
IDS - Ingegneria Dei Sistemi

Pisa, 23 Gennaio 2018

Secure Information Flow in Programs 

Prof. Cinzia Bernardeschi

Dipartimento di Ingegneria dell’Informazione

Università di Pisa

cinzia.bernardeschi@unipi.it



Outline

• Data leakage

Security policy

Information flow in programs

Examples of illegal flow of information

• A static analysis approach for program certification

• Case studies: 

Secure Interaction in Java cards 

Data secure flow in AUTOSAR



3

Data leakage 
- explicit  (private data made publicly available)
- interference between private and public data 
- colluding apps

Data leakage

Information flow analysis

GENERAL DATA PROTECTION REGULATION(GDPR)  - UE 2016/679

REGULATION OF THE EUROPEAN PARLIAMENT  AND OF THE COUNCIL  on the 

protection  of natural  persons  with regard  to the processing of personal data and on the 

free  movement  of such data, and repealing  Directive 95/46/EC

Member States shall notify  to the Commission the provisions of their laws which they 

adopt pursuant to this paragraph by 25 May 2018 and, without delay, any subsequent 

amendment law or amendment affecting them. 



4

Application

Application authorized to access private data
Application authorized to access internet

Control on the information sent on the internet!!!!!

Certificate that the application does not send data that may reveal any private 
information

Data leakage

Private 

data

Limit of Firewall and Access control mechanisms 

Certification of applications for secure information flow 



5

•

• Java Virtual Machine code

• downloaded by the internet and executed by 

web browser

• need access to user private data to compute 

some information

• possible leakage of user private data 

• access control can be too restrictive

• security mechanisms:
Access control,   Firewall,  Sandbox

Java applet



6

The Independent (British online newspaper) 

“Android apps are mining smartphone users’ data by secretly colluding with each other, 

according to a new study.

Pairs of apps can trade information, a capability that can lead to serious consequences 

in terms of security.

April 2017 

Colluding applets

Taken from: http://www.independent.co.uk/life-style/gadgets-and-tech/news/android-app-steal-users-data-colluding-

each-other-research-cartel-information-a7663976.html



7
Tratto da: https://www.mcafee.com/it/resources/solution-briefs/sb-quarterly-threats-may-2016-1.pdf

Colluding applets



8

Automated generation of colluding apps for experimental research

Jorge Blasco, Thomas M. Chen

Journal of Computer Virology and Hacking Techniques, 2017 

Detection of app collusion potential using logic programming
Jorge Blasco, Thomas M. Chen, Igor Muttik , Markus Roggenbach
Journal of Network and Computer Applications, December 2017

Recent works

Data leakage

Utilising K-Semantics for Collusion Detection in Android Applications

Irina Măriuca Asăvoae, Nga Nguyen, Markus Roggenbach, Siraj Shaikh

Workshop on Formal Methods for Industrial Critical Systems International 
Workshop on Automated Verification of Critical Systems, September 2016



9

Multilevel Security policy: a security policy that 
allows the classification of data and users based 
on a system of hierarchical security levels. 

Secure Information FlowSecurity policy

Non-interference property: the  security domain private is non-interfering with 
domain public if no input by private can influence subsequent outputs seen by 
public. 

Inputs and outputs are classified as either low sensitive (public) or high

sensitive (private).  A program has the non-interference property if and only 

if any sequence of low inputs will produce the same low outputs, regardless 

of what the high level inputs are. 

The program responds in exactly the same manner on low outputs whether or not 

high sensitive data are changed.  The low user will not be able to acquire any 

information about data and the activities (if any) of the high user.

private

public



10

Secure Information FlowInformation flow in programs

Modular programming

Information flow occurs through 

• simple variables, input/output files

• array, structures, objects

• pointers, references

• objects allocated in dynamic memory 

• global variables

• function calls 

(parameters by value, parameters by 

reference,return)



11

Secure Information FlowBasics of information flow

High-level languages. Let x, y be variables

y := x; explicit flow

variable y is assigned the value of  x; 

there is an explicit flow  x to y

if  (x = 0)   implicit flow 

then y=1; 

else y=0;

there is an implicit flow from variable x to y, since y is assigned different values 

depending on the value of the condition of the control instruction (variable x)

In both cases observing the final value of y reveals information on the value of x

A conditional instruction in a program causes the beginning of an implicit flow. The 

implicit flow begins when the conditional instruction starts (we say that we have an 

opened implicit flow); all the instructions in the scope of the if depend on the condition 

of the if.



12

If a function call is executed in the scope of a conditional instruction, the 

function is executed under the implicit flow. 

For example, 

if (y < 0) 

then   f();

Function f() is invoked depending on the value of variable y. 

Instructions of f() are executed under the implicit flow of the condition of 

the if statement. 

Basics of information flow

Termination agreement

while (y >1000)  <instructions>  ;

Covert flows in the literature



Secure Information FlowBasics of information flow

Bytecode instructions



14

Secure Information FlowBasics of information flow

explicit flow

implicit flow

x is loaded onto the stack, then it is stored into y, that is, y depends explicitly on x

variable x is loaded onto the stack. Depending on the value of x, either the constant 1 

or the constant 0 is pushed onto the stack, and successively stored onto y

In both cases observing the final value of y reveals information on the value of x



15

We can use uses the control flow graph

of the program  to handle implicit flows. 

The implicit flow of  an if instruction  at address i terminates at the instruction 

with address ipd(i).

j=immediate postdominator of i: the first 

node belonging to all paths from i 

i

j

Control Flow Graph and ipd

Basics of information flow



16

the stack may be manipulated in different ways by the branches of a 

branching instruction: they can perform a different number of pop and 

push operations, and with a different order.

Basics of information flow

Influence of the implicit flow onto the operand stack

The length and the content of the operand stack may be a means by which 

security leakages can occur

The stack is empty or not, depending on the value of x



17

Termination Agreement

Basics of information flow



18

• a program P

• a lattice of security levels  L 

• every variable of P is assigned a security level in L

• P satisfies Secure Information Flow if information at a 

given security level does not flow to lower levels

Secure Information FlowSecure Information Flow

D. E. Denning, P. J. Denning.

Certification of programs for secure information flow.

Communications of the ACM, 20(7), 1977

Lattice 

Let be given a set A and order relation  on A. 

(A, ) is a lattice if every pair of elements in A has both a greatest lower 

bound (glb) and a least upper bound (lub).



Secure Information Flow (SIF)

L = {L, H }, with L  H                 L: public, H: private

Let    x:H,    y:L 

• Explicit information flow
y = x;

• Implicit information flow
if (x) y=5; else y=2

the final value of each variable does not 

depend on the initial value of variables  with 

higher or not related security levels.

SIF

H

L



20

TERM

it is not possible to leak high information by observing the 

termination of the program

while (x > 0) do skip;

Termination Agreement



TIME

it is not possible to leak high information by observing the 

number of instructions executed

if (x == 0) { x=1; skip; } else x=2;

Timing Agreement



22

Secure Information flow verification

1)  Typing approach
D. Volpano, G. Smith, C. Irvine.

A sound type system for secure flow analysis. 

Journal of Computer Security, 4(3), 1996, pp. 167-187. 

2) Sematic-based approach
Rajeev Joshi, K.Rustan M.Leino

A semantic approach to secure information flow

Science of Computer Programming, Volume 37, Issues 1–3, May 2000, 

High compexity in space and time

3) Abstract interpretation of the operational semantics
Roberto Barbuti, Cinzia Bernardeschi, Nicoletta De Francesco

Abstract interpretation of operational semantics for secure information flow. 

Inf. Process. Lett. 83(2): 101-108 (2002)

…………………



Abstract interpretation of the 

operational semantics 



24

Secure Information flow verification

Typing: the security information of a variable belongs to its type, 

and secure Information flow is checked by means of a type 

system. Hierarchy between types.    Types = H, L

Semantic-based: execute the program

Abstract interpretation: execute the program on abstract domains

H

L

An advantage of 3) with respect to those based on 1) is that it is 

semantics based and thus keeps information on the dynamic behavior 

of programs, allowing to check more precisely the desired properties.

y=x;     

y=0;

rejected by 1)

if 0 then y=x; else skip;

rejected by 1) and by 3)



Abstract interpretation for analyzing Secure 

Information flow



26

Abstract interpretation

P. Cousot, R. Cousot. 

Abstract interpretation 

frameworks. 

Journal of Logic and 

Computation, 2, 1992
The abstract interpretation approach is based on lattices, 

continuous functions and Galois connections

Abstract interpretation is a method for designing approximate 
semantics of programs

Galois connections to establish a correspondence between the domain of
concrete properties and the domain of abstract properties

Taken from: “Abstract interpretation and static 
analysis” Course held at the International Winter 
School on Semantics and Applications, Uruguay, 2003, 
by David Schmidt

glb: greatest lower bound

lub: least upper bound

glb(notpos, notneg) = zero

lub(notpos, notneg) = all



27

Taken from: “Abstract interpretation and static analysis” Course held at the International 
Winter School on Semantics and Applications, Uruguay, 2003, by David Schmidt

it 

Abstract interpretation



28

Abstract interpretation

Taken from: “Abstract interpretation and static analysis” Course held at the International 
Winter School on Semantics and Applications, Uruguay, 2003, by David Schmidt



29

Abstract interpretation

Taken from: “Abstract interpretation and static analysis” Course held at the International 
Winter School on Semantics and Applications, Uruguay, 2003, by David Schmidt



• concrete instrumented semantics recording the 

information flow (collecting semantics)

• abstract semantics taking only what concerns the 

information flow

• correctness of the abstraction

The method: abstract interpretation of the 
operational semantics



A simple instruction set: operational semantics

set of state

state: < c, m >

transition system



32

An instrumented semantics which:

• Handles values (k, ) annotated with a security level. During the execution 

of a program,  indicates the least upper bound of the security levels of the 

information flows, both explicit and implicit, on which k depends. 

• Executes instructions under a security environment .  During the 

execution,  represents the least upper bound of the security levels of the 

open implicit flows.  is (possibly)  upgraded when a branching instruction 

begins and is (possibly) downgraded when all branches join. 

• C(P) : concrete transition system for P

Concrete Operational Semantics



33

Concrete operational semantics

state: < , c, M >



34

the abstract semantics:

• abstracts concrete values into their security level:  (k,)=

• uses the same rules of the concrete semantics on the abstract domains

A(P) : abstract transition system for P

• finite

• multiple path

• each path of C(P) is correctly abstracted onto a path of A(P)

A program  P  has secure information flow  if in each final 

state of A(P), each x :  holds a value    .

Abstract Operational Semantics



op pop two operands off the stack, perform the 

operation,  and push the result onto the stack
pop discard the top value from the stack

push k push the constant  k  onto the stack

load x push the value of variable  x  onto the stack

store x pop off the stack and store the value into x 

if j pop off the  stack and jump to  j  if non-zero 

goto j jump to   j 

jsr j at address  p, jump to address  j  and push p+1  

onto the operand stack
ret x jump to the address stored in  x

halt stop

Java bytecode: a simple instruction set



Standard Operational Semantics

x: 5

y: 1

state:  <program counter, memory, operand stack>



x: (5,L) ipd: immediate post-dominator

y: (1,H)

Concrete Operational Semantics

ipd(1) = 5

state:  <env, program counter, memory, operand stack, ipd stack>



38

Abstract Operational Semantics



39

Security levels L = {L < H} , , ..

Constants V            k, k’, ..           

Addresses A           i, j, ..

Concrete Values V = V  L ( k,  )

Concrete Addresses A = A  L         ( i,  )

Concrete Memories M = var  ( V  A ) M, M’, ..

Concrete Stacks S = ( V  A ) * S, S’, ..

Environments E = L , , ..

Domains of the concrete semantics



40

STATES            L  A   M  S  ( A  { 0 } )

< , PC, M, S, IPD >

 environment

PC program counter

M memory

S operand stack

if  = H, holds the address where 

the high implicit flow terminates

IPD

if  = L, holds 0  

Concrete Semantics



41

P[PC] :  load x , M[x] = (k, ),  PC  IPD

___________________________________________

<  , PC, M, S, IPD >    
<  , PC+1, M, (k,   ) · S, IPD >

Transition relation rules



42

P[PC] :  store x , PC  IPD

_______________________________________________

< , PC, M, (k, ) · S, IPD > 
< , PC+1, M[ (k,   )/ x ], S, IPD >

Transition relation rules



43

___________________________________________

<  , PC, M, S, PC >  < L , PC , M, S, 0 >

PC = IPD

Transition relation rules



44

P[PC] :  if j , PC  IPD

_______________________________________________

<  , PC, M, (0, ) · S, IPD >    
<    , PC+1, up(M),up(S), IPD’ >

ipd(PC)  if  = L  and   =H, (an high implicit flow

IPD’= begins)

IPD otherwise

up(M) upgrades the value of the variables assigned in the 

scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

Transition relation rules



45

Concrete rules



46

Abstract constants V#  =  { · }

Abstract security levels L# = L

Abstract Values V# : V#  L#    L 

Abstract Addresses A# = A

Abstract Memories M# : var  (L  A )

Abstract Stacks S# : (L  A )*

Abstract Environments E# = E = L

Abstract States: L  A  M#  S#  (A  { 0 })

Abstract semantics



47

the abstract semantics:

• abstracts concrete values into their security level: 

 (k,)=

• uses the same rules of the concrete semantics on the 

abstract domains

Both rules for if are always applied -

A(P) : abstract transition system for P
• finite

• multiple path

• each path of C(P) is correctly abstracted onto a path of A(P)

Abstract operational semantics



48

Theorem 1

A program  P  satisfies  SIF  if for each state of A(P) such 

that  P[PC] = halt , then for each x : L it is:

M[x] = L 

or

M[x]=(i, L) for some i.

Results



49

Theorem 2

A program  P satisfies  TERM  if  each state of A(P) 

<  , PC, M, S, IPD >   such  that  = H

does not belong to a cycle.

Results



50

Theorem 3

A program P  satisfies  TIME  if:

• all paths in  A(P)  starting from a state satisfying 

TOP(S)=H and P[PC] = if and ending with a state

satisfying  PC=ipd(i)  have the same length.

Results



51

Another example: concrete semantics
x:(0,H)   y:(1,L)

ipd(2) = 5, ipd(6)=10



52

An example: abstract semantics



53

R. Barbuti, C. Bernardeschi, N. De Francesco.

Abstract Interpretation of Operational Semantics for Secure Information Flow.

Inf. Process. Lett. 83(2): 101-108 (2002)

R. Barbuti, C. Bernardeschi, N. De Francesco.

Checking Security of Java Bytecode by Abstract Interpretation.

Special Track on Security at the ACM Symposium 

on Applied Computing (SAC2002), March 10-14, Spain 2002.

Since the  model is based on operational semantics, it is fully automatic. 

Moreover it can be integrated with  model checking 

Cinzia Bernardeschi, Nicoletta De Francesco:

Combining Abstract Interpretation and Model Checking for Analysing 

Security Properties of Java Bytecode. VMCAI 2002: 1-15

Works



54

Method invocation and shared objects: 

the security context

Data propagation caused by any method invocation and the access to 

common data structures in the heap is studied by executing each method 

inside a security context

A is a class with data member f1 and method member mt1; B a class with 

data member  f2 and method member  mt2 and mt3. 

For each variable: the highest level  of data stored var: 
For each method: the highest level of input/output 

parameters,  return and the security environment.   mt(1, …, n): , ’



55

The secure information flow analysis corresponds to an iterative 

verification of all methods within a common security context: it stops

when a fixpoint is reached. 

Secure information flow analysis

C := C0,  T := M

while (T != 0)

select  mt in T

T := T – mt

C’ := EXEC(mt, C)

if (C’ != C)

C :=C’

T := M

Let EXEC be the abstract interpreter of a method
Let C0 be the initial context
Let M be the set of methods



Information flow through exceptions

Java Exception Hierarchy (incomplete)



57

Java code



58

The bytecode



59

Extended control flow graph of the bytecode

Extended control flow graph



60

Pin_file and Clone_file are the input and the output files

Pin_file  is a private file containing a secret PIN (a sequence of 0/1 

characters, for simplicity)

Let us suppose that the PINcloner application can read from the private file.

After every character has read, it will be written in a the public file by the 

handler of the exception.

PINCloner application clones the characters of the Pin_file by throwing 

different kind of exceptions depending on the value read 

(NullPointerException and ArithmeticException).

The exceptions are thrown directly with a  throw statement

PinCloner applet



61

PinCloner Java code



62

PinCloner Java bytecode



63

Extended control flow graph

control region of instruction i: set of instructions under the implicit flow of instruction i

(set of instruction on any path from i to ipd(i), ipd(i)  excluded) 



64

The control region of 3 includes the instructions of the exception handlers, and
consequently these instructions are executed in a security environment given by 
the condition of the ifne.

Since the condition depends on the 0/1 value of PIN character read from a high 
security file, the implicit flow is high. 

The handler of the exception, write such value into the low security 

Clone_ file. 

The application violates the secure information flow because high security 

data are written on a public file and our methodology successfully detects 

this data leakage.

Data Leakage in Java applets with Exception Mechanism

Cinzia Bernardeschi, Paolo Masci, and Antonella Santone 

ITASEC 2018, Febbraio 2018.

PinCloner applet



Case studies



Case studies

Java cards:

Secure interactions in Java cards

Automotive:

Data secure flow in AUTOSAR models

Marco Avvenuti, Cinzia Bernardeschi, Nicoletta De Francesco, Paolo Masci:

JCSI: A tool for checking secure information flow in Java Card applications. Journal of Systems 

and Software 85(11): 2479-2493 (2012)

Cinzia Bernardeschi, Marco Di Natale, Gianluca Dini, Maurizio Palmieri:

Verifying Data Secure Flow in AUTOSAR Models by Static Analysis. ICISSP 2017: 704-713



➢ Typical Aplications: Credit cards, Electronic cash, Loalty 

systems, Helthcare, Government identification ....

➢ Smart cards: embedded systems that allow to  store and 

process information 

➢ Java cards: 

Java Virtual machine / applications (applets) are portable

➢ Multiapplicative Java cards: applets can be downloaded and 

installed on card after the card issuance

➢ Applet’s sensitive data must be protected against 

anouthorised accesses

Java cards 



Smart card hardware & native system

Java Card Runtime Environment

JCVM Framework classes

Auth. 

applet

Purse

applet

Loyalty 

appletCard reader

Multiapplicative Java cards

Java cards 



➢Security in Java cards is a combination of the security mechanisms in 

Java and additional security procedures imposed by the card platform

JAVA security  mechanisms

PERSISTENT and TRANSIENT objects

ATOMICITY and TRANSACTIONS

➢ The Firewall forces the isolation 

between objects of applets belonging 

to different packages

FIREWALL

Java cards security 



70

Communication between packages



➢ Based on access control checks 

➢ Place restrictions on the applets that can access to methods of applets 
belonging to other packages

➢ Does not control the propagation of the information from an applet of a 
package towards applets of other packages 

Applet A1

Package A

Applet B1

Package B

Applet C1

Package C

SIO

SIOSIO

?

Limits of the firewall



➢ Security levels assigned to 

packages

➢ Lattice of security levels

A B

A+B

C

B+C
A+C

A+B+C

➢ Abstract Interpretation framework: abstract execution of the 

applets using security levels instead  of real data

➢Secure Information Flow: Check that information exchanged between       

A and B  has a security equal to or level lower than A+B

Secure Information Flow



JCIFV performs the analysis according to the following main 
steps

1. Unique security levels are automatically assigned to packages and shareable 
interface objects. An initial security level is assigned to the
other methods and object fields

2. CAP file (native code of an applet) is decoded and saved as a bytecode  

3. Abstract interpretation of the bytecode is performed

4. The analysis stops when the state of the abstract interpreter does not longer 
change and all methods have been analyzed 

5. Secure information flow is checked

Java Card Information Flow Verifier



74

illicit information flow from Purse to RentACar caused by a method 

invocation (no parameters)  from AirMiles  and RentAcar

Purse: log-full service (logFull()),  which notifies registered applets that the 

transaction log is going to be over-written.

Airmail: registered for the log-full service

RentACar: not registered for the log-full service

Electronic Purse



75

Assume that AirFrance requests RentACar the amount of miles 

(getBalance()) every time Purse notifies AirFrance that the 

transaction log is full.

logFull() method implemented by AirFrance contains an invocation of 

method getTransaction() of Purse followed by an invocation of method 

getBalance() of RentACar.

Applet RentaACar, whenever observes an invocation of getBalance(),

can infer that Purse is going to over-write the transaction log. 

Thus, even without subscribing to the log-full service, RentACar

is able to benefit from such a service. 

Purse is not able to detect  such information flow. 

Electronic Purse



18/04/2012 CITEC, University of Bielefeld 76

The toolThe tool



ReportReport



Analysis



• JCIFV tool is able to certify applets against secure 
information flow of sensitive data 
saved present on the card

• Verification (Abstract Interpretation)

– JVIFV certifies only secure applets

– some correct applets could also be rejected
• due to the characteristics of the applet code the 

percentage of erroneously rejected applets is 
very low

Discussion



Automotive 

Modern automotive electronics systems are  real-time embedded 

system running over networked Electronic Control Units (ECUs)  

interconnected by wired networks such as the Controller AreaNetwork 

(CAN) or Ethernet. 

Automotive systems: Mixed-criticality safety critical systems

Braking system, Throttle system, …

Infotainment system

Recent research has shown that it  is possible for external intruders to 

compromise the proper operation of safety functions getting access to 

the infotainment system.

Low  security level data must not compromise the computation of  

high criticality functions 



Automotive

AUTOSAR models are extended with security annotations. In the example, 
- Throttle component is assigned the high trust level; 
- Throttle request  link  is assigned the  integrity  security requirement.

Autonomous 

driving 

Mixed-criticality safety 

critical systems

Path Planning, Lane Keeping and Lane Departure Warning are active safety 

functions that receive such data and send commands to actuators 

(steering,  throttle  and  brakes).



82

Data received by Throttle on the link Throttle_request must satisfy 
high trust level and integrity security requirement

The point is that:  the way in which security annotations are specified  must 

consider the causal dependencies between data that traverse the model. 

If Throttle requires integrity on its input data sent by Path Planning, then integrity 

must be guaranteed also along the path from the data originator (GPS) to Path 

Planning (the Vehicle_position link), otherwise, the security constraint cannot be 

satisfied and the set of annotations is not correct.

Similarly, Path Planning and GPS must have high trust level.

Automotive

The simplest solution assigns integrity/high to all links/components directly or 

indirectly connected to Throttle/Throttle_request. 

In order to obtain a more efficient solution, information flow theory can be exploited to 

compute the dependency between data



AUTOSAR

AUTomotive Open Systems ARchitecture: open industry standard for 

automotive software architectures,spanning all levels, from device drivers, 

to operating system, communication abstraction layers and the 

specification of application-level components



AUTOSAR architecture

A fundamental concept of AUTOSAR is the separation between:

• application and

• infrastructure.

An application in AUTOSAR consists of Software Components 

interconnected by connectors



Runnables
Runnables define the behavior of components

• Runnables are entry points to code-fragments and are 

(indirectly) a subject for scheduling by the operating system.

C
C++



AUTOSAR runnable interaction

Runnable interaction

Global variables

Ports define interaction points between (runnables belonging to) 

different SWCs.

For interactions among runnables belonging to the same component 

Inter Runnable Variables (IRVs)

The RTE provides protection mechanisms for IRVs (as opposed to 

global variables)



AUTOSAR security policy

• Trust level of  a  software component

software components with high trust level are executed on  secure and

reliable hardware

– we  assume two trust  levels:  high, low

• Security requirement of a communication link

the level of security that data sent on links must satisfy to protect in-

vehicle communications from cyber threats such as eavesdropping, 

integrity and spoofing. 

The proposed security extensions  are: 

confidentiality and integrity of the exchanged information

– The security requirement can assume one of the following values: 

none, conf, integr,  both. 



AUTOSAR extensions in Rhapsody



AUTOSAR secure flow analysis

Abstract interpretation

An AUTOSAR model satisfies data secure flow if data sent on a link at run-

time, always have a security requirement and a trust level not lower than 

those specified by the security annotations.

For each link, we compute:

- the lowest trust level of data sent on the link

- the lowest security requirement of data sent on the link

Information flow analysis

Deps(p); set of ports 

on which data sent 

at port p depends

Lattice of security levels



AUTOSAR secure flow analysis

glb: greatest lower bound  between levels

lub: least upper bound  between levels



Data flow analysis: Deps(p)

p1 p2

p1+p2

p3

p2+p3p1+p3

p1+p2+p3
We have a level for each port

Lattice of levels

Abstract Interpretation framework: abstract execution of the 

runnables using port levels instead of real data

Deps(p):  ports on which data sent at port p depends



The abstract interpreter: EXEC

Each  runnable is executed starting from the abstract 

memory and the context file, and applying the abstract rules.

All branches of conditional/iterative instructions are 

always executed, due to the loss of real data in the 

abstract semantics



Abstract sematics

A POINTER is assumed to be simple variable, that maintains the dependencies of 
the pointer, plus the dependencies of the pointed data in the abstract execution.

An ARRAY is assumed to be a simple variable, that maintains the whole 

dependencies of each element in the array.

A STRUCTURED VARIABLE is mapped to a set of simple variables, one for each 
member (we use the notation, as usual). If we have a variable data that is a 
structure with two fields a and b, we map such variable into two simple variables, 
data:a and data:b, respectively.

RTE function for reading from or writing onto ports are mapped to read and 

write of the port variable.

For simplicity, the name of the port variable is equal to the name of the port.

RTE functions that invoke remote services trigger the runnable that 

implements the service. The function implementing the service is invoked.



The context file



The context file



Analysis of an AUTOSAR model

Iterative analysis until the fixpoint is reached
R: set of all runnables
A: security context

The analysis of Deps scales up, since runnables of AUTOSAR software 
components are analysed separatly.



Tool



EXEC



99

Generating models that satisfy data secure flow property

using Deps 

Let us consider a link  L = (q, p).

- Let A be the set of components that are the owner of ports in 

Deps(p). 

Data sent on L depends only on the components in A

- Let B be the set of links such that the source and the destination port 

of the link belong to Deps(p)

- Data sent on L depends only on the links in B

We use this information to assign the correct levels to components and 

links in the AUTOSAR model.

In the following, level(X) is  the annotation assigned to X in the model.



100

Generating models that satisfy data secure flow property

using Deps 

Given an AUTOSAR security annotated model,  if the model does not satisfy data 
secure flow, we assign the correct levels as follows: 

For each link L, 

let <T, S> be the pair <trust level, security requirement> that data sent  on L must 
satisfy according to the annotations.

Let A and B  be the set of components and the set of links on which data sent on L 
depend, computed using Deps.  

For each component A1 in A, the level of A1 is set equal to lub(level(A1), T), the 
component must have no lower trust level than T.

For each link B1 in B, the level of the link is set equal to lub(level(B1), S), the link 
must have no lower security requirement than S.



An example: Front Light Manager 

Front Light Manager use case described in   the standard documents of AUTOSAR

Safety Use Case Example, release 4.2.2. http://www.autosar.org/fileadmin/files/
releases/4-2/software-architecture/safety-and security/auxiliary/
AUTOSAR_EXP_SafetyUseCase.pdf



Front Light Manager model 
Security annotations:       Daytime_running_lights : High    FLM_TO_DRL :  integr

Data secure flow
is not satisfied

data sent on the
link FLM_TO_DRL 
are not protected 
along the path 
from the sources to 
the destination

Simplest solution: assignment of high trust level to Front_light_manager, Headlight_request, 
Daytime_light_request, Light_switch, Ignition_key, Power_supply.   Similarly for links.

We use Deps to correctly annotate the model.



103

An example of component: Front_light_manager



104

% global variables
int HR_voltage_threshold1;
int HR_voltage_threshold2;
int DLR_voltage_threshold1;

...

% inter runnable variables

int16_t FLM_IRV1;

int16_t FLM_IRV2;

int16_t DLR_IRV1;

...

% ports

int in1;

int in2;

...

int out1;

int out2;

...

% functions

void flm_Runnable1() 0;

void flm_Runnable2() 0;

.....

% links

out2 -> in7;

out1 -> in6;

Information for generating the context



Analysis of dependencies

Initial dependencies



Analysis of dependencies

For example, port in6 depends on ports in1,in2,in3, in6 and out1

Final dependencies



Front Light Manager final model

the output port of Front light manager connected to the Daytime_running_lights (out5 in our 
implementation) does not depend on the input port connected to the Headlight request 
component (in6 in our implementation)

Model that  satisfies data  secure flow  property



Abstract interpretation allows automated verification of secure information flow in programs

Intermediate level between typing approaches and sematics-based approaches

Analysis can be improved to reduce the number of false positive

Other works

• Secure information flow in .NET applications (master thesis)

• Secure information flow in concurrent programs (paper)

Future work

• Privacy of data in Android smart phones

• Malicious Colluding apps

• Privacy of data in medical app

Conclusions



Thank you for your attention!

Prof. Cinzia Bernardeschi

Dipartimento di Ingegneria dell’Informazione

Università di Pisa

cinzia.bernardeschi@unipi.it



Combining Abstract Interpretation  and Model



111

Security by Abstract Interpretation 
+ Model Checking

Abstract interpretation

• abstract domain of values

• execute the program operating over abstract domain

• abstract semantics = structure representing all executions in a finite 

way  

Model Checking

Model check the abstract semantics against temporal logic formulae 

expressing the expected behavior



112

Implementation in SMV

• SMV model checker

• Kripke structure

• CTL logic 

• Specifications = assertions on the state variables 

and on the paths of the system.



113

Implementation in SMV

SIF= 

and x in L AG ((PC = i) and P[PC]= halt) 

 ((MEM[x]=L) or (MEM[x]=(j,L))) ;


