date / Accepted: date

Abstract This paper presents an approach for enhanc-

ing the design phase of AUTOSAR models when secu-

rity annotations are required. The approach is based on

information flow analysis and abstract interpretation.

The analysis evaluates the correctness of the model by

assessing if the flow of data is secure with respect to

causal dependencies within the model. To find these

dependencies an exhaustive search through the model

is required. Abstract interpretation is used as a trade-

off between precision and complexity of the analysis.

The approach also supports designers in providing an-

notated models where the security of data flow has a

low impact on the performance of the model.

Keywords AUTOSAR · Security · Information flow ·
Static analysis

1 Introduction

Modern automotive electronics systems are real-time

embedded system running over networked Electronic

Control Units (ECU) interconnected by wired networks

such as the Controller Area Network (CAN) or Ether-

net. Moreover, wireless connectivity is increasingly used

for additional flexibility and bandwidth for features like

key-less entry, diagnostic, and entertainment. This in-

creased connectivity leads to an increasing number of

potential cyber-security threats. Security in automo-

tive is therefore becoming increasingly important and

should be taken into account from the early stages of

software development.

As part of recent extensions and developments, AU-

TOSAR [2], the reference standard for designing au-

tomotive systems, now offers a set of security-related

services, which provides security functions such as en-

cryption, integrity and authentication of messages ex-

changed over the car networks. However, AUTOSAR

does not provide any means to specify security require-

ments at the level of application components, but rather

requires the application developers to directly use the

standard security services. This is somewhat in viola-

tion of the established AUTOSAR methodology that

relies on code generation from high level specifications

for all the communications and scheduling features.

To overcome this limitation, the work [13] extends

AUTOSAR models with a set of security annotations

that are assigned to system components and commu-

nication links between components at application level.

Annotations specify the integrity and confidentiality re-

quirements on a link, and the level of trust we have to

place in components to provide the expected function,

or service. The work [14] presents code generation fea-

tures to automatically synthesise the right services to

achieve secure communications exploiting the security

annotations.

However, the way in which security annotations are

specified must consider the causal dependencies between

data that traverse the model. For example, let us con-

sider a Brake component which receives data originated

by sensors (e.g., radars and cameras), and pre-processed

by an Object Detection component. If Brake requires

integrity on its input data, then integrity must be guar-

anteed also along the path from the data originators to

Brake, including communications between sensors and

Object Detection component, otherwise, the security

constraint cannot be satisfied and the set of annota-

tions is not correct.

AUTOSAR provides information of which functional

entity (runnable) reads from or writes onto ports of

components, but using this information for deriving the

2

causality between data and for assigning correctly the

annotations demands a huge utilisation of security op-

erations thus introducing performance penalties. This

issue is particularly critical in the automotive domain

where software components run on a resource-limited

computer network and have real-time constraints.

This work deals with the problem of correctly as-

signing the security annotations.

As a first contribution, a security formal property of

AUTOSAR models, named Data secure flow is defined,

and a method to formally prove such property is pro-

vided. Data secure flow property guarantees that, con-

sidering data causalities, the security annotations writ-

ten in the model at design time are correct.

As a further contribution, this work provides a method

to discover data dependencies with a finer level of gran-

ularity with respect to the information already provided

by AUTOSAR. The analysis of data dependencies is

based on abstract interpretation [16], a static analysis

technique for the automatic extraction of information

about the possible executions of programs.

As last contribution, data dependencies can also be ex-

ploited to strategically annotate an AUTOSAR model

with the levels necessary to fulfil the data secure flow

property, thus limiting the usage of security services.

One of the advantages of our approach is that, being

based on abstract interpretation, the analysis can be

fully automated. Moreover, the analysis scales up, since

runnables of AUTOSAR software components are anal-

ysed separately. A tool has been developed that sup-

ports the analysis.

The paper is organised as follows. Section 2 reports

on related work. Section 3 introduces the background

on AUTOSAR models and information flow analysis.

Section 4 provides a comprehensive description of the

proposed approach. Section 5 describes the implemen-

tation of the method, and provides information on the

developed tool. Section 6 shows the application of the

approach to a case study.

2 Related work

This section reports on the research works about auto-

motive security issues and information flow analysis.

2.1 Security

Recent research has shown that it is possible for exter-

nal intruders to intentionally compromise the proper

operation and functionality of modern automotive elec-

tronics systems. In [22], it has been demonstrated that

if an adversary were able to communicate on one or

more of a car internal network buses, then this capa-

bility could be sufficient to maliciously control critical

components across the entire car.

The work [15] demonstrated that external attacks

are indeed feasible and categorised external attack vec-

tors as a function of the attacker ability to deliver ma-

licious input via particular modes: indirect physical ac-

cess, short-range wireless access, and long-range wire-

less access. Further remote attacks have been recently

demonstrated in [36].

Security has been taken into account in the early

phases of the development cycle of automotive electron-

ics systems, both by enforcing software programming

standards that prevent software defects that may enable

cyber-attacks [15], as well as by implementing security

mechanisms for secure communication [24,25], includ-

ing software delivery, installation and flashing [1,34].

Factors like Required Resources and Required Know-

How have been considered in the SAHARA (Security-

Aware Hazard Analysis and Risk Assessment) method

for defining threats criticality [27].

In [13,14] a set of modelling extensions to address

AUTOSAR cyber-security requirements at design stage

has been defined. Security requirements are realised as

stereotypes extending the AUTOSAR implementation

provided by the IBM Rhapsody tool [18]. A similar

approach has been used in SecureUML to model sys-

tems with role-based access control policies [26], and in

umlsec to specify confidentiality properties of message

communication [19]. Concepts and mechanisms that al-

low us to model confidentiality and authentication re-

quirements at a higher abstraction level have been pro-

posed in [31].

2.2 Data flow

Data flow in AUTOSAR models is analysed in the ap-

plication configuration phase, where runnables must be

grouped into tasks. Tasks are the unit of scheduling

of the AUTOSAR operating system and they are exe-

cuted in sequence. If a runnable reads data produced by

another runnable, the first runnable cannot start until

the second runnable finishes. The dependencies among

runnables are computed by assuming that any commu-

nication implemented between two runnables represents

a dependency [20].

The dependencies among runnables enable a cor-

rect parallel execution of runnables, so they must be re-

spected also in the migration from single core to multi-

core architectures [29], [20]. In [21] a tool for support-

ing parallel execution is developed. The tool executes

data dependency analysis directly on AUTOSAR mod-

Data secure flow in AUTOSAR 3

els to detect critical dependencies. The static data de-

pendency analysis approach is defined in [30].

All approaches above apply data-flow analysis to ob-

tain the dependencies among runnables for identifying

a proper execution order of runnables. The dependen-

cies are computed by considering their accessed data.

If any execution path of a runnable receives data on a

port, the runnable depends on the runnable that sent

such data.

In our work, the result of a data flow analysis, is

the basis for checking the secure data flow in security

annotated AUTOSAR models. For what concerns the

data flow analysis, our approach differs from those men-

tioned above because we find dependencies at a finer

granularity level: our iterative data flow analysis com-

putes dependencies among data read from or written

onto ports of the whole AUTOSAR model. Data secure

flow property is computed by an algorithm that ab-

stracts from data and considers only the security level

of the data. The abstract interpretation approach has

been used for both the implementation of the data-flow

analysis and the checking of secure flow property.

2.3 Secure flow

Data flow analysis is the basis for secure information

flow in programs. The secure flow property in programs

was first formulated in [11]. Successively, in [17], pro-

gram certification was addressed, which statically checks

secure information flow by inspecting the dependen-

cies among variables in the program. Works on static

analysis techniques for information flow security in pro-

grams can be divided into type-based approaches and

semantic-based approaches. In type-based approaches

the security of a variables belongs to its type and se-

cure information flow is checked by type systems [35,

12]. An approach has been presented in [37] based on

a continuation passing style translation of programs

(continuations are used to handle implicit flows), while

the work [9] handles secure information flow in object

oriented languages. In semantic-based approaches, ab-

stract interpretation is applied. For example, the work

[28] presents a method based on denotational semantics,

while the works [10] [8] are based on the operational se-

mantics. In [23] an approach is presented based on ax-

iomatic semantics, while the work [33] defines a method

based on partial equivalence relations. The reader can

refer to [32] for a survey.

The approach proposed in this paper relies on ab-

stract interpretation of the operational semantics. The

analysis is based on a transition system and thus has

the advantage of being fully automatic. Our work dif-

fers from previous work because in AUTOSAR, we have

both a set of component based modelling constructs,

and a programming language used to describe the be-

haviour of runnable entities. Moreover, with respect to

[10], data types and functions are included in the anal-

ysis.

3 Basic Concepts

This section provides an introduction to AUTOSAR

and some basic knowledge about information flow anal-

ysis.

3.1 AUTOSAR

AUTOSAR is an open industry standard for automo-

tive software architecture, founded in 2003 and devel-

oped by a partnership of automotive Original Equip-

ment Manufacturers (OEMs), suppliers and tool ven-

dors [2]. AUTOSAR provides both a standard language

for the description of application components and their

interfaces, and a methodology for the development pro-

cess. A fundamental concept in AUTOSAR is the sepa-

ration between application and infrastructure, see Fig-

ure 1. In particular, AUTOSAR defines a three-layered

architecture consisting of:

– Application layer

– Runtime Environment (RTE) layer

– Basic Software (BSW) layer

The Application Layer contains the Software Com-

ponents (SWCs) developed for the automotive system

functions by suppliers. The RTE layer is a middleware
layer, automatically generated by tools and providing

a communication abstraction for software components.

Finally, the BSW layer provides basic services and ba-

sic software modules to software components. Within

the BSW layer, AUTOSAR makes security mechanisms

available to the developers in three different modules:

a) the Secure On-board Communication (SecOC) mod-

ule [7], which routes IPDUs (Interaction layer Protocol

Data Units) with security requirements; b) the Crypto

Abstraction Library (CAL) [5], which implements a li-

brary of cryptographic functions; and, finally, c) the

Crypto Service Manager (CSM) [6], which provides soft-

ware components with cryptographic functions imple-

mented in software or hardware.

The application SWCs communicate using ports

that express client-server relationships or sender-

receiver data interactions. The development of the

SWCs relies on the RTE specified by AUTOSAR to

deliver the conceptual foundation for the communica-

tion of SWCs with each other and the use of BSW

4

Fig. 1 AUTOSAR architecture.

services. The internal behaviour of SWCs consists of

runnables or functional units, represented by a func-

tion entry point. Each runnable indicates the port it

uses. Runnables internal to a SWC can communicate

also through global variables and inter-runnable vari-

ables.

An example is shown in Figure 2. Runnable1a of

SWC1 communicates with Runnable2a of SWC2

through sender-receiver ports; Runnable1c of SWC1

communicates with Runnable1a of the same SWC

through an inter-runnable variable. Moreover,

Runnable2c of SWC2 communicates with Runnable1d

of SWC1 through a client-server port.

In [13], AUTOSAR models are extended with secu-

rity annotations. In short, two modelling extensions are

introduced:

– the trust level of a software component, or of a port

– the security requirement of a communication link

A software component (or a port) may be associated

with a trust level which specifies to what extent it can

be trusted to provide the expected function, or service,

with respect to attacks targeting the component itself.

Without loss of generality, we assume two trust levels:

high and low.

A communication link may be associated with a se-

curity requirement which represents the level of security

of data sent on the link must satisfy. The security re-

quirement can take one of the following values: none,

conf, integr, both, which, respectively, codify no secu-

rity, confidentiality, integrity and, both confidentiality

and integrity. During the design phase of the automo-

tive system, designers can assign these annotations to

components and links according to their knowledge of

the system.

As an example, let us consider the annotated AU-
TOSAR model shown in Figure 3. The example repre-

sents a typical active safety application that makes use

of information coming from sensory input devices (e.g.,

lidars, radars, cameras, and GPS) in order to sense the

surrounding environment and detect road marks and

objects (e.g., vehicles, pedestrians) on and around the

street. These information items are forwarded to sev-

eral navigation and active safety functions, including,

for example, Path planning, Lane keeping and Lane De-

parture warning, which produce commands for the ac-

tuation systems (steering, throttle and brakes).

PathPlanning software component and port p of the

Throttle software component are assigned high trust

level, while the other elements are assigned low. Throt-

tle request link is annotated with data integrity security

requirement (integr), while the other communication

links have no security requirements (none). Therefore,

according to annotations, data input to the Throttle

component at port p, on the Throttle request link, must

Data secure flow in AUTOSAR 5

Fig. 2 An example of AUTOSAR application model.

have a high trust level and integrity security require-

ment (integr).

3.2 Secure information flow

In this section we briefly recall basic concepts of secure

information flow in a program [17].

A program, with variables partitioned into two dis-

joint sets of high and low security, has secure informa-

tion flow if observations of the final value of the low

security variables do not reveal any information about

the initial values of the high security ones.

Assume y is a high security variable and x a low se-

curity one. Examples of violation of secure information

flow are:

– x := y;

– if (y = 0) then x else x := 1;

In both cases, checking the final value of the low

security variable x reveals information on the value of

the higher security variable y. In the first case, there is

an explicit information flow from y to x (variable x is

assigned the value of y). In the second case there is an

implicit information flow from y to x, since variable x is

assigned different values depending on the value of the

condition of the control instruction if, that depends on

variable y.

A conditional instruction in a program causes the

beginning of an implicit flow. The implicit flow begins

when the conditional instruction starts (we say that we

have an opened implicit flow); all the instructions in the

scope of the if depends on the level of the condition

of the if. In case of nested conditional instructions,

we have the dependency from all the conditions of the

opened implicit flows.

Information flow occurs also through global vari-

ables and function calls in the program. Finally, when

a function call is executed in the scope of a conditional

instruction, the function is executed under the implicit

flow. For example,

– if (y < 0) then f();

Function f() is invoked depending on the value of

variable y. Instructions in the code of f() are executed

only if the value of variable y is less than 0. Instruc-

tions of f() are executed under the implicit flow of the

condition of the if statement.

The analysis of secure information flow can be ex-

ecuted using an abstract interpretation approach [16]

based on the operational semantics of the language [10].

In this case

– the standard operational semantics of the program-

ming language is enhanced to include information

on security level of values.

– abstract domains are identified and abstract seman-

tics rules are defined that execute the program on

abstract domains that contain only security levels.

– the abstract rules compute the flow of information

in the program.

In the following, the basic concepts of the analysis

are shown.

A program is a sequence of instructions

q = q0q1 · · · qn. Let m be a memory that contains all the

variables accessed by the program. The execution of the

program is a transition system obtained by executing

q starting from the initial memory m, by applying the

rules of the operational semantics of the language.

6

Fig. 3 An example of security annotated model in Rhapsody.

The semantics is expressed by inference rules in the

form
A

C
where A is the antecedent and C is the

consequent. The intuitive interpretation of a rule is that

the consequent can be inferred from the antecedent.

Given a pair 〈qi,m〉 of an instruction qi and a mem-

ory m, −→ represents the execution of qi in m. The

rule for a simple expression consisting of a variable x is:

Expr 〈x,m〉 −→ m(x)

An empty antecedent corresponds to the boolean

value true. It is always true (antecedent) that the eval-

uation of the expression x is the value of x in m (con-

sequent). The rule for the assignment is :

Ass
〈e,m〉 −→ k

〈x :=e,m〉 −→ m[k/x]

If the evaluation of the expression e in memory m

is k (antecedent), then the execution of x:=e changes

memory m, by assigning value k to variable x (con-

sequent). We assume m[k/x] is a memory equal to m

except for the variable x that is assigned k.

The operational semantics of the language is ex-

tended to convey the security level of data during the

execution. We added two elements to the execution:

– annotated values. Each value is annotated with a

security level τ , which considers the security level

of all data on which the value depends.

Data become pairs (k, τ), where k is the value and

τ is the security level.

– execution environment. Each instruction qi is exe-

cuted under an environment σ that represents the

level of the implicit flows caused by conditional in-

structions. For example, the level of a variable is

given by the highest level between the level of the

data in the variable and the level of the environment

in which the instruction is executed.

We use the pair 〈m̂, Env〉 to represents the memory

defined on extended values (m̂) and the execution envi-

ronment (Env). The inference rules above become the

following:

Expr
m̂(x) = (k, τ)

〈x, (m̂, σ)〉 −→ (k, σ ∪ τ)

The notation 〈x, (m̂, σ)〉 represents the evaluation

of variable x in memory m̂ under the environmnt σ.

Ass
〈e, (m̂, σ)〉 −→ (k, τ ′)

〈x:=e, (m̂, σ)〉 −→ m̂[(k, τ ′)/x]

The notation 〈e, (m̂, σ)〉 represents the evaluation of

expression e in memory m̂ under the environmnt σ.

If the level of the expression e is (k, τ ′) (antecedent),

then the assignment updates the memory m̂ assigning

(k, τ ′) to variable x (consequent).

The abstract semantics abstracts from actual values

and maintains only dependency levels. Let M be the

abstract memory.

Data secure flow in AUTOSAR 7

The inference rules above become:

Expr
M(x) = τ

〈x, (M,σ)〉 −→ σ ∪ τ

Ass
〈e, (M,σ)〉 −→ τ ′

〈x:=e, (M,σ)〉 −→ M [τ ′/x]

A program is executed on the abstract domain start-

ing from the abstract initial memory, and applying the

abstract rules. In the abstract execution, all branches of

conditional/iterative instructions are always executed,

due to the loss of real data in the abstract semantics.

Then the execution of the program with the abstract

semantics captures all information flows.

4 Proposed approach

This section contains a general overview of the proposed

approach, followed by the formal definition of data se-

cure flow property along with an algorithm for its veri-

fication. Finally, dependencies between data read from

or written onto ports of SWCs in AUTOSAR are anal-

ysed.

4.1 Overview

In the analysis, all the data is assigned a pair

〈trust level, security requirement〉
that characterises its degree of security. As data flow

through the components and the communication links,

its degree of security is updated with the less secure

annotation encountered.

Given an AUTOSAR model, secure flow is verified if

the degree of security of data sent on a link has no lower

trust level and no lower security requirement

than those assigned by the designer through the secu-

rity annotations.

Informally, an AUTOSAR model satisfies data se-

cure flow if for each link l = (pi, pj)

– the trust level of data sent on link l is not lower than

the trust level assigned to port pj ;

– the security requirement of data sent on link l is not

lower than the security requirement assigned to l .

Let us consider the AUTOSAR model shown in Fig-

ure 3. The model is correct if data sent on the Throt-

tle request link have a trust level greater or equal than

high, because the port p on Throttle has been assigned

high.

Using the information in AUTOSAR (for simplic-

ity, assume components are implemented with only one

runnable each), data sent by PathPlanning depend on

all its input data. The trust level of data sent on Throt-

tle request link is the lowest level of the traversed com-

ponents (Camera, Lidar, Radar, GPS, etc.), low in this

case. The model is not correct, and to satisfy secure

flow, all these components must be assigned high. How-

ever, this set of high trust level components can be

oversized, because it does not rely on real dependen-

cies. Assume the case in which the real dependencies

for output data of PathPlanning are known (dotted

lines internal to the component in the figure). Since

data sent on Throttle request ultimately depends only

on data produced by GPS, secure flow is verified by

simply assigning high trust level to GPS. The result-

ing set of high trust level components is smaller than

the previous one, thus reducing the overhead caused by

security operations.

Similar reasoning applies to links. With reference

to Figure 3, data on the Throttle request link must

have integrity security requirement (integr). Using the

information in AUTOSAR, the data sent on Throt-

tle request link depends on data at the input ports of

the component PathPlanning, thus in order to satisfy

secure flow all the involved links must guarantee in-

tegrity. Using the real dependencies, it is sufficient that

the Vehicle position communication link is assigned in-

tegr security requirement.

The exact information on data dependencies requires

to know the code of runnables, and runnables must be

executed on every possible input data. This work pro-

poses a solution based on a trade-off between the preci-

sion of the analysis and its complexity. An approxima-

tion of the real data dependency is computed using an

abstract interpretation approach, that statically com-

putes dependencies by abstracting from real values and

considering only dependency levels.

4.2 Data secure flow property

Given an AUTOSAR model, we use the following no-

tations and definitions:

– C = {c1, c2, · · · , ck} is the set of SWCs.

– R is the set of all runnables.

– V IR is the set of inter-runnable variables, V G is the

set of global variables of SWCs.

– P = {p1, · · · , pn} is the set of ports of SWCs.

– L = {l1, · · · , lm} is the set of links. A link denotes a

connection between two ports. The link l = (pi, pj)

connects the port pi to the port pj , with pi output

port of the sender SWC and pj input port of the

receiver SWC.

– cmp(p) is the component to which port p belongs.

8

– trustlevel(c) is the trust level assigned to software

component c.

– trustlevel(c, p) is the trust level assigned to port

p of software component c.

– securityreq(l) is the security requirement assigned

to link l.

– Deps(p) is the set of ports on which the data written

onto port p depends.

Let us introduce the following definitions.

Definition 1 (lattice) Let A be a set and @ an order

relation on A. The pair (A,@) is a lattice if every pair

of elements in A has both a greatest lower bound (glb)

and a least upper bound (lub).

Definition 2 (trust level) Let A = {low, high} be

the set of trust levels, ordered by low @ high, where @
is the lower between levels. (A,@) is a lattice. We have

that glb(low, high) = low and lub(low, high) = high.

Definition 3 (security requirement) Let

B = {conf, integr, both, none} be the set of secu-

rity requirements of links, partially ordered by the @,

with none @ conf @ both and none @ integr @ both.

(B,@) is a lattice. We have that conf and integr

are not ordered with respect to each other, because

one is not ”lower in security degree” than the other,

glb(integr, conf) = none and lub(integr, conf) = both.

Definition 4 (Data secure flow property) Given

an AUTOSAR model with security annotations, the

model satisfies the data secure flow property if for each

link l = (pi, pj) ∈ L:

δl 6@ trustlevel(c, pj) ∧ µl 6@ securityreq(l)

where c = cmp(pj) and, δl and µl are the lowest trust

level and the lowest security requirement of data sent

onto link l .

In the analysis, we compute the lowest trust level

and the lowest security requirement of data sent onto

a link l (〈trust level, security requirement〉), with

the algorithm shown in Listing 1. The algorithm records

in δl and µl such levels (〈δl, µl〉).

Assume l = (pi, pj). Data sent to the link are data

written onto port pi.

First the algorithm sets δl equal to the greatest trust

level and µl equal to the greatest security requirement.

Then for each port p on which data sent on the link l

depends (p ∈ Deps(pi)) , δl is updated to consider the

trust level of the port p: the trust level δl is set equal

to the greatest lower bound between the current value

and the trust level of the SWC to which port p belongs.

Finally, for each link l′ traversed by data sent on link l

(source and destination ports of l′ belong to Deps(pi)),

µl is set equal to the greatest lower bound between the

current value and the security requirement of the link

l′. Note that, at each step δl and µl can only be down-

graded.

Given a link l = (pi, pj) ∈ L,

1. 〈δl, µl〉 = 〈high, both〉
2. ∀p ∈ Deps(pi):

δl = glb(δl, trustlevel(cmp(p)))
3. ∀l′ = (q, q′) | q, q′ ∈ Deps(p):

µl = glb(µl, securityreq(l
′))

Listing 1 Algorithm for data security of link l.

The fulfilment of data secure flow property is highly

dependent on function Deps. For example by choosing

an approach based on the information already provided

by AUTOSAR, we overestimate the set of dependen-

cies, leading to the need of more security operations.

By using an approach that analyses the runnable enti-

ties we can implement a Deps function that retrieves

the minimal set of dependencies.

4.3 Dependencies between data in AUTOSAR

In the following we define Deps used in our approach.

Let us consider an AUTOSAR model. Data written

at port pj does not depend on a data read from port

pi (pj does not depend on pi for short) if, changing

the data at pi, the data written onto pj are always the

same. We formally define port dependencies as follows.

Definition 5 (Port dependencies) Given a model,

let pj(p1, · · · , pi−1, v, pi+1, · · · , pn) be the data written

onto port pj when v is read from input port pi. A port

pj does not depend on the port pi if:

for each possible execution, for each pair of data v1, v2
at pi, with v1 6= v2, it is:

pj(p1, · · · , pi−1, v1, pi+1, · · · , pn) =

pj(p1, · · · , pi−1, v2, pi+1, · · · , pn)

Dependencies between data are computed by apply-

ing an abstract interpretation approach, similar to the

one described in Section 3. The difference is that in our

work the abstract domain consists of dependency levels

instead of security levels.

4.3.1 Dependency levels.

In the analysis we define the set of data dependency

levels Σ as the power-set of P : Σ = 2P , i.e. the set

Data secure flow in AUTOSAR 9

of all subsets of P , ordered by subset inclusion. The

set Σ with the ordering relation ⊆ is a lattice (Σ,⊆)

(i.e., every pair of elements of Σ has both a greatest

lower bound, glb, and a least upper bound, lub). The

lub is given by the union (∪) and the glb is given by

the intersection of subsets (∩). Given X ⊆ Y , X ∪Y =

Y and X ∩ Y = X. The singleton set {pi}, (pi for

short) denotes a dependency from input port pi. The

set {pi, pj} denotes dependency on both ports pi and

pj . The minimum of Σ is the empty set ∅, the maximum

is {p1, p2, · · · , pn}(P for short).

We extend an AUTOSAR model with the lattice of

dependency levels (Σ,⊆).

4.3.2 Analysis of an AUTOSAR model

Let us now consider the analysis of an AUTOSAR

model. The basic idea consists in modelling ports as

variables, and runnables as functions.

In particular,

– for sender-receiver data communications, reading a

data from a port is equivalent to reading a variable;

writing a data onto a port is equivalent to writing

a variable.

– for client-server communications, the client request

is equivalent to a function call, that corresponds to

the invocation of the runnable implementing the re-

quested service.

Runnables are functions, with arguments (passed by

value or by reference) and return. In addition to the

local memory, runnables have access to a global mem-

ory that maintains inter-runnable variables, global vari-

ables of SWCs, and communication ports. We call the

set of these elements global context. In particular, in

the analysis, runnables are executed in a global context

A and in a local context 〈M,Env〉, which consists of a

local memory M and an execution environment Env,

see Subsection 2.3.

Since runnables are Misra-C [3] compliant, we need

to deal with pointers, structures and arrays. In partic-

ular:

– a pointer is assumed to be simple variable, that

maintains the dependencies of the pointer, plus the

dependencies of the pointed data in the abstract ex-

ecution.

– a structured variable is mapped to a set of simple

variables, one for each member (we use the · nota-

tion, as usual). If we have a variable data that is a

structure with two fields a and b, we map such vari-

able into two simple variables, named data.a and

data.b, respectively.

– An array is assumed to be a simple variable, that

maintains the whole dependencies of each element

in the array.

A := A∅

T := R
while(T 6= ∅)

select r ∈ T
T := T − {r}
A′ := EXEC(r, A)
if(A′ 6= A)

A := A′

T := R

Listing 2 Analysis of an AUTOSAR model

The analysis of an AUTOSAR model is based on an

iterative process that performs the abstract execution

of all runnables in R, using the global context file. If

during the analysis a level in the global context file

changes, all runnables must be re-executed.

The main steps of the iterative analysis are shown

in Listing 2, where A0 is the initial global context file.

The analysis uses the abstract interpreter EXEC to

analyses a single runnable. EXEC performs an abstract

execution of the runnable starting from a global context

file A and producing a new global context file A′.

The analysis terminates when, starting from a global

context file, all runnables are executed and the global

context is not changed.

At the end of the analysis the global context file

records the dependencies for ports of all the SWCs. The

approach is conservative, in the sense that all possible

dependencies for any real execution of the runnables

are detected. False dependencies are possible, since, for

example, in the abstract analysis all branches of con-

trol instructions are executed, even those that in real

execution would have never been executed.

5 Implementation

This section provides the practical methods used to im-

plement the analysis depicted in the previous section.

The focuses are the resolution of RTE calls, global and

local contexts management and abstract execution of

runnables.This section also provides an example to bet-

ter clarify the analysis. Finally this section provides de-

tails on the architecture of the tool implemented.

10

5.1 Calls to RTE functions

In the following it is shown how to deal with calls to

RTE functions in the runnable code, through a few ex-

emplary cases.

– Data communication ports

RTE function for reading from or writing onto ports

are mapped to read and write of the port variable.

For simplicity, the name of the port variable is the

same name of the port.

The ReturnType Rte Write Port o(data) func-

tion, where data is the function’s argument and o

is the port, is implemented as the assignment o =

data.

The ReturnType Rte Read Port o() function, that

returns the data read from port o, is implemented

as the expression o.

– Service ports

RTE functions that invoke remote services trigger

the runnable that implements the service. The func-

tion implementing the service is invoked.

The function ReturnType Rte Call Port o(data),

where o is the service (runnable) within the client-

server interface and data are the arguments of o, is

implemented as o(data).

5.2 Global Context and local context

The global context records information on variables in

the global memory of SWCs, communication ports of

SWCs and runnable calls.

The global context file maintains:

– for each variable v ∈ IRV ∪GV ∪P , the entry v : τ ,

where τ ∈ Σ is the dependency level of v;

– for each runnable r ∈ R, the entry r(τ1, ..., τk)τ ;σ,

where τ1, ..., τk are the levels for the actual param-

eter, τ is the level for the return and σ is the level

of the environment under which the runnable is ex-

ecuted (calling environment).

During the analysis, for each variable, the global

context maintains the maximum dependency level of

data recorded in the variable and, for each runnable,

the global context maintains the maximum level of the

arguments, the maximum level of the return and the

maximum level of the environment, by considering all

the possible invocations. On the other hand, the local

context of the runnable is the pair (M,Env). The local

memory M contains local variables (including variables

modelling arguments passed by value), and the environ-

ment Env which is the level of the implicit flow caused

by conditional instructions. The return of a runnable

and runnable’s arguments passed by reference are han-

dled as global variables.

At the beginning of the analysis, the global context

A is initialised as follows:

– each port variable pi depends only on itself, and so

it initialised to the level {pi} ∈ Σ.

– all other variables are initially assigned the lowest

level (∅).
– runnables are initially assigned ∅ for calling environ-

ment, parameters and return.

For the local context, the local memory M is ini-

tialised as follows:

– local variables are initialised to ∅ .

– variables corresponding to arguments passed by val-

ues are initialised with the level of the argument in

the local context.

The execution environment Env is initialised with

the level of the calling environment of the runnable en-

try in the global context file.

Listing 3 shows an example of the general structure

of a global context file. In the example, runnable run1()

has one argument passed by value, and one argument

passed by reference (denoted by arg& hereinafter).

The global context is used to take into account

the interactions between runnables. Any update to

the global context is permanent, and visible to other

runnables. The local context of a runnable is deallo-

cated when the analysis of the runnable terminates.

5.3 Abstract execution of a runnable

A runnable is executed by an abstract interpreter EXEC

which takes as input the CFG of the runnable. In the

CFG the instructions are grouped in Basic Blocks (bb).

Each type of instruction is assigned an abstract ex-

ecution rule. The abstract execution of an instruction,

updates the local context (M,Env), and the global con-

text A. EXEC examines one bb at a time and abstractly

executes each instruction of the block, and propagates

the updates ((M,Env) and A after the execution of

the instructions) to successors blocks. Instructions in

the scope of conditional block, are executed under the

implicit flow of the condition of the control instruction

in the conditional block. The set of abstract rules is

shown in Appendix A.

Data secure flow in AUTOSAR 11

% Begin Global Context
% g l o b a l v a r i a b l e s o f SWCs
gv1 = {}
gv2 = {}
.

% IRV of SWCs
i r v 1 = {}
i r v 2 = {}
.

% por t s o f SWCs
p1 = {p1}
p2 = {p2}
. . . .

% runnables o f SWCs
run (a ,{}) {} ; {}
run1 ((b , {}) , (c&, {})) {} ; {}
run2 () {} ; {}

.
%End Global Context

Listing 3 An example of initial global context.

Examples of CFGs are shown in Figure 4 and Fig-

ure 5. In the first case there is an if instruction, while

the second shows an example of a while instruction.

int runnable1 (int a) {

if (a>200) a = a/2;

else a= a+5;

return a;

}

int runnable2 (int a) {

while (a>200)

a = a -10;

return a;

}

Listing 4 Code of runnables.

In Figure 4 blocks in the scope of the if statement

(block 2), are blocks 3 and 4 (which are the successors

of block 2).

In Figure 5, we note that the while statement is

translated into a repeated if instruction (block 4). In

this case only one of the successors of the conditional

block (block 3) is in the scope of the if.

EXEC iteratively performs the abstract execution

of the runnable starting from an initial local context

〈M,Env〉 and an initial global context A until a fixpoint

is reached (i.e., during an iteration 〈M,Env〉 and A are

updated, and the analysis terminates when the local

and global context at the beginning and at the end

of the iteration are the same). The ordering in which

blocks are executed is not important, because if the A

or 〈M,Env〉 change, all blocks are re-executed.

Fig. 4 CFG of runnable1 with if.

Fig. 5 CFG of runnable2 with while.

12

EXEC uses a table Q that implements the local con-

text of a runnable (local memory M plus calling envi-

ronment Env). Q consists of a row Qi for each bb i in

the CFG.

If Qi = 〈M,σ〉, we have that M contains the level of

the local variables when block i is executed, and σ is the

level of the environment in which block i is executed.

Qi is named before-state of block i.

The execution of the instructions of block i starts

from the before-state of i. The execution of the instruc-

tions generates a new state 〈M ′, Env′〉, named after-

state of block i. The after-state is obtained as the result

of the abstract execution of each instruction, according

to the abstract rules in Appendix A.

After the execution of all instructions of block i, the

content of the memory M ′ in the after-state is propa-

gated to successors of i. For each successor j, the before-

state of j (row Qj in the table) is updated by executing

the lub operation between the memory of the after-state

of block i with the memory of Qj .

We naturally extend the lub operation to memories.

This corresponds to the least upper bound executed

point-wise on each variable in the memory:

lub(M,M ′) : ∀var,M(var) = M(var) ∪M ′(var).
Qentry and Qexit represent the entry and the exit block

of the runnable, respectively.

A table T summarises information on bbs of the

runnable. Column Code contains the code of the bb,

column Succ. enumerates the successors of the bb and

column Scope reports the blocks in scope of bb. Table

1 shows T for runnable2 in Figure 5.

The set of abstract rules is shown in Appendix A.

5.4 An example

Let us consider runnable2 in Figure 5. Assume the fol-

lowing portion of global context:

% Begin Global Context

....

runnable2((a, {p2})) 0 : {p1}

...

% End Global Context

The initial local context Q is shown in Table 2. The

environment of each row is initialised with the value

of the calling environment in the global context file

({p1}). The memory of Qentry is computed as follows:

local variables are all assigned the minimum level (∅),
except the variable corresponding to the argument a

which assumes the value present in the global context

file ({p2}). All the variables in the memory of other

blocks are assigned the minimum level ∅.

Table 1 Table T of runnable2.

Block Code Succ. Scope
Qentry 2
Q2 goto bb4; 4
Q3 a = a-10; 4
Q4 if (a > 200) goto bb3 3, 5 3

else goto bb5
Q5 d = a 6
Q6 return d exit
Qexit

Table 2 Initial local context Q of runnable2.

Block Memory Env
Qentry (a, p2) (d, ∅) p1
Q2 (a, ∅) (d, ∅) p1
Q3 (a, ∅) (d, ∅) p1
Q4 (a, ∅) (d, ∅) p1
Q5 (a, ∅) (d, ∅) p1
Q6 (a, ∅) (d, ∅) p1
Qexit (a, ∅) (d, ∅) p1

In the following, MQi is the memory of the before-

state of Qi and M ′Qi
denotes the memory of the after-

state of Qi.

Let blocks be scheduled in ascending order of i.

– Block entry simply initialises the memory of its suc-

cessor (block 2) MQ2
= ((a, p2)(d, ∅)).

– Block 2 is executed. The rule for goto does not

change the memory, so M ′Q2
= MQ2 . Block 2 prop-

agates the after-state to its successor (block 4):

MQ4
= lub(MQ4

,M ′Q2
) = ((a, p2)(d, ∅)).

– When block 3 is executed, the rule of the assignment

is applied. The lub between the environment (p1)

and the level of a in M (that is ∅) is computed and

assigned to a. M ′Q3
= ((a, {p1})(d, ∅)). The memory

of the successor blocks is updated:

MQ4
= lub(MQ4

,M ′Q3
). Therefore,

MQ4
= ((a, p2)(d, ∅)) ∪ ((a, {p1})(d, ∅)). That is,

MQ4 = ((a, {p1, p2})(d, ∅)).
– Block 4 is executed and the rule for if is applied.

The level of the condition is {p1, p2}. The envi-

ronment of blocks in the scope of block 4 is up-

dated, i.e., Env of block 3 becomes {p1, p2}. Then

MQ3
= lub(MQ3

,M ′Q4
) = ((a, {p1, p2})(d, ∅)) and

MQ5
= lub(MQ5

,M ′Q4
) = ((a, {p1, p2})(d, ∅)).

– The execution of block 5, assigns {p1, p2} to d:

M ′Q5
= ((a, {p1, p2})(d, {p1, p2}))

The after-state is propagated to the successor:

MQ6 = lub(MQ6 ,M
′
Q5

) =

((a, {p1, p2})(d, {p1, p2})).
– The execution of block 6, according to the rule

for return, assigns {p1, p2} to the return of the

runnable in the global context file A and propagates

the memory (M ′Q6
= MQ6

) in the after-state to

Data secure flow in AUTOSAR 13

Table 3 Local context Q of runnable2 after the first iteration
(equal to the table at fixpoint).

Block Memory Env
Qentry (a, p2) (d, ∅) p1
Q2 (a, p2) (d, ∅) p1
Q3 (a, {p1, p2}) (d, ∅) {p1, p2}
Q4 (a, {p1, p2}) (d, ∅) p1
Q5 (a, {p1, p2}) (d, ∅) p1
Q6 (a, {p1, p2}) (d, {p1, p2}) p1
Qexit (a, {p1, p2}) (d, {p1, p2}) p1

block exit.

MQexit = lub(MQexit ,M
′
Q6

). Therefore, MQexit =

lub(((a, ∅)(d, ∅)), ((a, {p1, p2})(d, {p1, p2}))
= ((a, {p1, p2})(d, {p1, p2})).

When all blocks have been analysed, the first iter-

ation terminates. Local context Q obtained at the end

of the first iteration is shown in Table 3.

The global context file, at the end of the iteration

is the following:

% Begin Global Context

....

run((a, p2)) {p1, p2} : p1

...

% End Global Context

Another iteration needs to be executed, because the

global (local) context has been changed. At the end of

the second iteration, since Table 3 does not change the

fixpoint is reached and EXEC terminates.

5.5 The tool

In the following we describe the architecture of the tool

we developed for computing data dependencies in AU-

TOSAR models, named ADEPT (Autosar DEPencen-

cies Tool).

The tool has been developed entirely in C++ and

consists of three main units: PARSER, RULES DB and

ABSTRACT ENGINE (AE), see Figure 6. All the units

rely on a library of functions called ”lexAnalyzer”.

The tool requires the CFG of the runnable enti-

ties to be analysed, and the global context structure.

The CFG of the runnables is generated using the GCC

compiler with the following developer options: -fdump-

tree-cfg-blocks-vops. The global context structure file

contains the key information required by the tool for

generating the initial global context.

Once the initial global context has been created,

the CFG file of the runnable entities is divided into

tokens by the PARSER unit. The PARSER has been

implemented by functions within the ”lexAnalyzer”.

Among all the functions, one of the most relevant is

tokenize(string line) which handles the generation of

tokens from a code line. Functions ”isId()”, ”isOp()”,

”isNum()”, ”isDelim()”, ”isKey()” and ”isType()” are

used by the ”tokenize()” function to detect different

kind of tokens.

AE is the core unit of the tool, it gets the generated

tokens, line by line, and the rules introduced in Ap-

pendix A, by the RULES DB unit. Also the rules have

been implemented as functions of ”lexAnalyzer”. Ex-

amples of functions are ”find if()”, ”find assgn()” and

”find block()”. Functions ”find if()” and ”find assgn()”

fulfil the if rule and the assignment rule, and are trig-

gered by an if statement or by an assignment, respec-

tively. The ”find block()” is triggered at the end of the

analysis of each block of the CFG and is responsible for

the propagation of the after-state of the current block

to successors blocks.

Inside the AE unit, the EXEC component has been

implemented by the ”scan(global context, local context,

cfg file)” function. Scan() is called every time a runnable

must be analysed. EXEC performs the abstract execu-

tion of the runnable by analysing the tokens and look-

ing for predefined patterns. When one of these is found,

EXEC adopts the proper rule according to the tokens

analysed and the local and global contexts are properly

updated, see Figure 7.

An example that clarifies how EXEC works is re-

lated to the if statement. When the code line including

the if statement is found by the PARSER, it is split

into tokens and passed to the EXEC unit. EXEC will

compare the token line received from the PARSER with
the ”if defined pattern”. If they match, the ”find if()”

function is called, and so EXEC will propagate all the

dependencies of the variables in the if condition and the

environment of the current block to the environment of

the blocks that belong to the scope of the current block,

as defined in the corresponding rule.

Runnable entities are analysed one by one. The anal-

ysis of a runnable is iteratively executed and terminates

when the local fixpoint is reached, i.e. when the local

and global context do not change after an iteration.

Once local fixpoint has been reached, AE moves on to

analyse the next runnable.

When all the runnables have been analysed, AE ter-

minates, and the tool checks if the global fix point has

been reached , i.e., the global context does not change

after the execution of AE.

If the global fixpoint is reached, the tool terminates,

providing the final global context file with the port de-

pendencies, otherwise AE is executed again.

14

Fig. 6 Architecture of the tool.

Fig. 7 Behaviour of AE

6 A case study

In the following, we will consider a use case related

to the Front Light Manager (FLM) tutorial described

in the standard documents of AUTOSAR [4], which is

focused on a very limited functional part of the front

light manager, namely activating the headlight and the

daytime running lights. All other lights functions (e.g.

parking orientation light, fog lights, etc.) are excluded.

In particular, we consider a slightly extended version

of the FLM in which:

– the headlights are turned on if the key ignition is ac-

tivated, the light switch is on and the power supply

voltage is within a specific range,

– meanwhile the daytime running lights are turned

on if the light switch is on and the voltage from the

power supply is within a specific range.

The status of the lights is reported to the driver by

means of the HMI (Human Machine Interface).

We created a model with a total of 9 components

which can be divided in 3 categories:

– Sensors components: Ignition Key, Light Switch and

Power Supply

– Actuator components: Headlight, HMI and Daytime

Running Lights

– Control components: Headlight request, Daytime

Light Request and Front Light Manager

The system model described using Rhapsody is

shown in Figure 8. All the ports between these com-

ponents are data Receiver-Provider ports. Ignition Key
and Light Switch are assumed to be simply sensor com-

ponents that outputs their status and Power Supply is

assumed to simply outputs the battery voltage, there-

fore there is no need to further develop an implementa-

tion of them. In the following we will analyse the three

control software components.

6.1 Control Software Components

The Headlight request software component is made of

three runnables entities, each with a different task:

– Runnable1 receives the data from Ignition Key and

forwards it to the Runnable3.

– Runnable2 receives the data from Light Switch and

forwards it to the Runnable3.

– Runnable3 receives data from Power Supply and

from the other Runnables and sends a request of

headlights activation to Front Light Manager.

Data secure flow in AUTOSAR 15

Fig. 8 Model of the Front Light Manager.

Fig. 9 Software component of Headlight Request.

The schema of the Headlight request component is

shown in Figure 9. Runnable1 and Runnable2 receive

the data from input port in1 and in2 respectively, and

forward their values to Runnable3 by means of two In-

terRunnable Variables, IRV1 and IRV2. Runnable3 re-

ceives the value of the two IRVs and the voltage value

from in3 and checks if the voltage is within a specific

range and both IRVs are ‘ON’. If so it sends a request of

headlights activation to Front Light Manager otherwise

it stops sending request.

The Rte IStatus Runnable3 RPort in3() is a func-

tion that returns the current status of the port in3,

and ‘0’ means ‘no errors’. The voltage thresholds are

assumed to be two global parameters of the system.

The other functions are standard call to RTE functions

used to read from or write onto elements of data ports

or inter-runnable variables.

The Daytime light request software component is

made of only two runnables who act like Runnable2

Fig. 10 Software component of Front Line Manager.

and Runnable3 of the Headlight Request component.

The Front light manager software component is made

of three runnables:

– Runnable1 receives the request from the Headlight

Request, and forwards it to the Runnable3.

– Runnable2 receives the request from the Daytime

Light Request and forwards it to the Runnable3.

– Runnable3 forwards the data to the output ports

and sends a signal to the HMI actuator if at least 1

of the two kinds of lights is requested on.

The schema of the component is shown in Figure 10.

Runnable1 receives the data from input port in6 and

forwards it to inter-runnable variable IRV1. Runnable2

receives the data from input port in7 and forwards it to

inter-runnable variable IRV2. Runnable3 forwards the

data stored in IRV1 and IRV2 to out3 and out5, re-

spectively, and if at least one of the request is ‘ON’ it

sends the signal to turn the lights on to the out4 port,

otherwise it sends the signal to turn the lights off to

16

void HR Runnable3 (void) {
int16 T i n p u t v o l t a g e ;
// Check por t s t a t u s (0 −−> no error)
i f (Rte IStatus Runnable3 RPort in3 () == 0){

i n p u t v o l t a g e = (int16 T) Rte IRead Runnable3 RPort in3 () ;
}
i f ((i n p u t v o l t a g e >= v o l t a g e t h r e s h o l d 1) &&

(i n p u t v o l t a g e <= v o l t a g e t h r e s h o l d 2)){
i f ((Rte IrvIRead Runnable3 IRV1 () == KEY ON) &&

(Rte IrvIRead Runnable3 IRV2 () == LIGHT ON)){
Rte IWrite Runnable3 PPort out1 (REQ HEADLIGHT ON) ;

}
else {

Rte IWrite Runnable3 PPort out1 (REQ HEADLIGHT OFF) ;
}

}
else {

Rte IWrite Runnable3 PPort out1 (REQ HEADLIGHT OFF) ;
}

}

void FLM Runnable3 (void) {
Rte IWrite Runnable3 PPort out3 (Rte IrvIRead Runnable3 IRV1 ()) ;
Rte IWrite Runnable3 PPort out5 ((Rte IrvIRead Runnable3 IRV2 ()) ;
i f ((Rte IrvIRead Runnable3 IRV1 () == REQ HEADLIGHT ON) | |

(Rte IrvIRead Runnable3 IRV2 () == REQ DAYTIME ON)){
Rte IWrite Runnable3 PPort out4 (LIGHTS ON) ;

}
else {

Rte IWrite Runnable3 PPort out4 (LIGHTS OFF) ;
}

}
Listing 5 Code of HR Runnable3 and FLM Runnable3.

the same port. The code of both FLM Runnable3 and

HR Runnable3 is shown in Listing 5.

Since the basic example of the AUTOSAR standard

considers the daytime lights as emergency lights to be

used in the case of failure of the headlights, we as-

sumed that a developer would request data input to

Daytime running lights be generated by high trusted

software components, and the FLM to DRL link be-

tween the Front light manager and the software compo-

nent Daytime running lights satisfies integrity require-

ment. This corresponds to the annotation shown in Fig-

ure 8, where the port p of Daytime running lights is

assigned high trust level and the FLM to DRL link

is assigned integr security requirement. All the other

components and links are assigned low and none, re-

spectively.

An excerpt of the global context structure file, input

to the tool for the generation of the global context, is

the following:

% global variables

int HR_voltage_threshold1;

int HR_voltage_threshold2;

int DLR_voltage_threshold1;

...

% inter runnable variables

int16_t FLM_IRV1;

int16_t FLM_IRV2;

int16_t DLR_IRV1;

...

% ports

int in1;

int in2;

...

int out1;

int out2;

...

% functions

void flm_Runnable1() 0;

void flm_Runnable2() 0;

.....

% links

out2 -> in7;

out1 -> in6;

Data secure flow in AUTOSAR 17

6.2 Tool application

Figure 11 reports the global context at the beginning

of the analysis of the AUTOSAR model. The position

(i, j) indicates if element i depends on port j. The boxed

region of the matrix shows dependencies between ports.

The analysis starts, assuming that each port depends

only on itself (diagonal of boxed sub-matrix equal to

1).

Using a computer with Intel Core i7-4700MQ and

12 Gb of Ram the analysis completes in 349ms and the

global fixpoint has been reached after 3 iterations of

AE.

Figure 12 reports the global context at the end of

the analysis of the AUTOSAR model. For example, we

derive that port in6 depends on ports in1,in2,in3, in6

and out1, so Deps(in6) = {in1, in2, in3, in6, out1}
In order to check data secure flow property, the al-

gorithm in Listing 1 in Section 4 is applied. Let us

consider link FLM to DRL. From Figure 12, we de-

rive Deps(out5) = {in4, in5, in7, out2, out5}. Let L′ be

the set of links whose ports belong to Deps(out5), it is

(out2, in7) ∈ L′.

Step 1:

〈δFLM to DRL, µFLM to DRL〉= 〈high, both〉.

Step 2: ∀p ∈ Deps(out5) :

δFLM to DRL = glb(δFLM to DRL, trustlevel(cmp(p))

Let us consider port in4 ∈ Deps(out5).

It is cmp(p) = Daytime light request, whose trust level

is low.

We have:

δFLM to DRL = glb(δFLM to DRL, low) = low

Since δFLM to DRL @ trustlevel(p), data secure flow

is not satisfied.

Step 3: ∀l ∈ L′ :

µFLM to DRL = glb(µFLM to DRL, securityreq(l))

Let us consider link (out2, in7) ∈ L′, whose security re-

quirement is none.

We have:

µFLM to DRL = glb(µFLM to DRL, none) = none

Since µFLM to DRL @ securityreq(FLM to DRL),

data secure flow is not satisfied.

A simple solution could be to assign high trust level

to all components directly or indirectly connected to

Daytime running lights, which will lead to the assign-

ment of high trust level to all the other components

(Front light manager, Headlight request,

Daytime light request, Light switch, Ignition key,

Power supply).

With our approach we can consider the data de-

pendencies of all the three components that we have

implemented and we can exploit these dependencies in

order to obtain a more efficient solution, in term of less

overhead for security operations.

In particular, the output port of Front light manager

connected to the Daytime running lights (out5 in our

implementation) does not depend on the input port

connected to the Headlight request component (in6 in

our implementation).

Data sent on the link FLM to DRL depends on

Front light manager, Daytime light request,

Light switch and Power supply software compo-

nents and traverse the following links: DLR to FLM,

PS to DLR and LS to DLR.

As a consequence, data secure flow property requires

that previous SWCs are assigned high trust level, and

previous links are assigned integr security requirement.

The resulting security annotated AUTOSAR model is

shown in Figure 13.

7 Conclusions

Security in automotive is becoming increasingly impor-

tant and should be taken into account from the early

stages of the system development. There are a lot of

well-known techniques and tools that can be borrowed

from the information security domain in order to deal

with malicious intrusions on automotive systems.

In this paper data secure flow property has been

defined, and an approach for the verification of data

secure flow in security annotated AUTOSAR models is

presented. The approach is based on information flow

analysis and abstract interpretation. The method com-

putes the lowest security level of data sent on a commu-

nication, according to the annotations in the model and

the data causal dependencies. The method also sup-

ports developers in providing annotated models that

satisfy data secure flow, in such a way that the set of

annotations is not oversized. In particular our approach

for data dependencies discovery can be put at an in-

termediate level between the one suggested by the in-

formation already available in AUTOSAR and the one

based on exhaustive search.

The approach has been applied to the AUTOSAR Front

Light Manager use case, using a prototype tool that im-

plements the abstract execution of the runnables pro-

grams. The results show that it is possible to consid-

erably reduce the resources dedicated to the security,

such as the number of encryption(or hash) operations

18

Fig. 11 Global Context file at the beginning of the analysis.

Fig. 12 Global Context file at the end of the analysis.

invoked by components. Further studies on automotive

systems can be developed to improve the efficiency of

the security services, for example it may be interesting

to apply some modification to the topology of the sys-

tem to limit the paths from sensors to actuators that

are connected to critical functions of the cars.

Acknowledgements The authors would like to thank the
anonymous referees for their useful comments and sugges-
tions.

References

1. A. Adelsbach, U. Huber, and A. Sadeghi. Secure soft-
ware delivery and installation in embedded systems. In
Embedded Security in Cars, pages 27–49. Springer, 2006.

2. AUTOSAR. https://www.autosar.org/.
3. AUTOSAR. General requirements on basic software

modules. https://www.autosar.org/fileadmin/user_

upload/standards/classic/3-2/AUTOSAR_SRS_General.

pdf.
4. AUTOSAR. Safety use case example. https://

www.autosar.org/fileadmin/user_upload/standards/

classic/4-3/AUTOSAR_EXP_SafetyUseCase.pdf.

https://www.autosar.org/
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SRS_General.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SRS_General.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SRS_General.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_SafetyUseCase.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_SafetyUseCase.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_SafetyUseCase.pdf

Data secure flow in AUTOSAR 19

Fig. 13 Annotated model of the Front Light Manager.

5. AUTOSAR. Specification of crypto abstraction
library. https://www.autosar.org/fileadmin/

user_upload/standards/classic/4-1/AUTOSAR_SWS_

CryptoAbstractionLibrary.pdf.
6. AUTOSAR. Specification of crypto service man-

ager. https://www.autosar.org/fileadmin/user_

upload/standards/classic/4-1/AUTOSAR_SWS_

CryptoServiceManager.pdf.
7. AUTOSAR. Specification of module secure onboard

communication:. https://www.autosar.org/fileadmin/

user_upload/standards/classic/4-3/AUTOSAR_SWS_

SecureOnboardCommunication.pdf.
8. M. Avvenuti, C. Bernardeschi, N. De Francesco, and

P. Masci. Jcsi: A tool for checking secure information
flow in java card applications. Journal of Systems and
Software, 85(11):24792493, 2012.

9. A. Banerjee and D. A. Naumann. Secure information
flow and pointer confinement in a java-like language. In
Proceedings of the 15th IEEE Workshop on Computer
Security Foundations, CSFW ’02, pages 253–, Washing-
ton, DC, USA, 2002.

10. R. Barbuti, C. Bernardeschi, and N. De Francesco. Ab-
stract interpretation of operational semantics for secure
information flow. Inf. Process. Lett., 83(2):101–108, 2002.

11. D.E. Bell and L.J. LaPadula. Secure computer systems:
Mathematical foundation. In MITRE Technical Report
2547, Volume I, 1996.

12. C. Bernardeschi, N. De Francesco, G. Lettieri, and
L. Martini. Checking secure information flow in java
bytecode by code transformation and standard byte-
code verification. Software - Practice and Experience,
34(13):1225–1255, 2004.

13. C. Bernardeschi, G. Del Vigna, M. Di Natale, G. Dini,
and D. Varano. Using autosar high-level specifications
for the synthesis of security components in automotive
systems. In Intl. Work. on Modelling and Simulation for
Autonomous Systems, pages 101–117. Springer, 2016.

14. C. Bernardeschi, M. Di Natale, G. Dini, and D. Varano.
Modeling and generation of secure component communi-
cations in autosar. In The 32nd ACM SIGAPP Sympo-
sium On Applied Computing. ACM, 2017.

15. S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roes-

ner, T. Kohno, et al. Comprehensive experimental anal-
yses of automotive attack surfaces. In USENIX Security
Symposium. San Francisco, 2011.

16. P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 4(2):511–547,
1992.

17. P. J. Denning.. D. E. Denning. Certification of pro-
grams for secure information flow. Communications of
the ACM, 7(20):504–513, 1977.

18. IBM. Rational rhapsody. https://www.ibm.com/us-en/

marketplace/rational-rhapsody/details.
19. J. Jürjens. UMLsec: Extending UML for secure systems

development. In UML 2002—The Unified Modeling Lan-
guage, pages 412–425. Springer, 2002.

20. S. Kehr, M. Pani, E. Quiones, B. Bddeker, J. B. Sandoval,
J. Abella, F. J. Cazorla, and G. Schfer. Supertask: Maxi-
mizing runnable-level parallelism in autosar applications.
In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 25–30, 2016.

21. J. Kienberger, P. Minnerup, and B. Kuntz, S.and Bauer.
Analysis and validation of autosar models. In Proceed-
ings of the 2Nd International Conference on Model-
Driven Engineering and Software Development, MOD-
ELSWARD 2014, pages 274–281, Portugal, 2014.

22. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, et al. Experimental security analysis of a
modern automobile. In Security and Privacy (SP), 2010
IEEE Symposium on, pages 447–462. IEEE, 2010.

23. K.R.M. Leino and R. Joshi. A semantic approach to
secure information flow. In Proc. 4th International Con-
ference, Mathematics of Program Construction, LNCS
1422, pages 254–271. Springer Verlag, 1998.

24. K. Lemke, C. Paar, and M. Wolf. Embedded security in
cars. Springer, 2006.

25. C. Lin and A. Sangiovanni-Vincentelli. Cyber-security for
the controller area network (can) communication proto-
col. In 2012 International Conference on Cyber Security,
pages 1–7. IEEE, 2012.

26. T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-based modeling language for model-driven secu-
rity. In UML 2002–The Unified Modeling Language 2002,
pages 426–441. Springer, 2002.

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_SWS_CryptoAbstractionLibrary.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.ibm.com/us-en/marketplace/rational-rhapsody/details
https://www.ibm.com/us-en/marketplace/rational-rhapsody/details

20

27. G. Macher, M. Stolz, E. Armengaud, and C. Kreiner.
Filling the gap between automotive systems, safety, and
software engineering. e & i Elektrotechnik und Informa-
tionstechnik, 132(3):142–148, 2015.

28. D. Mizuno, M. Schmidt. A security flow control algorithm
and its denotational semantics correctness proof. Formal
Aspects of Computing, 4(1):727–754, 1992.

29. M. Pani, S. Kehr, E. Quiones, B. Boddecker, J. Abella,
and F. J. Cazorla. Runpar: An allocation algorithm
for automotive applications exploiting runnable paral-
lelism in multicores. In 2014 International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 1–10, 2014.

30. C. Saad and B. Bauer. Data-Flow Based Model Analysis
and Its Applications, pages 707–723. Berlin, Heidelberg,
2013.

31. M. Saadatmand and T. Leveque. Modeling security as-
pects in distributed real-time component-based embed-
ded systems. In Information Technology: New Genera-
tions (ITNG), 2012 Ninth International Conference on,
pages 437–444. IEEE, 2012.

32. A. Sabelfeld and A.C Mayers. Language-based
information-flow security. IEEE journal on selected areas
in communications, 21(1), 2003.

33. A. Sabelfeld and D. Sands. A Per Model of Secure In-
formation Flow in Sequential Programs, pages 40–58.
Berlin, Heidelberg, 1999.

34. W. Stephan, S. Richter, and M. Muller. Aspects of secure
vehicle software flashing. In Embedded Security in Cars,
pages 17–26. Springer, 2006.

35. D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Secu-
rity, 4(3):167–187, 1992.

36. A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R.
Eisenbarth, and K. Venkatasubramanian. Security of au-
tonomous systems employing embedded computing and
sensors. Micro IEEE, 33(1):80–86, 2013.

37. S. Zdancewic and A. C. Myers. Secure information flow
and cps. In Proceedings of the 10th European Sympo-
sium on Programming Languages and Systems, ESOP
’01, pages 46–61, London, UK, UK, 2001.

APPENDIX A

This section reports the abstract rules for the instruc-

tions. In the rules we use the following notations:

– i is the bb of the CFG to which the instruction be-

longs.

– lvar is used for local variables, gvar for global vari-

ables, P for sender-receiver ports, arg& denotes ar-

guments passed by reference, ptr is used for pointers

and array for arrays.

– f() is used for functions, including runnables.

– Scope(bbi) is a function that returns the set of blocks

in the scope of the conditional instruction in bbi.

– A[δ/x] is a global context equal to A except for the

variable x that is assigned δ. Similarly, for other

elements in the global context.

– Q(M [δ/x]) is a local context equal to Q except for

the variable x in memory M that is assigned δ.

– Q(Env[δ/Env]) is a local context equal to Q except

for the environment that is assigned δ.

Some rules regarding global variables are omitted,

because they can easily be derived from the correspond-

ing rule of local variable using the global context in

place of the local memory. We note that, the level of

variables and function’s parameters, return and envi-

ronment, in the global context file A never decreases.

For example, if x is in the global context, the assign-

ment of an expression to x updates the level of x to

the lub between the current level and the level of the

expression. If x is in the local memory the assignment

of an expression to x sets the level of x to level of the

expression.

When the abstract interpreter finds a function call

it applies the three invoke rules in sequence:

– the first updates the global context with the levels

of the actual parameters

– the second updates the variables passed by reference

with the level in the global context

– the third evaluates the expression of the return of

the function using the level in the global context

When the abstract interpreter finds an assignment

to a sender/receiver port, which corresponds to a send

operation, the abstract rule updates both the value of

the sender port and the value of the receiver port in the

global context A, using the set of links L.

When the abstract interpreter finds an assignment

to a client/server port, this is transformed into a call

to the runnable implementing the service. This rule is

similar to a function call and it not shown in the figure.

Data secure flow in AUTOSAR 21

Exprconst

k ∈ const Qi = (M,σ)
〈k, 〈A,Q〉〉 −→expr σ

Exprvar∈lvar

x ∈ lvar Qi = (M,σ)
〈x, 〈A,Q〉〉 −→expr M(x) ∪ σ

Exprvar∈{gvar∪P}
x ∈ gvar Qi = (M,σ)

〈x, 〈A,Q〉〉 −→expr A(x) ∪ σ

Expr∗ptr∈lvar

ptr ∈ lvar Qi = (M,σ)
〈∗ptr, 〈A,Q〉〉 −→expr M(ptr) ∪ σ

Exprarray∈lvar

array ∈ lvar Qi = (M,σ)
〈array[j], 〈A,Q〉〉 −→expr M(array) ∪ σ

Exprop
〈e1, 〈A,Q〉〉 −→expr δ1 〈e2, 〈A,Q〉〉 −→expr δ2

〈(e1 op e2), 〈A,Q〉〉 −→expr δ1 ∪ δ2

Assvar∈lvar
x ∈ lvar 〈e, 〈A,Q〉〉 −→expr δ
〈x:=e, 〈A,Q〉〉 −→ 〈A,Q(M [δ/x])〉

Assvar∈gvar
x ∈ gvar 〈e, 〈A,Q〉〉 −→expr δ

〈x:=e, 〈A,Q〉〉 −→ 〈A[A(x) ∪ δ/x], Q〉

Assvar∈P
x ∈ P (x, y) ∈ L 〈e, 〈A,Q〉〉 −→expr δ

〈x:=e, 〈A,Q〉〉 −→ 〈A[A(x) ∪ δ/x;A(y) ∪ δ/y], Q〉

Assvar∈arg&
x ∈ arg& 〈e, 〈A,Q〉〉 −→expr δ

〈x:=e, 〈A,Q〉〉 −→ 〈A[f(· · · , x ∪ δ, · · ·)b ∪ δ;σ/f(· · · , x, · · ·)b;σ], Q〉

Ass∗ptr
ptr ∈ lvar 〈e, 〈A,Q〉〉 −→expr δ

〈∗ptr:=e, 〈A,Q〉〉 −→ 〈A,Q[M(ptr) ∪ δ/ptr]〉

Assarray
array ∈ lvar 〈e, 〈A,Q〉〉 −→expr δ

〈array[j]:=e, 〈A,Q〉〉 −→ 〈A,Q[M(array) ∪ δ/array]〉

If
Qi = (M,σ) Scope = {j1, · · · , jn} 〈e, 〈A,Q〉〉 −→ δ

〈if e then goto b1 else goto b2, 〈A,Q〉〉 −→ 〈A,Qj,j∈Scope(Env[Env ∪ δ/Env])〉

Return
〈e, 〈A,Q〉〉 −→expr δ

〈return e, 〈A,Q〉〉 −→ 〈A[f(a1, · · · , an)b ∪ δ; d/f(a1, · · · , an)b; d], Q〉

Goto 〈goto bj , 〈A,Q〉〉 −→ 〈A,Q〉

Invoke 1
〈xj , 〈A,Q〉〉 −→expr δj Qi = (M,σ)

〈f(x1, · · · , xn), 〈A,Q〉〉 −→ 〈A[f(a1 ∪ δ1, · · · , an ∪ δn)b; d ∪ σ/f(a1, · · · , an)b; d], Q〉

Invoke 2
xj ∈ arg& Qi = (M,σ) f(a1, · · · , an)b; d ∈ A
〈f(x1, · · · , xn), 〈A,Q〉〉 −→ 〈A,Q[M(xj) ∪ aj/xj]〉

Invoke 3
f(a1, · · · , an)b; d ∈ A

〈f(x1, · · · , xn), 〈A,Q〉〉 −→expr b

	Introduction
	Related work
	Basic Concepts
	Proposed approach
	Implementation
	A case study
	Conclusions

