
Java bytecode verification for secure information flow ∗

Marco Avvenuti , Cinzia Bernardeschi and Nicoletta De Francesco
Dipartimento di Ingegneria dell’Informazione

Università di Pisa
Via Diotisalvi 2, I-56126 Pisa, Italy

{m.avvenuti,c.bernardeschi,n.defrancesco}@iet.unipi.it

ABSTRACT
Security of Java programs is important as they can be exe-
cuted in different platforms. This paper addresses the prob-
lem of secure information flow for Java bytecode. In infor-
mation flow analysis one wishes to check if high security data
can ever propagate to low security observers. We propose
a static analysis similar to the type-level abstract interpre-
tation used for standard bytecode verification. Instead of
types, our technique works with secrecy levels assigned to
classes, methods’ parameters and returned values, and han-
dles implicit information flows. A verification tool based
on the proposed technique is under development. Using
the tool, programs downloaded from untrusted hosts can
be checked locally prior to executing them.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—mechanical
verification, specification techniques; D.2.4 [Software En-
gineering]: Software/Programs Verification—formal meth-
ods, validation

General Terms
Languages, Security, Theory, Verification

Keywords
Data protection, information flow, Java bytecode, static anal-
ysis, verification tool

1. INTRODUCTION
The Java run-time system allows programs compiled into
the Java Virtual Machine bytecode language (JVML) [18]
to be dynamically downloaded. There are situations where
the secrecy of sensitive data stored on the host where the
bytecode executes is at risk. For example, assume that the

∗This work was supported by Fondazione Cassa di
Risparmio di Pisa, Italy (N. PR02-182).

downloaded code has access to the user’s private data in
order to compute some information. If the program also
communicates over the Internet, the private data could be
leaked. Users have the option of preventing information re-
lease by using the access control mechanism. However, this
can be in some cases unsuitable, since useful programs gen-
erally need access to private files and to communication re-
sources in order to perform their tasks.

To address this problem, we can adopt a security policy that
grants access to private data based on the program’s needs,
but, at same time, we should check if high security data can
ever propagate to low security observers. To define the pri-
vacy of data and to control the allowed information flow oc-
curring during program execution, we can use a multi-level
security model. System’s resources, besides being charac-
terized by access rights, are also assigned a secrecy level.
The secrecy levels are partially ordered in a lattice, and it is
required that information at a given secrecy level does not
flow to lower levels. This property is called secure informa-
tion flow and has been addressed in many papers [10, 2, 4,
12, 19, 17, 1, 20, 14, 5].

For example, a file can have read access right, but it can be
required that the information it holds is not transferred into
a public file. In this case, the data read from the file are
private, i.e. data are considered to have a high secrecy level.
A secrecy level can be assigned to the input and the out-
put of a program, according to the files taken as input and
produced as output by the program itself: the input/output
corresponding to a file containing private information will be
assigned a high secrecy level, while the input/output corre-
sponding to a public file will be assigned a low secrecy level.
The program has secure information flow if every output
having a given secrecy level does not depend on any input
at higher secrecy levels.

This paper describes a technique that helps to protect sen-
sitive data on the host by detecting illegal information flows
in Java bytecode. Previous work in bytecode verification for
secure information flow has based on model checking to per-
form the verification [7, 9]. Our approach strives to analyz-
ing the code directly. A program is checked before execution,
applying a technique similar to the type-level abstract inter-
pretation used for verifying the bytecode correctness. Here,
the algorithm adopted by the standard bytecode Verifier is
applied to the domain of secrecy levels instead of types.

ACM SIGPLAN Notices 20 Vol. 38(12) Dec 2003

Secure information flow verification is performed on a per-
method basis, assigning secrecy levels to classes, methods’
parameters and returned values. As a value used inside
the scope of a conditional branch depends on the condition
tested by the instruction, a main point is the handling of
implicit information flows due to conditional branches. A
fixpoint iteration is applied: the fixpoint shows, for each in-
struction, the least upper bound of secrecy levels every value
in a register or in the operand stack depends on. Illegal
information flows may occur with instructions performing
instance variable update, method invocation or return.

A prototype tool based on the technique presented in the
paper is under development. The tool can be added to the
host’s protection resources. The bytecode should be subject
to this static verification before being executed. Since the
verification is performed by the executing machine itself, the
downloading of code from untrusted hosts can be allowed.

2. BACKGROUND
We consider the subset of JVML shown in Figure 1. The
JVM is a stack machine manipulating an operand stack and
a set of local registers for each method, and a heap contain-
ing object instances [18]. The instructions are typed. In the
figure, α means a set of types: for example, iload represents
loading an integer value, aload represents loading an object
reference. putfield and getfield instructions are used to
write and read object fields, respectively. To begin with, we
consider methods having one and only one parameter and
assume no dynamic object creation. Also, we do not con-
sider subroutines, used in Java to implement exceptions. We
will add these features in further work.

The bytecode of a method is a sequence B of instructions.
When a method is invoked (invoke instruction), it executes
with a new empty stack and with an initial memory where
all registers are undefined except for the first one, register
x0, that contains the reference to the object instance on
which the method is called, and register x1, that contains
the actual parameter. When the method returns, control
is transferred to the calling method: the caller’s execution
environment (operand stack and local registers) is restored
and the returned value, if any, is pushed onto the operand
stack.

We give the semantics of the language as a set of inference
rules. We consider a set C of class definitions and a set
Objects = {r1, ..rn} of references to instances of the classes
in C. We denote by O = Objects → ObjectV alues the
domain of object valuations, i.e. the functions assigning a
value to each object in Objects. Figure 2 reports the rules
for some instructions. An execution state of a method C.mt
is a tuple (B, i, M, S), where B is the bytecode correspond-
ing to C.mt, i is the address held by the program counter,
M : Registers → V alues is the local memory, representing
the current state of the local registers of B, and S ∈ V alues∗

is the current state of the operand stack. Given x, we denote
by M(x) the contents of x in the memory M . The initial
state of the execution of a method C.mt is (B, 0, M0, λ),
where 0 is the address of the first instruction, M0(x0) and
M0(x1) are set to the reference to the object and to the
actual parameter, respectively; the other registers are un-
defined. We denote by Ω the domain of the states of all

pop Pop top operand stack element.
dup Duplicate top operand stack element.
αop Pop two operands with type α off the

operand stack, perform the operation
op ∈ { add, mult, compare .. },
and push the result onto the stack.

αconst d Push constant d with type α onto the
operand stack.

αload x Push the value with type α of the
register x onto the operand stack.

αstore x Pop a value with type α off the operand
stack and store it into local register x.

ifcond j Pop a value off the operand stack, and
evaluate it against the condition
cond = { eq, ge, null, ... };
branch to j if the value satisfies cond.

goto j Jump to j.
getfield C.f Pop a reference to an object of class C

off the operand stack; fetch the object’s
field f and put it onto the operand stack.

putfield C.f Pop a value k and a reference to an
object of class C from the operand stack;
set field f of the object to k.

invoke C.mt Pop value k and a reference r to an
object of class C from the operand stack;
invoke method C.mt of the referenced
object with actual parameter k.

αreturn Pop the α value off the operand stack
and return it from the method.

Figure 1: Instruction set.

methods. A state of the system execution is a pair 〈A, O〉
where A ∈ Ω∗ is the activation stack and O ∈ O is the
current state of the objects. O(r.f) denotes the contents of
field f of object r.

M [k/x] is used to indicate the memory M ′ which agrees with
M for all registers, except for x, for which it is M ′(x) = k.
Similarly, O[k/r.f] indicates the object valuation O′, which
differs from O only on field f of object r, which is assigned
k. The rules of the semantics define a transition relation
−→ between states. We denote as

∗−→ the reflexive and
transitive closure of −→.

The bytecode is subject to a static analysis called bytecode
verification, whose purpose is to make sure that the code is
well typed [11]. The verification consists in executing a data-
flow analysis applied to a type-level abstract interpretation
of the virtual machine. The abstract interpreter manipu-
lates stacks of types and registers of types and simulates
the execution of instructions at the level of types. Bytecode
verification has been formalized as fixpoint construction in
[15].

3. THE SECURITY MODEL
We assume a lattice Σ of secrecy levels, among which a par-
tial order relation v is established. Let σ0 be the bottom
element of Σ. Given a set of class definitions C, a security
specification S : C → Σ associates to each class C ∈ C a se-
crecy level. We assume that all instances and all attributes

ACM SIGPLAN Notices 21 Vol. 38(12) Dec 2003

load
B[i] = αload x

〈(B, i, M, S) ·A, O〉−→〈(B, i + 1, M, M(x) · S) ·A, O〉

getfield
B[i] = getfield C.f

〈(B, i, M, r · S) ·A, O〉−→〈(B, i + 1, M, O(r.f) · S) ·A, O〉

putfield
B[i] = putfield C.f

〈(B, i, M, k · r · S) ·A, O〉−→〈(B, i + 1, M, S) ·A, O[k/r.f]〉

invoke
B[i] = invoke C.mt B′ is the bytecode of C.mt

〈(B, i, M, k · r · S) ·A, O〉−→〈(B′, 0, M [r/x0][k/x1], λ) · (B, i + 1, M, S) ·A, O〉

return
B[i] = αreturn

〈(B, i, M, k · λ) · (B′, j, M ′, S) ·A, O〉−→〈(B′, j, M ′, k · S) ·A, O〉

Figure 2: Standard semantics rules

of a class have the level of the class. We denote by Mtds(C)
the methods belonging to the classes in C. We now define
the σ-secure information flow for a method in Mtds(C). The
definition is parametric with respect to a security specifica-
tion S, an assignment P : Mtds(C) → Σ of a secrecy level
to the parameter of each method in Mtds(C), and an as-
signment R : Mtds(C) → Σ of a secrecy level to the return
value of each method. A method has secure information
flow if two executions of the method starting from object
valuations that agree on the objects with secrecy level v σ,
and with the same value for the parameter, if it has a se-
crecy level v σ, produce object valuations that agree on the
objects with secrecy level v σ, and return the same value if
the method return is v σ. Given a valuation O ∈ O and a
secrecy level σ, we denote by O ↓σ the restriction of O to
the objects with secrecy level v σ.

Definition 1 (method’s secure information flow).
Let C be a set of class definitions and Objects a set of object
instances of classes in C. Let σ ∈ Σ. Given S : C → Σ
and P,R : Mtds(C) → Σ, a method C.mt ∈ Mtds(C) has σ-
secure information flow with respect to S,R,P (it is S,R,P-
σ-secure) if the following property holds:

Let B the bytecode corresponding to C.mt. Let O1, O2 ∈ O
with O1 ↓σ= O2 ↓σ. Let M1 and M2 such that

- M1(x0) = M2(x0)

- M1(x1) = M2(x1) if P(C.mt) v σ

- M1(x) = M2(x) = undefined for each x 6= x0, x1

〈(B, 0, M1, λ) · λ, O1〉
∗−→〈(B, i, M̄1, S̄1) · λ, Ō1〉

with B[i] = αreturn and

〈(B, 0, M2, λ) · λ, O2〉
∗−→〈(B, j, M̄2, S̄2) · λ, Ō2〉

with B[j] = αreturn

implies

- Ō1 ↓σ= Ō2 ↓σ

- if S̄1 = k1, S̄2 = k2, and R(C.mt) v σ, then k1 = k2

C.mt is S,R,P-secure if it is S,R,P-σ-secure for each σ ∈
Σ.

Information flow in the bytecode of a method can be explicit
or implicit. We have explicit flow when an assignment is
executed. We have implicit flow when a value is used inside
the scope of a conditional instruction, as it depends on the
condition tested by the instruction. A violation of secure
information flow occurs when an object field is assigned a
value depending, explicitly or implicitly, on a flow with a
higher secrecy level.

Consider the bytecode shown in Figure 3, corresponding to
a method mt of a class A. Suppose that register x1 (the pa-
rameter of A.mt) contains a reference to an object of another
class B. Moreover, assume that the secrecy level of class B is
higher than the secrecy level of class A: S(A) < S(B). Note
that register x0 contains a reference to A. After the bytecode
has been executed, the final value of field f1 of the object
of class A is 0 or 1 depending on the value of field f2 of the
object of class B.

The example code represents an represents an implicit in-
formation flow. Secure information flow is violated since
checking the final value of A.f1 reveals information on the
value of the higher secrecy field B.f2. Explicit and implicit
information flows are propagated also by method call and
return.

0 : aload x0
1 : aload x1
2 : getfield B.f2
3 : ifge 6
4 : iconst 0

5 : goto 7
6 : iconst 1

7 : putfield A.f1
8 : iconst 1

9 : return

Figure 3: An implicit flow

4. THE METHOD
The Information Flow Verification algorithm for Java byte-
code (briefly JBIFV) behaves in a way similar to that of

ACM SIGPLAN Notices 22 Vol. 38(12) Dec 2003

the standard Java bytecode verifier, which checks the byte-
code for correctness. In JBIFV values, instead of being ab-
stracted onto types, are abstracted onto secrecy levels. The
main difference between types and secrecy levels is that,
while types are ”context-free”, the secrecy level of a value
depends on the context in which the value is manipulated
(implicit flows).

We assume that the bytecode which JBIFV is applied to
is correct from the point of view of standard verification.
JBIFV takes as input a set C of classes, an assignment
S : C → Σ of a secrecy level to the classes and an assignment
P,R : Mtds(C) → Σ of a secrecy level to the parameter and
the result of each method in Mtds(C). As well as standard
verification does, JBIFV verifies a method in Mtds(C) at
a time, assuming that, when verifying a method, the other
methods satisfy secure information flow. During the ab-
stract execution of the bytecode made by JBIFV, each value
is represented by the secrecy level corresponding to the least
upper bound of the secrecy levels of the information flows,
both explicit and implicit, the value depends on. To han-
dle implicit flows, the interpreter executes instructions un-
der a security environment, which represents the least upper
bound of the secrecy levels of the open implicit flows when
the instruction is executed. Moreover, the notion of imme-
diate postdominator in control flow graphs is used.

Given a bytecode B, the control flow graph of the bytecode
is the directed graph (V, L), where V is the set of nodes, one
for each instruction; and L ⊆ V × V contains the edge (i, j)
if and only if the instruction at address j can be immediately
executed after that at address i. For simplicity, we assume
that the control flow graph has one and only one final node.
If i, j ∈ V , j postdominates i, denoted by j pd i, if j 6= i and
j is on every path from i to the final node. j immediately
postdominates i, denoted by j = ipd(i), if j pd i and there
is no node r such that j pd r pd i.

Data manipulated under a security environment E are con-
sidered to have as secrecy level at least E. When a con-
ditional branching instruction at address i is executed, the
environment is possibly upgraded to take into account the
secrecy level of the tested value. Every instruction belonging
to a branch starting from i is executed under this environ-
ment. The instruction where all the branches starting from
i join is the first instruction not executed conditionally. If
we consider the control flow graph of the program, this in-
struction is the immediate postdominator of i [3].

4.1 The interpreter
JBIFV performs an abstract execution of the bytecode of
a method. Each instruction i is assigned a state Qi, rep-
resenting the state in which instruction i is executed. Qi

is an abstraction of the JVM’s state before the execution of
i. Qi is a triple (M, S, E), where M : Registers → Σ is a
mapping from local registers to secrecy levels (the memory)
, S ∈ Σ∗ is a mapping from the elements in the operand
stack to secrecy levels (the stack) and E ∈ Σ is the secrecy
level of the environment.

A partial order relation on the domain of the states cor-
responding to the instructions is defined. This relation is
induced from the ordering relation among secrecy levels.

Given two memories M1 and M2, M1 v M2 iff for each
register x, it is M1(x) v M2(x). The domain of stacks has
a bottom element, ⊥S , which is v of all stacks. Given two
stacks S1 and S2 different from ⊥S , S1 v S2 iff S1 and S2

have the same length and each item in S1 is v of the item
occurring in S2 in the same position. Stacks with different
length are unrelated. Given two states Qi = (M, S, E) and
Q′

i = (M ′, S′, E′), Qi v Q′
i iff M v M ′, S v S′, E v E′.

The least upper bound operation on states corresponding to
instructions is defined point-wise on memories, stacks and
environments:
(M, S, E) t (M ′, S′, E′) = (M tM ′, S t S′, E t E′).

The abstract interpreter uses also a restriction of the least
upper bound operation, denoted as tM,S . tM,S performs
the least upper bound on the memory and the stack, and
returns the environment of the first operand (this operation
is not commutative):
(M, S, E) tM,S (M ′, S′, E′) = (M tM ′, S t S′, E).

The abstract interpreter uses a global state Q of the method
execution. Given a bytecode with n instructions, Q is the
sequence of the states Qi, one for every instruction i of the
bytecode. Moreover, Q includes also a special state, named
Qf , that does not correspond to any instruction, but repre-
sents the final state reached after the execution of the last
instruction of the method.

The domain of global states contains a special state error.
Global states are partially ordered according to the relation
on the state of every instruction: Q v Q′ iff ∀i, Qi v Q′

i.
Moreover, error is the top element of the domain of global
states: Q v error for every Q.

The abstract interpreter is based on a set of rules: there is
a rule for each kind of instruction. The interpreter builds
a chain of global states {Qj}, where each state is obtained
by the preceding one by means of the application of a rule.
Figure 4 shows the rules of JBIFV. In the same figure, the
shorthand Qr := Qrt(· · ·) is used. It means that the global
state Q is the same except that for state Qr (corresponding
to instruction r), which is changed as specified by the right
hand side of the := operator.

The abstract execution is defined by starting from an initial
global state that reflects the state of the JVM on method
entrance. Given a method C.mt, the initial global state Q0

is the sequence of the initial state Q0
i = (M0

i , S0
i , E0

i) of
every instruction i, which is defined as follows. If i 6= 0, i.e.
i is not the first instruction:

- M0
i (x) = σ0 for each register x

the contents of the registers is set to the minimum
secrecy level;

- S0
i = ⊥S

the stack is set to the bottom element of the domain
of stacks;

- E0
i = σ0

the security environment is set to the minimum one.

ACM SIGPLAN Notices 23 Vol. 38(12) Dec 2003

pop
c[i] = pop, Qi = (M, k · S, E)
Qi+1 := Qi+1 ti+1 (M, S, E)

dup
c[i] = dup Qi = (M, k · S, E)

Qi+1 := Qi+1 ti+1 (M, (k t E) · (k t E) · S, E)

op
c[i] = αop Qi = (M, k1 · k2 · S, E)

Qi+1 := Qi+1 ti+1 (M, (k1 t k2 t E) · S, E)

load
c[i] = αload x Qi = (M, S, E)

Qi+1 := Qi+1 ti+1 (M, (M(x) t E) · S, E)

store
c[i] = αstore x Qi = (M, k · S, E)

Qi+1 := Qi+1 ti+1 (M [(k t E)/x], S, E)

const
c[i] = αconst d Qi = (M, S, E)
Qi+1 := Qi+1 ti+1 (M, E · S, E)

if ∈IF
c[i] = ifcond j, i ∈ IF, Qi = (M, k · S, E)

Qi+1 := Qi+1 ti+1 (M, S, (k t E));
Qj := Qj tj (M, S, (k t E))

if 6∈IF

c[i] = ifcond j, i 6∈ IF, Qi = (M, k · S, E), Qipd(i) = (M ′, S′, E′)
Qi+1 := Qi+1 ti+1 (M, S, (k t E));

Qj := Qj tj (M, S, (k t E));
Qipd(i) := (M ′, S′, E)

goto
c[i] = goto j

Qj := Qj tj Qi

getfield
c[i] = getfield C1.f Qi = (M, r · S, E)
Qi+1 := Qi+1 ti+1 (M, (S(C1) t E t r) · S, E)

putfield
c[i] = putfield C1.f Qi = (M, k · r · S, E), k t r t E v S(C1)

Qi+1 := Qi+1 ti+1 (M, S, E)

invoke
c[i] = invoke C1.mt1 Qi = (M, k · r · S, E) k t E v P(C1.mt1), r t E v S(C1)

Qi+1 := Qi+1 ti+1 (M, (R(C1.mt1) t E t r) · S, E)

return
c[i] = αreturn Qi = (M, k · S, E) (k t E) v R(C.mt)

Qf := Qf tf (M, S, E)

putfield err
c[i] = putfield C1.f Qi = (M, k · r · S, E), k t r t E 6v S(C1)

Q := error

Figure 4: Rules of the secure information flow verification of method C.mt

ACM SIGPLAN Notices 24 Vol. 38(12) Dec 2003

The initial state of the first instruction differs from the def-
inition above for the initialization of registers x0 and x1, of
the security environment, and of the stack:

- M0
0 (x0) = S(C)

x0 (containing the reference to the object in the con-
crete semantics) is initialized with the level specified
for the class to which the object belongs to;

- M0
0 (x1) = P(C.mt)

x1 (containing the parameter in the concrete seman-
tics) is initialized as specified for the parameter of
C.mt;

- S0
0 = λ

the stack is empty;

- E0
0 = S(C)

the environment is initialized to the level specified for
the class to which the object belongs.

When the rule for instruction i is applied,

1. the state after i is calculated, abstractly executing i
in state Qi. For example, if i: load x is executed,
and Qi = (M, S, E), the state Q̄i after i has the same
memory and the same environment of Qi, and the least
upper bound between the contents of x in M and the
environment E is pushed onto S;

2. the state Q̄i after i is merged with the state of all
successive instructions of i. Let j be a successive in-
struction of i. The merge is performed by a least upper
bound calculation between the original value of Qj and
the state Q̄i. For example, the state after i: load x
is merged with Qi+1.

As a consequence, if an instruction i has several predecessor
instructions, Qi is the least upper bound of the states after
all the preceding instructions.

The rules for the instruction if need some explanation.
When the instruction i: if j is executed

1. the environment of the two successive instructions (i+
1 and j) is upgraded to take into account the secrecy
level of the condition tested by the instruction (the top
of the stack);

2. the environment of state Qipd(i) is set to the environ-
ment of Qi, as the implicit flow caused by i terminates
at ipd(i). However, this must not be done for every if

instruction: when we have nested if instructions shar-
ing the same ipd, the instruction at address ipd must
be executed under the security environment of the out-
ermost if. For example, suppose ipd(i) = ipd(i′),
where i and i′ are addresses of two nested if instruc-
tions. If i is the outermost if, the environment of
state Qipd(i) must be updated when the instruction
at address i is executed. Instead, the execution of
the if instruction at address i′ does not change state

Qipd(i′) = Qipd(i). To this purpose, we define IF as
the set containing the address of nested if instructions
which share the ipd with the corresponding outermost
if. There are two rules for if j in Figure 4. If i ∈ IF ,
then rule if ∈ IF is applied, updating only Qi+1 and
Qj . If i 6∈ IF , the other rule is applied. The rule also
modifies the environment of Qipd(i).

Finally, for every instruction j, such that j = ipd(i) and
i : if, the execution of an instruction preceding j must not
modify the environment of state Qj , since this environment
is set when the interpreter executes i. The restricted version
of the upper bound operation tM,S is used in this case by
the interpreter. In the rules, we use the notation tr, which
is a shorthand to avoid the duplication of rules:

tr =

{
tM,S if ∃j | r = ipd(j)
t otherwise

The rule for getfield C1.f pushes onto the stack the least
upper bound between the secrecy level of C1 (which is also
the secrecy level of C1.f), the secrecy level of the reference
to C1 (which may be different from S(C1)) and the environ-
ment.

The abstract interpreter performs a standard fixpoint iter-
ation: the transition functions are applied according to the
rules in Figure 4. A violation of secure information flow may
be discovered when applying the rules for putfield, invoke
and return:

- putfield C1.f

it is checked that the level of the value to be written in
C1.f is less than or equal to the secrecy level of class
C1. This level is the least upper bound among the top
of the stack, the level of the reference to C1 and the
environment;

- invoke C1.mt1

it is checked that the least upper bound between the
level of the parameter (the top of the stack) and the en-
vironment is less than or equal to P(C1.mt1), and the
least upper bound between the level of the reference
and the environment is less than or equal to S(C1).
In the state after this instruction, the return value of
C1.mt1 is pushed onto the stack. It is the least upper
bound among the level of the reference, the environ-
ment and the level as specified by R(C1.mt1);

- return

it is checked that the least upper bound between the
level of the returned value (the top of the stack) and
the environment is less than or equal to the level spec-
ified by R(C.mt).

We assume that, if an error is discovered, the corresponding
global state is set to error, which is the topmost element
of the domain of global states. This means that a second
rule must be added for putfield, invoke and return. In
Figure 4 we show only the rule for putfield.

ACM SIGPLAN Notices 25 Vol. 38(12) Dec 2003

(M(x0), M(x1)) Stack Env.
Q0 (l, h) λ l
Q1 (l, h) (l) l
Q2 (l, h) (hl) l
Q3 (l, h) (hl) l
Q4 (l, h) (l) h
Q5 (l, h) (hl) h
Q6 (l, h) (l) h
Q7 (l, h) (hl) l
Q8 (l, l) ⊥S l
Q9 (l, l) ⊥S l
Qf (l, l) ⊥S l

Figure 5: An example

In the formulation of the following two propositions, we as-
sume a set C of class definitions, and a security specification
S : C → Σ for the classes and for the methods’ parameter
and result P,R : Mtds(C) → Σ.

Proposition 1. Consider a method C.mt in Mtds(C).
Consider a corresponding chain {Qj} where, for each 0 ≤ j,
Qj+1 is obtained by Qj by means of the application of one
of the rules in Figure 4.

1. For each j, Qj v Qj+1

2. ∃n such that t{Qj} = Qn

3. If {Qr} is another chain obtained by a different order
of application of the rules, t{Qr} = t{Qj}

The above proposition means that the fixpoint of the itera-
tion process is reached with a finite number of iterations and,
moreover, it does not depend on the order of application of
the rules. The following proposition states the correctness
of the method.

Proposition 2. Consider a method C.mt ∈ Mtds(C) and
a corresponding chain {Qj}. If t{Qj} 6= error, then C.mt
is S,R,P-secure.
Proof sketch. The proof is based on the work of some of
the authors and others [5, 6, 7]: there, an abstract semantics
for the bytecode, similar to the one used in the present paper,
is defined as an abstraction of a concrete semantics, anno-
tating data with security information and including checks
on violation of secure information flow.

Figure 5 shows the application of the abstract interpreter to
the example of Figure 3. We assume two secrecy levels Σ =
{l, h} with l < h (l is the secrecy level for public data and
h is the secrecy level for private data). Moreover, S(A) = l,
S(B) = h, P(A.mt) = h and R(A.mt) = l. It is IF = {}
and ipd(3) = 7. The figure shows the global state of the
interpreter before the application of the rule for
7: putfield A.f1. An error is discovered since ktrtE 6v
S(A) : h t l t l 6v l.

5. THE TOOL
Based on the method described above, we are developing
a prototype tool that performs the abstract execution of
the subset of JVML shown in Figure 1. The tool examines
a class file in a method-by-method manner. The bytecode
which the tool is applied to must be type-safe, i.e., it already
passed the standard verification. The tool is written in Java,
and is composed of the following building blocks:

parser: reads information from the class file to be exam-
ined. For each method, gets the bytecode, the number
of memory registers, and the stack size.

levelManager: asks the user to assign security levels to
the class and, for each method, to the parameters and
to the return value, if any.

ipdManager: builds the ipd table.

abstractInterpreter: implements the core interpreter as
described below. For each instruction of type putfield,
invoke and return, visualizes the actual and the re-
quired security levels of information flows.

Prior to analyzing a method’s bytecode, the following oper-
ations are performed:

• The instructions belonging to the method are loaded
in a byte array.

• The state of the instructions in the global state are
initialized as described in Section 4.1.

• A table is built that contains, for each conditional
branch, the address of the corresponding ipd instruc-
tion. The set IF is calculated.

When analyzing a method’s bytecode, the rules are applied
over the instructions. In the implementation of the fixpoint
iteration, the order of application of rules follows the or-
der of the control flow graph. The execution starts from
the first instruction, i.e. the instruction at address 0 and
continues until either a return instruction is reached or the
program counter points to an already executed instruction
whose state has not changed after the execution of the pre-
ceding instruction. For each instruction, the following ac-
tions are taken:

1. build the state after the execution of the instruction
as specified by the corresponding rule;

2. if the instruction under execution is a putfield or an
invoke or a return instruction, check if an error occurs
by comparing the actual security levels with the one
required by the premise of the rule;

3. using the state built at step 1, change the state of
the next instructions, if any. All instructions have one
successor, except for conditional branches that have
two, and return that has none;

ACM SIGPLAN Notices 26 Vol. 38(12) Dec 2003

4. if the instruction is a conditional branch, at address
i, recursively analyze the bytecode belonging to both
branches. Each branch starts at one of the two succes-
sors’ instructions and terminates at ipd(i). When the
analysis of both branches is complete, the environment
of ipd(i) is set to that of i;

5. set the program counter to the address of the next in-
struction. In the case of conditional branches, the next
instruction is the ipd instruction, since both branches
have been already analyzed. The return instruction
has no successor and the program counter is set to null.

6. RELATED WORK AND CONCLUSIONS
Works addressing secure information flow for stack based
languages are [6, 8, 7, 9]. In [6, 8] some of the authors
and others define an approach based on abstract interpre-
tation of the operational semantics of the language: values
are abstracted onto secrecy levels and a small step abstract
semantics is presented, producing a transition system repre-
senting all possible executions. In these works objects and
method calls are not handled. In [7, 9] a combination of
abstract interpretation and model checking is used: the ab-
stract transition system is model checked against a set of
logic formulas expressing the secure information flow prop-
erty (and other security properties). The work [9] concerns
secure information flow in Java smart cards.

The main advantage of the method proposed in the paper
is that the verification can be performed inside the Java
environment, and does not rely on any extra verification
tool, as it happens with methods based on model checking.

As a future work, we intend to complete the prototype tool
to cover the full JVML. Moreover, we are investigating the
feasibility of applying the proposed method to the verifica-
tion of the secure information flow among applets in Java
smart cards [13, 16].

7. REFERENCES
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A

core calculus of dependency. In 26th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages Proceedings, pages 147–160.
Texas, Usa, 1999.

[2] G. R. Andrews and R. P. Reitman. An axiomatic
approach to information flow in programs. ACM
Trans. Program. Lang. Syst., 2(1):56–76, 1980.

[3] T. Ball. What’s in a region? or computing control
dependence regions in near-linear time for reducible
control flow. ACM Letters on Program. Lang. Syst.,
2(1-4):1–16, 1993.

[4] J. Banatre, C. Bryce, and D. L. Métayer.
Compile-time detection of information flow in
sequential programs. LNCS, 875:55–73, 1994.

[5] R. Barbuti, C. Bernardeschi, and N. D. Francesco.
Abstract interpretation of operational semantics for
secure information flow. Information Processing
Letters, 83(2):101–108, 2002.

[6] R. Barbuti, C. Bernardeschi, and N. D. Francesco.
Checking security of java bytecode by abstract
interpretation. In The 17th ACM Symposium on
Applied Computing: Special Track on Computer
Security Proceedings. Madrid, March 2002.

[7] C. Bernardeschi and N. D. Francesco. Combining
abstract interpretation and model checking for
analysing security properties of java bytecode. In
Third International Workshop on Verification, Model
Checking and Abstract Interpretation Proceedings,
pages 1–15. LNCS 2294, Venice, January 2002.

[8] C. Bernardeschi, N. D. Francesco, and G. Lettieri. An
abstract semantics tool for secure information flow of
stack-based assembly programs. Microprocessors and
Microsystems, 26(8):391–398, 2002.

[9] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V.Wiels,
and G. Zanon. Checking secure interactions of smart
card applets. In ESORICS 2000 Proceedings, 2000.

[10] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Comm. ACM,
20(7):504–513, 1977.

[11] X. Leroy. Java bytecode verification: an overview. In
13th International Conference on Computer Aided
Verification, LNCS 2102, Proceedings, pages 265–285,
July 2001.

[12] M. Mizuno and D. A. Schmidt. A security flow control
algorithm and its denotational semantics correctness
proof. Formal Aspects of Computing, 4:727–754, 1992.

[13] J. Possegga and H. Vogt. Bytecode verification for
java smartcards based on model checking. In
ESORICS 98 Proceedings, 1998.

[14] F. Pottier and S. Conchon. Information flow inference
for free. In ACM ICFP’00 Proceedings, pages 46–57,
2000.

[15] Z. Qian. Standard fixpoint iteration for java bytecode
verification. ACM Transactions on Programming
Languages and Systems, 22(4):638–672, 2000.

[16] E. Rose and K. Rose. Lightweight bytecode
verification. In WFUJ 98 Proceedings, 1998.

[17] A. Sabelfeld and D. Sands. A per model of secure
information flow in sequential programs. LNCS,
1576:40–58, 1996.

[18] L. T. and F. Yellin. The Java virtual machine
specification. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1996.

[19] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(3):167–187, 1996.

[20] S. Zdancewic and A. Myers. Secure information flow
and cps. LNCS, 2028:46–61, 2001.

ACM SIGPLAN Notices 27 Vol. 38(12) Dec 2003

