
Testing, Verification, and Validation

Friedrich v. Henke1 Cinzia Bernardeschi2 Paolo Masci2

Holger Pfeifer1 Hélène Waeselynck3

1Universität Ulm

2Università di Pisa

3LAAS-CNRS

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
1

waeselyn




Part I: Model Checking, Friedrich v. Henke

Part II: Theorem Proving, Friedrich v. Henke and Holger Pfeifer

Part III: Static Program Analysis, Cinzia Bernardeschi and Paolo Masci

Part IV: Introduction to Software Testing, Hélène Waeselynck



Part I

Model Checking

Friedrich v. Henke

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
2



Verification by Model Checking

Verification involves the checking or demonstration that an entity (a
system, a program etc.) has certain properties.

Verification requires
a description of the entity under consideration;
a specification of the property to be verified;
a methods of examining the entity with respect to the specified
property.

For model checking:
a description in form of a state transition system,
typically an abstraction of the concrete system or program.
the property is specified by a formula of a temporal logic,
the method of examination is given by an algorithms for checking
whether state transition system is a model of the specification
formula in the sense of formal logic.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
3



State Transition System

State transition systems serve as the “models” in model checking.

Formal characterization of a state transition systems:

M = (S ,→, L) with
S finite set of states
→ transition relation, i.e. → ⊆ S × S

such that for every s ∈ S there is a s ′ ∈ S with s → s ′ (∗)
L Labelling of states:

L : S → P(A), where A is a set of atomic labels

Intuitive meaning of labelling: every state is labelled by a set of
atoms (a conjunction of atomic propositions) that are true in that
state.

Condition (∗) ensures that each state has (at least) one successor state (there are no

“deadlocks”). This can always be achieved by adding a new state sd , a transition

sd → sd (a loop) and sufficiently many transitions si → sd .

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
4



Temporal Logics

Temporal logics permit us to express properties of sequences of discrete
points of time or states; i.e. contrary to what the term may suggest they
do not deal with continuous time.

The notion of truth is dynamic: in different states (i.e. at different points
in time) propositions may have different truth values.

In the context of model checking, two notions of time and corresponding
temporal logics are commonly used:

Branching time): Different possible future states are considered.

! CTL – Computation Tree Logic.

Linear time: A linear time line, represented by a totally order
sequence of points in time is considered.

! LTL – Linear-time Temporal Logic

This course presents first CTL.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
5



CTL: Syntax

The structure of CTL formulas is defined by the following BNF:

φ ::= ⊥ | ' | p |
(¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ ⇒ φ) |
AX φ | EX φ | AG φ | EG φ | AF φ | EF φ |
A [φ U φ] | E [φ U φ]

' und ⊥ represent the constants true and false; p represents an atomic
formula; the connectives are the usual ones from Propositional Logic.

The symbols AX etc. are temporal operators; each consists of two parts:

A (“Always”) and E (“Exists”) are kinds of quantifier over paths.

X (“neXt”), F (“Future”), G (“Globally”) and U (“Until”) refer to
states along a path.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
6



φ

φ

φ

EG φ – ”There exists a path such
that φ holds at every state along that
path”

φ

EF φ – ”There exists a path and
a state along that path such that φ

holds”

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
7



φ

φ

φφ φ

AFφ – ”Along every path there exists
a state such that φ holds at that state”

φ

φ φ

φ φ

φ

φ

φφ φ

AG φ – ”Along every path φ holds
at every state”

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
8



Semantics of CTL

The semantics of CTL formulas is defined by reference to state transition
systems as models.
The behaviour of a system is described by the possible execution paths,
i.e. sequence of transitions.
A path π of M is a sequence of states in S ,

s1, s2, . . . , si , si+1, . . .

such that si+1 is a successor state of si for every i ≥ 1, i.e. si → si+1 for
every i

The condition on the transition relation ensures that all paths are infinite.

A formula φ holding in a state s of model M is expressed by:

M, s |= φ

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
9



Semantics of CTL (2)

The relation |= is defined inductively over the structure of CTL formulas.

M, s |= ' and M, s ,|= ⊥ for all s ∈ S

M, s |= p iff p ∈ L(s)

M, s |= ¬φ iff M, s ,|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

Similarly for φ1 ∨ φ2 and φ1 ⇒ φ2

M, s |= AX φ iff M, s ′ |= φ for every s ′ with s → s ′

AX: “in every successor state”

M, s |= EX φ iff M, s ′ |= φ for some s ′ with s → s ′

EX: “in some successor state”

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
10



Semantics of CTL (3)

M, s |= AG φ iff M, si |= φ holds for every path
π : s = s1 → s2 → . . . and every si on π

AG: “On every path starting at s and at every state on that path”

M, s |= EG φ iff there exists a path π : s = s1→s2→ . . .
such that M, si |= φ for every state si on π.

EG: “There exists a path such that in every state on that path”

M, s |= AF φ iff on every path s = s1 → s2 → . . . there exists
a si such that M, si |= φ

AF: “for every path starting at s there exists a future state on the
path such that . . . holds ”

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
11



Semantics of CTL (4)

M, s |= EF φ iff there exists a path π : s = s1 → s2 → . . . and
a state si on π such that M, si |= φ

EF: “There exists a path starting at s and a future state on that
path such that . . . ”

M, s |= A [φ1 U φ2] iff every path s = s1 → s2 → . . . satisfies
φ1 U φ2, i.e.

there exists an si on the path such that M, si |= φ2 and
M, sj |= φ1 for every sj with j < i

AU: “For all paths starting at s φ1 holds until φ2 holds in a state.”

M, s |= E [φ1 U φ2] iff there exists a path s → s2 → . . . which
satisfies φ1 U φ2 (as above).

EU: “There exists a path starting at s on which φ1 holds (in every
state) until a state is reached at which φ2 holds.”

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
12



Equivalences of CTL Formulas

Two CTL formulas φ and ψ are semantically equivalent if they hold in
the same states of a model:

M, s |= φ if and only if M, s |= ψ

Notation: φ ⇔ ψ
Some important equivalences:

The usual propositional equivalences also hold for CTL subformulas.

“deMorgan-Regeln”: A und E bzw. G und F can be regarded as
universal and existentiel quantors, respectively, over paths and the
states along paths, respectively.
Hence the following relationships among operators hold:

¬AF φ ⇔ EG ¬φ ¬EF φ ⇔ AG ¬φ ¬AX φ ⇔ EX ¬φ

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
13



Equivalences of CTL Formulas (2)

Relationships between AF , AU, EF and EU:

AF φ ⇔ A [' U φ] EF φ ⇔ E [' U φ]

Characterisation of temporal CTL operators by fixed points:

AG φ ⇔ φ ∧ AX AG φ

EG φ ⇔ φ ∧ EX EG φ

AF φ ⇔ φ ∨ AX AF φ

EF φ ⇔ φ ∨ EX EF φ

A [φ U ψ] ⇔ ψ ∨ (φ ∧ AX A [φ U ψ]

E [φ U ψ] ⇔ ψ ∨ (φ ∧ EX E [φ U ψ]

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
14



Reduced Sets of CTL Operators

The relationships among CTL operators indicate how operators may be
replaced by combinations of others, thereby reducing the number of
required operators.

AX ! ¬EX ¬

AG φ ! ¬EF ¬φ ! ¬(E [' U ¬φ])

EG φ ! ¬AF ¬φ ! ¬(A [' U ¬φ])

This shows that the operators AU, EU and EX are sufficient.

Examples of other sufficient operator sets:

EG, EU, EX AG, AU, AX AF, EU, EX

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
15



Patterns of CTL Specifications

Certain forms of formulas occur frequently in specifications of practically
relevant properties; they can be identified as specification patterns.

Examples include:

“For any state, when a device is requested it will also be ready
eventually”:

AG (requested ⇒ AF ready)

“ready (e.g. for a process) is true infinitely often on every execution
path”:

AG (AF ready)

“terminated (e.g. for a process) will be reached in any case”:

AF (AG terminated)

“It is always (i.e. from every state) possible to reach the start state”:

AG (EF start)

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
16



Example: Mutual Exclusion

Mutual Exclusion is an important principle for concurrent processes: it is
to prevent several processes from simultaneously accessing a shared
critical resource.

A common implementation of mutual exclusion is by having a critical
region in each of the respective programs; a protocol determines under
which conditions a program may enter its critical region.

We assume that execution of processes is interleaved: each process
performs state transitions separately and independently, but not
simultaneously with others.

This and subsequent examples, as well as most figures, are taken from M.
Huth, M. Ryan: Logic in Computer Science.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
17



Mutual Exclusion: Properties

Required properties for mutual exclusion:
1 Safety : At any point of time, at most one process may be in its

critical region.
2 Liveness: When a process requests access to its critical region, it is

granted eventually.
3 No blocking : A process may request access to its critical region at

any time.
4 Flexibility : Processes need not enter their critical regions in a fixed

order (this excludes rigid plans such as cycles).

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
18



Mutual Exclusion: Modelling

Each process cycles through the sequence
n → t → c → n → . . .,

where

n – “non critical”

t – “critical region requested” (trying)

c – “in the critical region”

Set of states for a system of two processes: states are labelled with
elements of a subset of the cartesion product {n1, t1, c1} × {n2, t2, c2}
Initial state: with label (n1, n2)
State transitions: one of the processes performs a transition according to
the indicated cycle; e.g.

(n1, t2) → (n1, c2)

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
19



Mutual Exclusion: Formal Requirements

Formalisation of the required properties:

Safety : φ1 := AG ¬(c1 ∧ c2)

Liveness: φ2 := AG (t1 ⇒ AF c1)

No blocking : φ3 := AG (n1 ⇒ EX t1)

Flexibility : φ4 := EF (c1 ∧ E [c1 U (¬c1 ∧ E [¬c2 U c1])])

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
20



Mutual Exclusion: Transition Diagram

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
21



Model Checking for CTL

The problem: how can

M, s |= ψ (∗)

be checked algorithmically?
More generally: find one s or all s such that (∗) holds.

The approach presented here addresses the more general problem.
Main idea:

Develop incrementally a labelling of the states in M with those
subformulas of ψ that hold in the respective states.
starting with the atomic formulas,
until the full formula ψ is reached.

Given a transition structure M = (S ,→, L) and a CTL formula φ
Transform φ into a form that contains only the reduced set of
connectives ⊥, ∧, ¬, EX, AF, EU.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
22



Algorithmus for Model Checking

Label incrementally states with subformulas of φ according to the
structure of formulas.

ψ a subformula of φ;

Assume that labelling of states with the immediate subformulas of ψ is
complete.

ψ := ⊥: no state is to be labelled with ⊥.

ψ := p (atomic): s is labelled with p if p ∈ L(s)

ψ := ψ1 ∧ ψ2: s is labelled with ψ if s is already labelled with ψ1 as well
as ψ2.

ψ := ¬ψ1: s is labelled with ψ if s is not already labelled with ψ1.

ψ := EX ψ1: s is labelled with ψ if one of its successor states is labelled
with ψ1.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
23



Algorithmus for Model Checking (2)

ψ := AF ψ1:

Every state s that is labelled with ψ1 is to be labelled with ψ.

Label s with AF ψ1 when all successor states of s are labelled with
AF ψ1.

Repeat this process until no change in labelling occurs.

ψ := E [ψ1 U ψ2]:

Every s labelled with ψ2 is to be labelled with ψ.

s is labelled with ψ if s is labelled with ψ1 and at least one successor
state is labelled with E [ψ1 U ψ2].

Repeat this process until no further change in labelling occurs.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
24



Algorithmus for Model Checking (3)

When the labelling process for φ is terminated all states at which φ holds
have been identified.

The labelling process can be expressed more formally by fixed point
computations of state sets derived from the fixed point characterization
of the temporal operators.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
25



Example: Mutual Exclusion

Labelling of states for E [¬c2 U c1]Markierung der Zustände, die die Formel E [¬c2 U c1]) erfüllen.

s5

s0

0: t1n2

0: c1n2 0: t1t2

0: c1t2

2:E [¬c2 U c1]

s3

s1

s2
s6s9

s4 s7

1:E [¬c2 U c1]

1:E [¬c2 U c1]

2:E [¬c2 U c1]

3:E [¬c2 U c1]

0: n1n2

0: n1t2

0: t1t2

0: t1c2

0: n1c2

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
26



Symbolic Model Checking with OBBDs

OBDD – “Ordered Binary Decision Diagrams”

Binary decision diagramm derived from binary decision tree with inner
nodes labelled by a propositional decision symbol x

Decision symbols follow a (total) order along each path from root to leaf
node

OBDD-based methods are used as efficient decision procedures for
validity of propositional formulas

originally developed for hardware verification

often orders of magnitude faster than other decision methods

used in many implementations of model checking

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
27



Reducing BDDs

y y

01 0 0

x

1 0

y

x

y

1 0

y

x

dashed line: 0 (= F)

solid line: 1 (= W)

1. step: merging of leaf nodes with identical labels
2. step: elimination of nodes without a decision

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
28



Reduction of OBDDs: reduce

Systematic reduction of OBBDs by labelling nodes of the OBDD, e.g.
with natural numbers in sequence

Leaf nodes are labelled with 0 or 1.

Starting from the leaf nodes, inner nodes are labelled level by level.

If the 0- and 1-successors of a n carry the same label, node n gets
the same label.

If there is another node m for the same variable such that its
successor nodes carry the same labels as the successors of n, node n
receives the label of m.

Otherwise n receives a new label.

When labelling is completed, all nodes with the same label are merged,
and edges are modified accordingly.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
29



reduce – Example

0 1#0 #10 1 0 1

x3 x3

x2x2

x1

#0 #1 #0 #1

#2 #2

#3 #2

#4

=⇒

x3

x2

x1

#2

#3

#4

Reduce

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
30



Effects of the Variable Order

OBBD for the formula (x1 + x2) · (x3 + x4) · (x5 + x6) mit Variable order:

(a) (x1, x2, x3, x4, x5, x6), (b) (x1, x3, x5, x2, x4, x6)

0 1

x1

x6

x5

x3

x4

x2

x1

x3 x3

x5 x5 x5

x2 x2 x2

x4x4

1

x6

0

x2

x5

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
31



Operations on OBDDs

In the following we use an abbreviating notation:

0 and 1 for F and W, respectively;

· and + for ∧ and ∨ , respectively

x for ¬x
Bf denotes the OBDD for the boolean formula f etc.

op is an arbitrary binary boolean operation.

f [y/x ] denotes the formula resulting from replacing any occurrence of x
by y (substitution).

Required auxiliary operations:

apply , restrict, exists

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
32



OBDD Operations: apply

apply(op,Bf ,Bg ) – computes the reduced OBDD for formula f op g

assuming the OBBDs Bf ,Bg for f and g are already available

The process build on the Shannon expansion:

f ⇔ x · f [1/x ] + x · f [0/x ]

For apply :

f op g ⇔ x · (f [1/x ] op g [1/x ]) + x · (f [0/x ] op g [0/x ])

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
33



OBDD Operations: apply (2)

Case split according to variables vf and vg labelling the root nodes of Bf

and Bg , respectively:

(a) vf = vg : Bf op g = if (vf , apply(op, tf , tg ), apply(op, ff , fg ))

! recursive propagation of op into the substructures

(b) vf < vg : Bf op g = if (vf , apply(op, tf ,Bg ), apply(op, ff ,Bg ))

Due to the ordering of variables, vA cannot occur in Bg ; hence it suffices
to modify the substructures.

(c) vg < vf : in analogy to (b)

In general it is necessary to reduce the result subsequently.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
34



apply – Example

0 1 0 1

x4

x3

x1

x4

x3

x2

x1

R5 R6

R4

R2

R1

R3

+

S1

S3

S4 S5

S2

+

0 1 0 1

x4

x3

x1

x4

x3

x2

x1

R5 R6

R4

R2

R1

R3

+

S1

S3

S4 S5

S2 !

0 1

x4

x3

x2

x1

Bf Bg apply(+,Bf ,Bg )

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
35



apply – Example (2)

(R1, S1)
x1

x2 x3

(R3, S3)

(R2, S3) (R3, S2)

x4 x3

(R5, S4) (R6, S5) (R4, S3)(R6, S3)

(R4, S3) (R4, S3)
x4

(R5, S4)(R6, S5)

(R6, S5)

x4

(R6, S5)

x4

(R5, S4) (R6, S4)(R6, S5)

Recursive call structure of apply for the example apply(+,Bf ,Bg )

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
36



OBDD Operations: restrict

restrict(b, x ,Bf ) computes a reduced OBDD for f [b/x ] using the same
variable order as Bf (b ∈ {0, 1})

For each node labelled with x all incoming edges are re-linked to the
respective successor node; the node itself is removed.

The resulting BDD needs to be reduced.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
37



restrict – Example

BDDs for f := x1 · y1 + x2 · y2 + x3 · y3 and restrictions on x3

10

x1

x2

x3

y1

y2

y3

10

x1

x2

y1

y2

y3

10 10

x1

x2

y1

y2

x1

x2

y1

y2

y3

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
38



OBDD Operations: exists

exists(x ,Bf ) computes a reduced OBDD for the existentially quantified
formula ∃x .f

∃x .f := f [0/x ] + f [1/x ]

exists may be implemented by

exists(x ,Bf ) = apply(+, restrict(0, x ,Bf ), restrict(1, x ,Bf ))

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
39



exists – Example

f as before;
B1 = restrict(0, x3, Bf ), B2 = restrict(1, x3, Bf )), apply(+, B1, B2)

10

x1

x2

y1

y2

y3

10 10

x1

x2

y1

y2

x1

x2

y1

y2

y3

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
40



exists – Example (2)

f as before ∃x3.f ∃x2.∃x3.f

10

x1

x2

x3

y1

y2

y3

10

x1

x2

y1

y2

y3

10

x1

y1

y2

y3

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
41



Model Checking with OBDDs

Basic idea: Encode all entities involved in model checking by
propositional formulas and use an OBDD representation for further
processing

Representation of the state transition system:
Finite state sets are encoded as vectors of boolean values.
A transition is encoded as conjunction of the encoding of start and
target state

CTL formulas are encoded as (representations of) state sets.

Checking is performed by construction and comparison of OBDDs.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
42



Model Checking with OBDDs (2)

Representation of finite state sets and subsets:

Choose a “sufficiently large” binary vector {0, 1}n to represent states

A subset T ⊆ S is represented by its characteristic funktion

fT : {0, 1}n → {0, 1}
The set operations intersection, union and complement are
represented by means of the corresponding logical operations ∧, ∨
and ¬.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
43



Model Checking with OBDDs (3)

For encoding a CTL model M = (S ,→, L) the labelling function L may
be used:

Assume a fixed ordering of atoms.

Every state is encoded by the conjunction of the positive and
negative values of the atoms at that state.

Different states have to have different encodings; atoms may be
added as needed.

A subset of states is represented by the disjunction of the (encoding
of the) states belonging to the subset.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
44



Model Checking with OBDDs (4)

Representation of the state transition relation:

Transition relation is a subset of S × S
! 2 copies of the representation of S are required
! a primed copy a′ for each atom a

Transition s → s ′ is represented by the conjunction of the
representations of s (using a-s) and s ′ (using a′-s)

The full transition relation is represented as disjunction of all
individual transitions.

For the computation of predecessors of states it is necessary to rename
atoms appropriately (a to a′ etc.)

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
45



Model Checking with OBDDs: Example

State transition diagram:

s2

y

s1

x

s0

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
46



Model Checking with OBDDs: Example (2)

S := {s0, s1, s2}

→ := {(s0, s1), (s1, s2), (s2, s0), (s2, s2)}

L(s0) := {x} L(s1) := {y} L(s2) := ∅
Encoding of state sets:

Set Boolean values Boolean function

∅ ⊥
{s0} (1, 0) x · y
{s1} (0, 1) x · y
{s2} (0, 0) x · y
{s0, s1} (1, 0), (0, 1) x · y + x · y
{s0, s2} (1, 0), (0, 0) x · y + x · y
{s1, s2} (0, 1), (0, 0) x · y + x · y
S (1, 0), (0, 1), (0, 0) x · y + x · y + x · y

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
47



Model Checking with OBDDs: Example (3)

Encoding of the transition relation:

– Each individual transition represented by conjunction of codes for
start and target states

– Target state always using primed copies of varoiables

– Full transition relation represented by disjunction of codes for
individual transitions

f → := x · y · x ′ · y ′ + x · y · x ′ · y ′ + x · y · x ′ · y ′ + x · y · x ′ · y ′

For the representation by OBDDs it is recommended to choose an order
that puts variables x and x ′ in sequence, such as {x , x ′, y , y ′}.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
48



Model Checking with OBDDs: Example (4)

OBDD for the transition
relation f → in the exam-
ple:

0 1

x2 x2

x′
2 x′

2

x1

x′
1 x′

1

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
49



Model Checking: Required Operations

Union, intersection, and complement (\)
Computation of the set of predecessors of a set X (in SATEX ,
SATEU):

pre∃(X ) := {s ∈ S | there exists s ′ ∈ X mit s → s ′ }
Restricted all-quantified predecessor set of a set X (in SATAF ):

pre∀ (X ) := {s ∈ S | s ′ ∈ X for alle s ′ ∈ S such that s → s ′ }
pre∀ can be reduced to pre∃ by pre∀ (X ) = S \ pre∃(S \ X )

Realisation of pre∃:

pre∃(X ) := {s ∈ S | there exists s ′ ∈ X such that s → s ′ }
– In pre∃(X ) the variable X denotes a set of successor states

! a copy BX ′ of BX using primed variables x ′ etc. needed

– Using the operations apply and exists one computes pre∃(X ) by

exists(x̂ ′, apply(·, B→, BX ′))

x̂ ′ denotes the vektor of variables x ′ which encode states.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
50



Linear Time Logic

LTL: “Linear Time Logic” differs from CTL in that the logic builds on a
linear notion of time.

An LTL formula expresses a property of a single path;
a path corresponds to one (linear) time line.

There is no branching of time as in CTL.

There no explicit path quantors corresponding to A and E .

In particular, it is not possible to express the existence of a path
with a certain property.

However: one often considers the set of all paths starting at a
particular state (a kind of implicit universal quantification).

It is possible to nest the operatora F, G , and X .

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
51



LTL: Syntax and Semantics

Syntax of LTL formulas:

φ ::= ⊥ | ' | p | (¬φ) | (φ ∧ φ) | . . . |
X φ | G φ | FFφ | φ U φ

p an atomic formula

The semantics of LTL formulas is defined relative to a path (or set of
paths).

For a path π = s1, s2, . . . in a state transition system M = (S ,→, L)
denotes πi = si , si+1, . . . a suffix of π starting at state si .

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
52



LTL: Semantics

M, π |= φ path π (in model M) satisfies the formula φ

as usual defined recursively over the structure of LTL formulas

M, π |= φ for propositional φ obvious

M, π |= X φ iff M, π2 |= φ

M, π |= G φ iff M, πi |= φ for every i ≥ 1.

M, π |= FFφ iff there exists a i ≥ 1 such that M, πi |= φ

M, π |= φ1 U φ2 iff there exists a i ≥ 1 such that M, πi |= φ2

and M, πj |= φ1 for every 1 ≤ j < i

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
53



LTL Equivalences

Two LTL formulas φ and ψ are semantically equivalent if they are
satisfied by the same paths.

Examples of LTL equivalences:

G φ ⇔ ¬FF¬φ

FF(φ ∨ ψ) ⇔ FFφ ∨ FFψ

G (φ ∧ ψ) ⇔ G φ ∧ G ψ

φ U ψ ⇔ ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ FFψ

FFφ ⇔ ' U φ

φ W ψ ⇔ (φ U ψ) ∨ G φ

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
54



Comparison of CTL and LTL

CTL and LTL formulae may express the same properties in different ways:
example:

“Every p is eventually followed by q”

in CTL: AG (p ⇒ AF q) in LTL: G (p ⇒ FFq)

However, there exist CTL formulas for which no equivalent LTL formulas
exist, and vice versa. Examples:

AG (EF p) – “it is always possible to reach p” (CTL)

A [G FFp ⇒ FFq]

“If p occurs infinitely often along a path, then q also occurs” (LTL)

An application of the latter is a fairness condition: A request that is
repeated often enough (i.e. infinitely often) will eventually be served.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
55



Model Checking for LTL

The model checking problem for LTL:

For a given model (state transition system) M = (S ,→, L) and an LTL
formula φ,

Do all all paths of M starting at state s satisfy φ?

M, s |= φ

The CTL approach to model checking does not transfer to LTL; LTL
formulas are evaluated along a path, not for a state or a set of states.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
56



Model Checking for LTL (2)

Basic approach to model checking of LTL formulas:

Construct an automaton (state transition system) A¬φ for ¬φ.

The automaton characterizes exactly those paths which satisfy ¬φ.

The constructed automaton A¬φ is combined with the model M.
Result is a transition system that contains paths that are paths of
both the automaton and the model.

Check whether there is path in the combined system starting at s.

If no such path exists, M satisfies formula φ at s.

Otherwise the found path indicates a counter-example.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
57



Example

The model for which the
formula

φ := ¬(a U b)

is to be checked.

(The path q3, q2, q2, . . .
does not satisfy φ.)

q3

q1 q2

ab

q4

ab

ab ab

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
58



Example (2)

Automaton Aa U b for accept-
ing exactly those paths that
satisfy a U b.

Edges without arrows denote
transitions in both direction.

Acceptance condition: Path
must not include an infinite
loop through state q3.

a b φ

q4

a bφ

a b φ

q1

q′
3

a b φ

q3

a bφ

q2

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
59



Example (3)

Remarks on the automaton:

The states cover all possible combinations of values of the atoms a
and b.

There exist two states for ab, depending on whether or not a U b is
satisfied (for all other states the values a and b are sufficient).

Starting at q3, only transitions to states that satisfy b are possible.

Otherwise, transitions from any state to any other state are possible.

Combination of model and automaton by superposition: only those
transitions remain that are possible in both structures.
For this purpose: Adaptation of the model by splitting state q3.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
60



Example (4)

a ba b

a b

q1

a b

a b

q2

a b φa b φ

a b φ

q1

a bφ

a bφ

q2

q3

q′
3

q3

q′
3

q4 q4

Modified model Combined transition system

Path in the combined system satisfying the acceptance condition:

q3, q2, q2, . . .

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
61



Limitations

State explosion: The number of states grows exponentially with the
number of propositional variables.
Even though the model checking techniques – in particular those
using BDDs – are capable of handling models with a very large sets
of states (such as 1030 states and more), application problems
eventually reach the limit of what can be dealt with in practice.

Methods of trying to overcome the limit by reducing state spaces
include

Exploitation of symmetries
Simpliying models by abstraction

Infinite state spaces: The model checking techniques presented here
require the state space to be finite. Infinite state spaces occur
naturally in applications (e.g. by including variables with unbounded
integer values).

Again, abstraction techniques may be useful in trying to reduce
infinite state spaces to finite ones.

ReSIST Courseware F. v. Henke, H. Pfeifer Introduction to Model Checking
62



Part II

Theorem Proving

Friedrich v. Henke and Holger Pfeifer

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
63



Part Outline

1 Introduction
2 Logical Foundations
3 PVS Specifications and Proofs

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
64



Introduction

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
65



Theorem Proving

Theorem Proving: demonstration of the truth of some statement
(“theorem”) through logical deduction

Mechanized Theorem Proving: to prove theorems by a computer
program

process of derivation according to rules of some formal logic, such as
first-order logic

the logic defines what is considered a “proof”

mechanisation of theorem proving to ensure that
both the process and the result, i. e. the proof . . .
. . . are comprehensible, checkable, and repeatable

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
66



Theorem Proving Applications

Main application areas of theorem proving:

correctness of hardware designs

modelling and formal analysis of critical systems
safety, dependability, trustworthiness, etc., of systems and system
components

theorem prover becomes an essential inference component in the
practical deployment of formal methods

prover modules as auxiliary components for inference tasks –
“embedded intelligence”

proof-carrying code

typically, emphasis is on the combination of methods, rather than
deductions in a pure calculus

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
67



Proofs and Automation (1)

Proof Checking: computer is presented a proof and checks whether
it adheres to the rules of the logic

Automatic Theorem Proving: computer program tries to construct a
proof autonomously, without the aid of a human

Interactive Theorem Proving: computer program serves as a proof
assistant to a human user

routine tasks are carried out by the computer
user provides manual control over the global construction of a proof

Tactical Theorem Proving: use of “tactics” or “strategies” for proof
search, programmed construction of proofs

The highest possible degree of automation is (in principle) desireble;
however, . . .

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
68



Proofs and Automation (2)

. . . fully automatic theorem proving is inherently difficult, resp. in
principle impossible.

Sufficiently complex logics (such as first-order logic) are undecidable

Proof procedures even for decidable logics and theories ( e. g.
propositional logic, linear arithmetic) exhibit high complexity
(NP-complete, PSPACE, . . . )

In principle: the simpler the logic, the higher the chance for fully
automatic proofs in practice.

e. g., certain classes of propositional problems can be solved
efficiently with new approaches

binary decision diagrams
SAT-solver, SMT-solver

On the other hand, a highly-expressive – and therefore complex –
logic is desirable for complex applications

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
69



Logic vs. Specification Language

Practical use of mechanized theorem proving for verification requires an
expressive language for modelling the application at hand.

Expressiveness of the language of pure logics – of any kind – is still too
weak.

mathematical practice: proofs are carried out within certain theories,
e. g. group theory, as characterized through group axioms
theories need a syntactical framework

for structuring, for the composition of theories, for readability
Typing: as helpful in mechanized theorem proving as for
programming languages (for essentially the same reasons)
support to build and maintain libraries of theories and theorems
Modelling is facilitated by a highly expressive language

Therefore: use of a dedicated specification language
based on an expressive logic, and
enriched by various constructs similar to those found in
programming languages

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
70



PVS – Prototype Verification System (1)

PVS is a verification system combining a very expressive specification
language and a powerful prover component.

interactive theorem prover

developed at SRI International

PVS provides:
higher-order logic as the logical foundation
expressive specification language
complex type system
powerful inference machinery, including decision procedures
simple tactic language for definition of new proof strategies
extensive prelude and library containing numerous specifications and
proved facts

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
71



PVS – Prototype Verification System (2)

There are several similar systems, e. g.

Isabelle, L. Paulson (Cambridge), T. Nipkow (Munich)

HOL (“Higher-Order Logic”), R. Milner (Stanford), M. Gordon
(Cambridge), T. Melham (now Oxford) – several variants

ACL 2 (“A Computational Logic”), M. Kaufmann, J S. Moore
(Austin, Texas)

Coq, G. Huet (INRIA-Rocquencourt), T. Coquand (now Chalmers),

PVS is used in this course because

PVS provides adequate capabilities

alternative systems do have their strengths, but are not obviously
“better”

PVS is accepted and used world-wide

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
72



Logical Foundations

Typed First-Order Logic

Sequent Calculus

Lambda Calculus

Higher-Order Logic

Induction, Recursion and ADTs

Prerequisites (such as provided by the course Logic in Computer Science):

Basics of Propositional Logic

Basics of First-Order Predicate Logic

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
73



Typed First-Order Logic

Classical First-Order Logic is untyped. Typed FOL (as used as a basis of
PVS) extends the usual untyped logic to allow different types, or sorts, of
values:

different individuals can be assigned different kinds of values

in addition to their arity, function symbols and predicate symbols
now also come with a signature to define the types of the respective
arguments and results

Predefined sorts include at least a type Bool of truth values.

Notation for typing:
t : S means “term t has type S”

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
74



Syntax

Typing rules

When constructing terms, the typing rules must be obeyed:

f : S1 × S2 × . . .× Sn → Sn+1 t1 : S1 . . . tn : Sn

f (t1, . . . tn) : Sn+1

Analogously for predicates

Quantifiers are typed, too:

∀v : S .P(v) ∃v : S .P(v)

for P : S → Bool , for each S ∈ S
Other notions remain the same (ground term, bound variable, scope,
etc.)

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
75



Semantics of Typed FOL

Structures are S-indexed: AS = (US , IS)
1 Universe US consists of non-empty sets MS for each type S ∈ S, in

particular:
MBool := {true, false}

2 Interpretation IS maps
variables v ∈ VS to objects

IS(v) ∈ MS for each S ∈ S
function symbols f : S1 × S2 × . . .× Sn → Sn+1 to n-ary functions

IS(f ) : MS1 ×MS2 × . . .×MSn → MSn+1

predicate symbols P : S1 × S2 × . . .× Sn → Bool to relations

IS(P) : MS1 ×MS2 × . . .×MSn → MBool

or, equivalently,

IS(P) ⊆ MS1 ×MS2 × . . .×MSn

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
76



Proof methods

For first-order logic, a variety of proof methods exist, for example:
rewriting with equivalences

prove a formula true by rewriting it to T
resolution methods

refutation method: prove a formula by deriving a contradiction from
its negation
involves representing the formula as sets of “clauses” where
quantifiers are eliminated
successive “cancellation” of complementary literals L and ¬L until
empty set is derived

tableaux methods
refutation method: start from the negation of formula to prove
rules describe how to decompose formula
tableaux is a directed graph, nodes are sub-formulas
formula is proved, if there is a contradiction on every path

sequent calculus: this is the basis for the PVS prover
. . .

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
77



Sequent Calculus

The sequent calculus is a deduction system for first-order logic; it is the
basis of the PVS prover.

The basic entity of the calculus are sequents: Γ & ∆

Γ and ∆ are finite sets (or multisets) of formulae

Γ is called the antecedent, and ∆ is the succedent

Intuitive interpretation: a sequent A1, . . . ,Am & B1, . . . ,Bn

corresponds to the statement that the formula
A1 ∧ . . . ∧ Am ⇒ B1 ∨ . . . ∨ Bn is true

Derivation rules describe how to derive new sequents from given ones

Practically, deriving a sequent Γ & ∆ means to prove some formula
out of the set of formulae ∆ from a set of preconditions Γ

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
78



Sequent Calculus

There is only one axiom:

Γ,A & A,∆

Structural rules:

Contraction

A,A, Γ & ∆
A, Γ & ∆

contr L
Γ & ∆,A,A
Γ & ∆,A

contr R

Cut-rule

Γ & ∆,A A, Γ & ∆
Γ & ∆

cut

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
79



Sequent Calculus: Propositional Rules

Implication

Γ & ∆,A B, Γ & ∆
A ⇒ B, Γ & ∆

⇒ L
A, Γ & ∆,B

Γ & A ⇒ B,∆
⇒ R

Conjunction

A,B, Γ & ∆
A ∧ B, Γ & ∆

∧L
Γ & ∆,A Γ & ∆,B

Γ & ∆,A ∧ B
∧R

Disjunction

A, Γ & ∆ B, Γ & ∆
A ∨ B, Γ & ∆

∨L
Γ & ∆,A,B

Γ & ∆,A ∨ B
∨R

Negation
Γ & ∆,A
¬A, Γ & ∆

¬L
A, Γ & ∆

Γ & ∆,¬A
¬R

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
80



Sequent Calculus: Quantifier Rules

Universal quantifier:

A[x ← t], Γ & ∆

∀x .A, Γ & ∆
∀L

Γ & ∆,A[x ← y ]

Γ & ∀x .A,∆
∀R

Existential quantifier:

A[x ← y ], Γ & ∆

∃x .A, Γ & ∆
∃L

Γ & ∆,A[x ← t]

Γ & ∃x .A,∆
∃R

Restrictions:

Variable Capture: t must be free for x in A.
Free variables in t must not be captured by a quantifier in A

Eigenvariable: y is a fresh variable.
Variable y must not occur free in the succedent of ∀R and ∃L.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
81



Proofs in the sequent calculus

Proofs are constructed backwards:

start with the sequent to be proved

successively apply the deduction rules

until all branches reach an instance of the axiom

Example: prove (P ⇒ Q) ∧ (Q ⇒ R) ∧ ¬R & ¬P

Q ⇒ R,P & R,P
Q,P & Q,R Q,R,P & R

Q,Q ⇒ R,P & R
⇒ L

P ⇒ Q,Q ⇒ R,P & R
⇒ L

P ⇒ Q,Q ⇒ R,¬R & ¬P
¬L and ¬R

(P ⇒ Q) ∧ (Q ⇒ R) ∧ ¬R & ¬P
∧L (2 times)

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
82



Observations

Antecedent and succedent are treated symmetrically

Applicability of a deduction rule determined solely by structure of
formula

Rules have a sub-formula property:
every formula that occurs in the antecedent of a rule also occurs as a
(sub-)formula in the succedent

Exception: cut-rule

No need to “guess” a formula when applying rules backwards

Cut-elimination: every proof that contains an application of the
cut-rule can be transformed into one without.
However: length of proof can grow over-exponentially

Rule set (without cut-rule) provides decision procedure for
propositional logic

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
83



Proof Example with Quantifiers

Prove: ∃x .∀y .P(x , y) & ∀y .∃x .P(x , y)

P(v ,w) & P(v ,w)

P(v ,w) & ∃x .P(x ,w)
∃R

∀y .P(v , y) & ∃x .P(x ,w)
∀L

∀y .P(v , y) & ∀y .∃x .P(x , y)
∀R

∃x .∀y .P(x , y) & ∀y .∃x .P(x , y)
∃L

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
84



Lambda Calculus: λ-expressions

λ-expressions: notation to denote anonymous functions with a single
argument

instead of writing
f (x) = 3 · x + 4

we write
f = λx . 3 · x + 4

λ-expressions may be used at places where one usually has a
function name:

(λx . 3 · x + 4) (2 · a)
Functions are first-class objects:

can be used as arguments in a function application
can be the result value of a function:

λx . λy . x + y

λ-variable x in λx . e corresponds to formal parameter of function
definitions in programming languages

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
85



λ-Expressions: Syntax

Definition (λ-Term)

The set of λ-terms is inductively defined by the following three clauses:
1 all variable symbols x , y , . . . are λ-terms
2 λ-abstraction: if x is a variable and e is a λ-term, then λx . e is a

λ-term
3 λ-application: if f and e are λ-terms, then so is f (e).

λ binds variable x in e. Concepts of bound/free variables, scope,
etc. analogously to first-order logic
notation varies: juxtaposition for application: ffx for f (f (x))
relaxed notation:

combined binding of several variables: λx , y . e instead of λx .λy . e
infix notation for certain standard function symbols, e. g. x + 1
instead of +(x)(1)
parentheses are used when necessary

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
86



Conversions

Calculating with λ-expressions:

α-conversion: renaming of bound variables

(λx . e) = (λy . e[x ← y ])

provided that y does not occur in e.

β-conversion: evaluation of function application

(λx . e1)(e2) = e1[x ← e2]

provided that e2 is free for x in e1: free variables of e2 must not get
bound by a λ of e1.

“Capturing” of variables can always be avoided by adequate
renamings of variables in e1 through α-conversion.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
87



Example: β-conversion

(λx . (λf . f (f (x))) (λx . x ∗ x + 1)) (2)
= . . .
= ((2 ∗ 2 + 1) ∗ (2 ∗ 2 + 1)) + 1
= . . . = 26

Observe:

order of reductions depends on evaluation strategy: call-by-name
and call-by-value, innermost, outermost, etc.

call-by-name can yield to multiple evaluation of same term, but can
save unneeded evaluations: lazy evaluation

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
88



λ-calculus

The λ-calculus is a formal calculus to derive equalities between λ-terms.

Axioms:
α-conversion: (λx . e) = (λy . e[x ← y ])
β-conversion: (λx . e1)(e2) = e1[x ← e2]
reflexivity: M = M

Rules:
M = N
N = M

M = N N = L
M = L

L = K M = N
L(M) = K (N)

M = N
λx .M = λx .N

ξ

β-conversion leads to a reduction relation (β-reduction) among λ terms,
which is the core of λ-calculus

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
89



Extensionality

Definition (Extensionality)

Two functions f and g are extensionally equal, if they agree on all inputs:

(∀x . f (x) = g(x)) ⇒ f = g

with x not occurring free in f or g .

Only the values are important, not the way they are calculated

Extensionality rule can be added to the λ-calculus

Extensionality implies so-called η-conversion:

λx . f (x) = f (x not free in f )

Alternatively, one can add η-rule to the calculus.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
90



Simply-typed λ-calculus

λ-calculus allows self-application, e. g. λx . x(x)

Typed versions of λ-calculus assign a type to λ-terms

Notation: M : T denotes that term M has type T

Augment language with type expressions:
type constants, e. g. Bool , Nat, . . .
function types: S → T
product types: S × T

Variables in λ-bindings are now typed: λx : T . e

Note: product types are not really necessary
functions of type T1 = (S1 × S2) → S3 can be transformed into ones
of type T2 = S1 → (S2 → S3) and vice versa
for f : T1, function λx : S1. λy : S2. f (x , y) is of type T2.
for g : T2, function λ(x , y) : (S1 × S2). g(x)(y) is of type T1.

Transformation from T1 to T2 is called Currying

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
91



Typing rules

Well-formed λ-terms: those that can be assigned a type

Typing is relative to a context Γ

Typing judgement Γ & M : T means: “in context Γ, term M has
type T”

Typing rules

Γ,M : T & M : T

Γ, x : S & e : T

Γ & (λx : S . e) : S → T
Γ & e : S Γ & f : S → T

Γ & f (e) : T

Typing rules disallow terms such as x(x)

Conversion rules are the same as in the untyped λ-calculus

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
92



Semantics of the simply-typed λ-calculus

Interpretation of λ terms over a family of non-empty carrier sets UT

Variables x of type T are mapped to elements of the corresponding
carrier set: IA(x) ∈ UT

Interpretation of types:

type constants T are mapped to a carrier set UT

IA(Bool) := {true, false} IA(Nat) := {0, 1, 2, . . .}
function type S → T is interpreted by the set of functions mapping
elements of IA(S) to elements of IA(T ):

IA(S → T ) := IA(T )IA(S)

product type S × T is mapped to the Cartesian product of the
carrier sets of S and T : IA(S × T ) := IA(S)× IA(T )

Interpretations of terms are values in the respective carrier sets.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
93



Relevance of λ-calculus

Untyped λ-calculus as an abstract model for theory of computability,
see Church’s thesis

Foundation for most functional programming languages, such as
Lisp, etc.

Notions of calculation and derivation coincide

Foundation for domain theory, which is the basis for classical
denotational semantics of programming languages

Extensions of the simply-typed λ-calculus
λ-calculus with polymorphic types
type theories: higher-order λ-calculi, which allow abstractions over
types

Foundation for higher-order logics

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
94



Higher-Order Logic

PVS (like other prover systems like Isabelle, Coq, HOL) builds on
higher-order logic to gain more expressiveness than is available in FOL.
Examples of properties that can not be expressed with first-order
formulas:

the smallest model of a set of formulae
the transitive closure of a relation
generally: the smallest set having a certain property
first-order formulae can not distinguish finite from infinite structures

Example: characterization of finite structures in 2nd -order logic:

sets in which all injective mappings are also surjective

∀f . injective(f ) ⇒ surjective(f )

injective(f ) := ∀x , y . f (x) = f (y) ⇒ x = y
surjective(f ) := ∀y .∃x . f (x) = y

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
95



Syntax of Higher-Order Logic vs. FOL

Main syntactical difference between FOL and higher-order logic:

First-order logic:
constants and variables only for individuals:
function symbols and predicate symbols denote function constants
and predicate constants
quantification over individuals only

∀x . ∃y . P(x , y) ∧ Q(y)

Higher-order logic:
variables also for functions and predicates
quantification over function and predicate variables

∀v , w . ∀X . ∃Y .∀f . X (v , w) ∧ Y (f (v))

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
96



Higher-order logic: syntax and semantics

Syntax of HOL

Terms
terms are those of the simply-typed λ-calculus

Atomic formulae
applicative terms of type Bool
example: M(x), where M : S → Bool and x : S

Well-Formed Formulae
constructed as usual from atomic formulae and logical connectives ∧,
∨, ⇒, . . .
quantification is allowed over variables of arbitrary type
example:
∀v , w :S . (∃X :S→Bool . X (v , w)) ⇒ (∃Y :S→Bool . Y (w , w))

Semantics of Higher-Order Logic:

Combined standard semantics of FOL and the simply-typed
λ-calculus

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
97



Sequent Calculus for Higher-order Logic

Extension of sequent calculus for FOL with rules for higher-order
quantification

Universal quantifier:

ψ[X ← σ], Γ & ∆

∀X : S . ψ, Γ & ∆
∀Lω

Γ & ∆, ψ[X ← Y ]

Γ & ∆,∀X : S . ψ
∀Rω

Existential quantifier:

ψ[X ← Y ], Γ & ∆

∃X : S . ψ, Γ & ∆
∃Lω

Γ & ∆, ψ[X ← σ]

Γ & ∃X : S . ψ,∆
∃Rω

X and Y are predicate variables, and σ := λx1, . . . , xn.R(x1, . . . , xn) a predicate
expression of suitable type

Restrictions (cf. rules for FOL):

No variable capture in ∀Lω and ∃Rω

In ∀Rω and ∃Lω, variable Y must not not occur free in the
succedent

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
98



Examples

Modelling sets and set operations
correspondence between sets and predicates
entities of a type S satisfying a predicate P form a subset of the
carrier set of S
example: set inclusion M ⊆ N

⊆ := λM, N : (S → Bool). ∀x : S . M(x) ⇒ N(x)

Modelling properties of functions
compact formulation of properties
example: injectivity of a function

injective := λf : (T1 → T2). ∀x , y : T1. f (x) = f (y) ⇒ x = y

Induction principles:
∀P : Nat → Bool . (P(0) ∧ ∀x : Nat.P(x) ⇒ P(s(x)))

⇒ ∀x : Nat.P(x)

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
99



Induction and Recursion

Induction is a central proof technique

For proving properties that are not provable from first-order axioms

Induction requires an underlying inductive structure, such as
inductively defined data structures

Essential for proving properties of recursive functions

Recursion and Induction are two related concepts:

Induction principle has
a base case
an inductive step, based on an induction hypothesis

Recursive definition of a function consists of
a termination case
one or more recursive calls

This correspondence is reflected in the proof structure.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
100



Abstract Datatypes

Abstract datatypes (ADT): important means to model structures,
operations and properties

built up from constructors
operations on the structure
properties of structure and operations

ADTs abstract from concrete realization / implementation of the
structure

e. g. pointer manipulation for lists or stacks

particularly important for inductive structures

Properties of ADTs usually are of algebraic nature, i.e. they can be
expressed through algebraic equations.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
101



Example: Binary Trees

Example: abstract datatype of binary trees BTree(T ) of elements of
some type T

constructors:
empty tree: empty
node containing an element x , and left and right subtrees l and r :
node(x , l , r)

accessors:
element of a node key(b) : T
left und right subtree: left(b) : BTree(T ) right(b) : BTree(T )

Axiomatization
∀x , l , r .¬(empty = node(x , l , r)) (constr)
∀x , y , l , k, r , s. node(x , l , r) = node(y , k, s) ⇒

x = y ∧ l = k ∧ r = s (inj)
∀x , l , r . key(node(x , l , r)) = x (key)
∀x , l , r . left(node(x , l , r)) = l (left)
∀x , l , r . right(node(x , l , r)) = r (right)

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
102



Structural Induction

Structural induction principles follow the structure of the ADT

Base case(s) for each constructor without inductive arguments

inductive step(s) for each inductive constructor
induction hypotheses for each inductive argument
cf. P(l) ∧ P(r) in case of binary trees

∀P : BTree(T ) → Bool .
(P(empty) ∧
∀x : T , l , r : BTree(T ).

P(l) ∧ P(r) ⇒ P(node(x , l , r)))
⇒ ∀b : Btree(T ). P(b)

Induction principles can be generated automatically from ADT
specification

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
103



Recursive Functions

Recursive functions may be introduced by axioms or by function
definitions.

Axioms can potentially lead to inconsistency

Definitions of recursive function should be conservative, i.e. should
not increase the set of provable sentences of a theory.

Common first-order logic assumes that all functions are total.

Non-terminating recursive functions introduce partiality:
Options for handling partiality:

Treat partiality within the logic, such as

LPF – “Logic of Partial Functions” [Barringer, Chen, Jones 1984]
LCF – “Logic of Computable Functions”, a many-valued logic with a
truth values undefined [Scott 1969, Milner 1972].

Force all functions to be total by requiring proof of termination for
all recursive functions.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
104



Well-Founded Relations

Definition (Well-Founded Relation)

A relation , defined on a set S is called well-founded, if every non-empty
subset M of S has a minimal element m with respect to ,, i. e., there is
no other element x with m , x .
A well-founded set S is a set for which a well-founded relation exists.

An equivalent charaterization is that there are no infinitely decreasing
chains in S

x1 , x2 , . . . xn , . . .

Examples of well-founded relations:

The usual order > on natural numbers

Sub-structure relations on inductively defined datatypes

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
105



Relevance of Well-Founded Relations

Well-founded relations are relevant

to verify the termination of recursively defined functions
informal arguments for termination that decrease a counter until a
termination criteria is reached can be expressed by way of a measure
function

as a foundation for inductive proofs: well-founded induction
the characterization of well-founded relations through minimal
elements (i. e., no infinitely decreasing chains) yields another proof
principle

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
106



PVS: Specifications and Proofs

PVS specification language

PVS prover

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
107



PVS Specifications

Specifications are structured in PVS into so-called theories.

Theories essentially have the following form:

<name> [<formal parameters>] : THEORY
BEGIN
ASSUMING
<assumptions>

ENDASSUMING
IMPORTING <theories ...>
<declarations, definitions, formulae>

END

A theory combines related declarations, definitions and formulas
(modular structure)
A theory may have types and constants as parameters
Parameters may be semantically constrained by assumptions

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
108



Elements of PVS Theories

Types, both predefined and user-defined, including
function types, including higher-order types:
[nat -> [nat -> nat]]
tuple, array and record types
(predicative) sub-types: posnat : TYPE = {x:nat | x>0}
Dependent types

Declarations of constants and (typed) variables

Definitions of functions

Formulae: expressions of type bool, introduced by keywords AXIOM,
LEMMA, THEOREM (etc.)
Axioms are assumed to be true, all others must be proved.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
109



Example: PVS theory group

group : THEORY
BEGIN

G : TYPE+ % -- indicates non-empty type

e : G
i : [G -> G]
* : [G,G -> G] % -- infix operator

x,y,z : VAR G

associative : AXIOM
(x * y) * z = x * (y * z)

id_left : AXIOM
e * x = x

inverse_left : AXIOM
i(x) * x = e

inverse_associative : THEOREM
i(x) * (x * y) = y

END group

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
110



PVS Specification Language: Expressions

The PVS specification language provides a rich expression language, in
effect the equivalent of a full-fledged functional programming language.

Builds on (simply-typed) λ-calculus

Boolean connectives and quantifiers for expressions of type bool.

Several forms of conditionals

Operations on records: field selection and update

Operations on tuples and arrays: tuple component selection and
update

Function updates, similar to array updates

Local bindings of variables (LET-IN and WHERE)

and more

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
111



Predicative Subtypes

nat_to_10: TYPE = {x:nat | x <= 10}
posint : TYPE = {x:integer | x > 0}
pair : TYPE = {(s:S,t:T) | P(t) => Q(s)}

p : pair = (s0,t0) % -- generates sub-type TCC:
% p_TCC1: OBLIGATION P(t0) => Q(s0)

f : [pair -> X]
f((s0,t0)) % -- generates sub-type TCC, too

Q : [T -> bool]
Qt : TYPE = (Q) % -- sub-type of T, containing

% those elements that satisfy Q

following the | there can be any (Boolean) formula

every predicate can be turned into a type using the ( )-notation

Predicative subtypes provide powerful tool for compact specification.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
112



Integration of Specification, Type checking and Proof

Semantic constraints, such as those used in the declaration of predicative
subtypes, can often not be statically checked (like common typing) but
require proofs.

! generation of type-correctness conditions (TCCs)

sub-type TCCs are generated when elements of the sub-type are
declared or expected

termination conditions for recursive function definitions

. . . and various other conditions

TCCs are additional proof obligations that must be discharged to
complete a proof.

The PVS system provides support for handling TCCs in the proof
management (s. below) and by discharging simple TCCs automatically.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
113



PVS prover

PVS prover implements the sequent calculus and the other aspects
of logic presented in the foundation section.

PVS prover includes decision procedures for standard decidable
theories (linear arithmetic, propositional formulas, . . . )

The PVS prover is primarily interactive: the user guides the proof by
issuing prover commands

Prover commands invoke
(combinations of) rules of the sequent calculus
instantiations of quantified formulas
rules of lambda calculus (e.g. beta reduction), higher-order logic
(e.g. extensionality)

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
114



PVS prover (2)

Commands for
term rewriting
expansion of function calls (replacing function name by definition
body)
introduction of lemmata into a proof
invocation of decision procedures
invocation of induction formulas

Programming of complex proof strategies in a (rudimentary)
strategy language

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
115



PVS prover (3)

Sequents are being displayed to the user in readable form.
A PVS proof is a proof tree; construction starts at the root, which is
the sequent to be proved
Proofs are constructed by applying proof rules, which can generate
one or more subgoals
Only one subgoal is displayed at a time: the current sequent; proof
rules apply to that goal
Subgoals can be worked on in any order
Various commands for

navigating within the (partial) proof tree
selecting a sequent as the current one
Undoing the proof commands
Aborting unfinished proof attempts

If a branch is proved, the focus moves on to the next open subgoal
If there is no more, then the initial formula is proved
Proofs can be re-run, e. g. after modification of the theory

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
116



Proof Management

PVS stores proof scripts in a separate file

possible to store multiple versions of proofs

PVS keeps track of proof status of a formula:
untried: no proof stored
unfinished: proof has been aborted
proved – incomplete: formula is proved, but depends on unproved
formulae
proved – complete: formula is proved, as well as all formulae it
depends on
unchecked: formula has been proved, but theory has been modified
afterwards

Display proof status of a formula

To store a theory, or a hierarchy of theories, together with all proofs
in a single dump-file

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
117



Verification with PVS

Using PVS to verify properties of a system, algorithms, . . . involves the
following steps:

Modelling and specification:
Develop a set of PVS theories that capture the essence of the
behaviour of the system, the algorthms, . . . at an appropriate
abstract level
PVS provides a rich collection of complete PVS theories (mainly for
mathematicsl structures) with proved theorems
Hence users need not start from “first principles”.

Specify the desired/expected properties as theorems.
Develop proofs of the theorems.

PVS provides support for keeping track of proved and unproved
theorems, lemmas, TCCs . . .

Completed proofs can be “replayed” and adapted to changed
specifications.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
118



Applications of PVS

The PVS system has been used to specify and verify properties in a large
variety of application areas. These include:

formalization of mathematical concepts and proofs
for analysis, graph theory, number theory, etc.

embedding of formalisms, such as
I/O automata
various forms of modal and temporal logics

verification of
hardware
sequential and distributed algorithms, fault-tolerant algorithms
real-time and hybrid systems
safety and security of applications
compiler correctness

use as a back-end verification tool for computer algebra and code
verification systems

For virtually any application area of formal methods there exists
applications using PVS.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
119



References

Treatment of partiality in logics
Howard Barringer, J. H. Cheng, Cliff B. Jones: A Logic Covering

Undefinedness in Program Proofs. Acta Inf. 21: 251-269 (1984)

Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.

Theoretical Computer Science, 121:411–440, 1993. Annotated version of

the 1969 manuscript.

Robin Milner. Logic for computable functions; description of a machine

implementation. Technical Report STAN-CS-72-288, A.I. Memo 169,

Stanford University, 1972.

PVS documentation
http://pvs.csl.sri.com/documentation.shtml

PVS examples
collection of examples at SRI:

ftp://ftp.csl.sri.com/pub/pvs/examples/

PVS developments at NASA LaRC, incl. libraries:

http://shemesh.larc.nasa.gov/fm/fm-pvs.html

application of PVS in various areas, incl. fault tolerance:

http://www.uni-ulm.de/in/ki/PVS/

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
120

http://pvs.csl.sri.com/documentation.shtml
ftp://ftp.csl.sri.com/pub/pvs/examples/
http://shemesh.larc.nasa.gov/fm/fm-pvs.html
http://www.uni-ulm.de/in/ki/PVS/


Part III

Static Program Analysis

Cinzia Bernardeschi and Paolo Masci

Part of these slides is from the course “Abstract interpretation and static
analysis” held at the International Winter School on Semantics and
Applications, Uruguay, 2003, by David Schmidt

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
121



Static program analysis

Static program analysis is a set of techniques to compute reliable
approximate information about the dynamic behaviour of programs

program properties are determined without actually executing the
program

Program analysis should be semantics based

the information obtained from the analysis should be proved to be
correct wrt a semantics of the programming language

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
122



Motivation

The concrete semantics of programs formalises the set of all possible
executions in all possible environments

non trivial questions about the concrete semantics of a program are
undecidable

Static analysis considers an abstract semantics, that is a superset of the
concrete program semantics

the concrete domain of values and operations are replaced by an
abstract domain and corresponding abstract operations

Static program analysis is a sound, finite and approximate calculation of
the execution semantics of a program

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
123



Applications

Main applications:

optimisation of programs at compile-time

formal verification of program properties

Examples:

live variables

reaching definitions

code motion

constant propagation

....

type correctness of programs

abstract testing and safety checking

assertion checking and discovery

...

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
124



Data-flow analysis

Many automated static program analyses are based on data-flow analysis

Data-flow analysis: set of techniques suitable to derive information
about the flow of data along program execution paths

A data-flow analysis typically requires the following steps:

build program representation

map program properties to abstract values organised into an
algebraic structure (semilattice, lattice)

associate a data-flow state (of abstract values) to each program
point

perform forward/backward data-flow analysis

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
125



Data-flow framework

A data-flow analysis framework (D,V,-,F ) consists of:

A direction D of the data-flow, which is either forwards or backwards

A semilattice (V,-), where V is a domain of value and - is the
meet operator

the meet operator is idempotent, commutative, associative
V has a top element +: for all x , + , x = x
optionally, V may have a bottom element ⊥: for all x , ⊥ , x = ⊥

A family F of transfer functions f : V → V;
F has an identity function I (x) = x for all x
F is closed under composition: given two functions f and g in F ,
g(f (x)) is in F

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
126



Data-flow framework (contd.)

The pair (V,≤) is a poset, where ≤ is a partial order relation defined as
x ≤ y iff x - y = x

it is also convenient to have a < relation: x < y iff x ≤ y and x /= y

Given a poset (V,≤), an ascending chain is a sequence
x1 < x2 < · · · < xn

The height of a semilattice V is the largest number of < in any ascending
chain

(D,V,-,F ) is monotone if
for all x and y in V and f in F , x ≤ y implies f (x) ≤ f (y)

or, equivalently,
for all x and y in V and f in F , f (x - y) ≤ (f (x) - f (y))

(D,V,-,F ) is distributive if
for all x and y in V and f in F , f (x - y) = (f (x) - f (y))

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
127



Program representation

In data-flow analyses, programs are usually represented with a control
flow graph.

Control flow graph: a directed graph containing the control
dependences among instructions of a program

each node si in the control flow graph represents an instruction

there is an edge si → sj between two instructions if sj can be
executed immediately after si

special ENTRY and EXIT nodes

Property: the control flow graph is a conservative approximation of the
control flow of a program.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
128



Data-flow values and transfer function

Data-flow values are associated with each instruction in the program

an input state IN[si ] is the data-flow value before statement si

an output state OUT [si ] is the data-flow value after statement si

A transfer function fsi is associated with statement si

each execution of a code statement transform an input state into an
new output state

Objective of the analysis:

find a solution to the set of constraints on IN[si ] and OUT [si ], for
all si

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
129



Constraints

Constraints of the analysis

transfer functions

control flow graph of the program

Transfer function constraints:

forward-flow problem: OUT [si ] = f (IN[si ])

backward-flow problem: IN[si ] = f (OUT [si ])

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
130



Constraints (contd.)

Control flow constraints:

forward-flow problem:
IN[si ] = -sj OUT [sj ], where sj is a predecessor of si

backward-flow problem:
OUT [si ] = -sj IN[sj ], where sj is a successor of si

Note that - depends on the type of analysis.

in the forwards analysis, if we have information about the set of
constants that may be assigned to a variable, - is the union

in the backwards analysis, if we have information about the live
variable analysis, - is the union

Equations are solved with least fixpoint iteration

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
131



Iterative algorithm

Input:

a data-flow graph with special ENTRY and EXIT nodes

a data-flow framework (D,V,-,F )

vENTRY and vEXIT in V, which represent the boundary conditions for
forward and backward analyses

Output:

values in V for IN[si ] and OUT [si ] for each si

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
132



Iterative algorithm (contd.)

Iterative algorithm for forward analysis:

1 OUT [ENTRY ] = vENTRY ;
2 for (each instruction si other than ENTRY ) OUT [si ] = 0;
3 while (changes to any OUT occur)
4 for (each instruction si other than ENTRY ) {
5 IN[si ] = -sj OUT [sj ] for all sj predecessors of si ;
6 OUT [si ] = fsi (IN[si ]);

}

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
133



Iterative algorithm (contd.)

Iterative algorithm for backward analysis:

1 IN[EXIT ] = vEXIT ;
2 for (each instruction si other than EXIT ) IN[si ] = 0
3 while (changes to any IN occur)
4 for (each instruction si other than EXIT ) {
5 OUT [si ] = -sj IN[sj ] for all sj successors of si
6 IN[si ] = fsi (OUT [si ])

}

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
134



Iterative algorithm (contd.)

Property 1: if the algorithm converges, the result is a solution to the
data-flow equations

Property 2: if the framework is monotone, the solution is the maximum
fixpoint of the data-flow equations

Property 3: if the semilattice is monotone and of finite height then the
algorithm converges

IN[si ] represents an abstraction of the set of all possible program states
that can be observed before si

OUT [si ] represents an abstraction of the set of all possible program
states that can be observed after si

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
135



Meet-over-path solution

In the data-flow abstraction every path P in the flow graph can be taken.

In the forward framework, we have that:

P = ENTRY → s1 → s2 → · · · → sk−1 → sk (Note that the same
instructions may appear several times because of loops.)

Let fP be the composition of fs1 , fs2 , · · · , fsk−1 , and fP(vENTRY ) is the
data-flow value created by executing path P

the meet-over-path solution is MOP[si ] = -P fP(vENTRY ), where P is
a path from ENTRY to si

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
136



Meet-over-path solution (contd.)

Paths considered in the MOP solution are a superset of all the paths that
are possibly executed.

If we take the meet, then MOP[si ] ≤ IDEAL[si ], where IDEAL[si ] is the
ideal solution.

The solution of the iterative algorithm is safe:

If the data-flow framework is distributive, the solution given by the
iterative algorithm and the MOP solution are the same.

If the data-flow framework is monotone, but not distributive, the
solution given by the iterative algorithm is ≤ MOP solution.

Note that, in symmetry with the meet operator - (greatest-lower-bound)
on posets, we may define a join operator 1 (least-upper-bound) on
posets.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
137



Example: the Java bytecode verifier

The Java bytecode verifier performs a static analysis of the Java
bytecode for type correctness, stack overflows and underflows, ...

The verification is performed method-per-method: when verifying a
method, the other methods are assumed to be correct

A forward data-flow analysis is used

Values are abstracted into types

The execution of instructions is performed on types instead of real values

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
138



Data-flow analysis

The poset (V,2) is defined
V is the set of Java types plus a type null , which represents the type
of null references, and 0, which represents the content of
uninitialised registers (i.e., any value)
2 is the subtyping ordering relation given by the “assignable to”
relation of Java

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
139



Data-flow analysis (contd.)

The transfer function is defined as

fsi : 〈S ,R〉 → 〈S ′,R ′〉

where 〈S ,R〉 is the stack type and register type before executing
instruction si , and 〈S ′,R ′〉 is the stack type and register type after
executing instruction si .

Examples of transfer functions:

iload j : 〈S ,R〉 → 〈int · S ,R〉
if 0 ≤ j < Mreg , R(j) = int and (S < Mstack

istore j : 〈int · S ,R〉 → 〈S ,R[j/int]〉
if 0 ≤ j < Mreg

getfield C.f : 〈C′ · S ,R〉 → 〈t · S ,R〉
if C.f has type t and C 2 C′

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
140



Data-flow equations

The state before instruction si is taken to be the least-upper-bound on
the states after all predecessors of si . The least-upper-bound represents
the smallest common supertype.

IN[si ] = 1si OUT [sj ], where sj is a predecessor of si

Equations are solved by standard fixpoint iteration using a worklist:
an instruction si is taken from the worklist
the after state OUT [si ] = fsi (IN[si ]) is computed
IN[sj ] = 1sj (IN[sj ],OUT [si ]) for all sj successor of si
sj is inserted in the worklist if IN[sj ] changed

Fixpoint reached when worklist is empty; in this case, the verification
succeeds.

Verification fails if i) a state with no transition is encountered, ii) one of
the least-upper-bounds is undefined.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
141



Static analysis and abstract interpretation

Abstract interpretation is a method for designing approximate
semantics of programs

The concept of abstract interpretation was introduced by Patrick
and Radhia Cousot in order to formalise static program analysis, in
“Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints” (POPL77)

The abstract interpretation approach is based on the use of Galois
connections to establish a correspondence between the domain of
concrete properties and the domain of abstract properties

Static analysers can be constructively derived from the abstract
semantics

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
142



Foundations of abstract interpretation

Abstract interpretation is based on lattices, continuous functions and
Galois connections.

A complete lattice L = 〈D,2,0,⊥,1,-, 〉 consists of:

a set D and a partial ordering 2 on D

a smallest element ⊥, such that ⊥ 2 d for all d ∈ D, and a greatest
element 0, such that d 2 0 for all d ∈ D

a least-upper-bound operation 1 such that, for all S ⊆ D, d 2 1S
for all d ∈ S , and, for all other upper bounds c ∈ D such that d 2 c
for all d ∈ S , we have that 1S 2 c

a greatest lower bound operation -, defined dually to the above:
-S 2 d for all d ∈ S , and, when c 2 d for all d ∈ S , we have that
c 2 -S

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
143



Example

An example of complete lattice, with
D = {all , notpos, notneg , zero, neg , pos, none}:

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
144



Monotonic and chain continuous functions

Conventional computation employs monotonic and ω-continuous
functions

Monotonic function: given two complete lattices A and B, a function
f : A → B is monotonic iff for all a, a′ ∈ A, a 2A a′ implies
f (a) 2B f (a′)

ω-continuous function: given two complete lattices A and B and a
ω-chain a0 2A a1 2A · · · 2A ai 2A ai+1 2A · · · , a function f : A → B
is ω-continuous iff

⊔
i≥0 f (ai ) = f (

⊔
i≥0 ai ).

A monotonic function preserves the precision information of its
argument

A ω-continuous function preserves the limit of information in a chain

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
145



Galois connections

Given a complete lattice of concrete execution data C, and a simpler
complete lattice of abstract data A, the function α : C → A acts like a
homomorphism when we study the operations on C. Let γ : A → C be
the inverse of α.

Galois connection: for complete lattices, C and A, and monotonic
functions, α : C → A and γ : A → C, the pair 〈α, γ〉 forms a Galois
connection, written C〈α, γ〉A, iff c 2C γ ◦ α(c) and α ◦ γ(a) 2A a.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
146



Galois connections (contd.)

A complete lattice 〈P(Int),⊆, {}, Int,
⋃

,
⋂
〉, and an abstraction of it:

α and γ are inverse maps on each others image: for all c ∈ γ[A],
c = γ ◦ α(c), and that for all a ∈ α[C], a = α ◦ γ(a)

α is ω-continuous and even preserves 1 for arbitrary sets in C
γ preserves - for arbitrary sets in A
each map uniquely defines the other:
γ(a) = 1{c | α(c) 2A a} and α(c) = -{a | c 2C γ(a)}

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
147



Alternative characterisation of Galois connections

For complete lattice C and A, the pair 〈α : C → A, γ : A → C〉 is a Galois
connection when, for all c ∈ C and a ∈ A, c 2C γ(a) iff α(c) 2A a.

We can prove that

both α and γ are monotonic

c 2C γ ◦ α(c)

α ◦ γ(a) 2A a.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
148



Properties of Galois connections

Galois connections are closed under composition, product, and so on:

If C〈α, γ〉D and D〈α′, γ′〉E are Galois connection, then so is
C〈α′ ◦ α, γ′ ◦ γ〉E

If Ci 〈αi , γi 〉Di is a Galois connection for all i ∈ I , then so is
Πi∈ICi 〈Πi∈Iαi ,Πi∈Iγi 〉Πi∈IDi

If C〈αC , γC〉C′ and D〈αD, γD〉D′ are Galois connection, then so is
C → D〈(λf .αD ◦ f ◦ γC), (λf ′.γD ◦ f ′ ◦ αC)〉C′ → D′.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
149



Composition of Galois connections

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
150



Utility of Galois connections

Given the definition of γ : A → C, we can mechanically synthesise its
adjoint, α(c) = -{a | c 2C γ(a)}

Dually, given α, we can synthesise γ as γ(a) = 1{c | α(c) 2A a})

Many mathematical properties about α can be expressed in terms of its
adjoint γ (and vice versa)

Since we use α : C → A as a homomorphism form C to A, abstract
operations can be synthesised with α and its adjoint γ:

for each f : C → C we can synthesise f " : A → A such that α is a
homomorphism with respect to f and f ".

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
151



Closure maps

For C〈α, γ〉A, it is common that A embeds into C as a sublattice.
Elements in A are tokens that name distinguished sets in C.

Closure map: ρ : C → C is a closure map if it is i) monotonic;
ii) extensive: c 2C ρ(c) for all c ∈ C; iii) idempotent: ρ ◦ ρ = ρ.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
152



Closure maps (contd.)

every Galois connection C〈α, γ〉A, defines a closure map γ ◦ α.

every closure map ρ : C → C, defines the Galois connection
C〈ρ, id〉ρ[C]

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
153



Moore families

Given C, we can define a closure map on C by choosing a subset of
elements of C closed under greatest-lower-bounds

Moore family: M⊆C is a Moore family iff, for all S ⊆M, (-S) ∈M

We can define a closure map as ρ(c) = -{c ′ ∈M| c 2C c ′}

For a closure map ρ : C → C, its image ρ[C] is a Moore family

Hence, given C, we can define an abstract interpretation by selecting
some M⊆C that is a Moore family

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
154



Closed binary relations

Often a Galois connection uses a powerset for its concrete domain, that
is, P(D)〈α, γ〉A

Given an unordered set D and complete lattice A, it is natural to relate
the elements in D to those in A by a binary relation, R ⊆ D ×A, such
that (d , a) ∈ R means “d has property a”

We write this as dRa

Example
D = Int, and A = {none, neg , pos, zero, nonneg , nonpos, any}.
Then 2Rnonneg , 2Rpos and 2Rany .

We can define γ : A → P(D) as γ(a) = {d ∈ D | dRa},
for example, γ(nonneg) = {0, 1, 2, . . . }.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
155



Utility of R

We can check if γ is the upper adjoint of a Galois connection by showing
that γ[A] defines a Moore family. This can be done directly upon R:

Proposition: R ⊆ D ×A defines a Galois connection between P(D)
and A iff i) R is U-closed: cRa and a 2A a′ imply cRa′; ii) R is
G-closed: cR-{ a | cRa}.

If R defines a Galois connection, then we have:

for all a ∈ A and C ∈ P(D),
C ⊆ γ(a) iff α(C) 2A a iff (cRa, for all c ∈ C).

This is the definition of a Galois connection and, in this sense, R is a
Galois connection.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
156



Abstract-domain building

Given an unordered set D of concrete data values and a set of properties
A, we can relate properties a ∈ A to elements d ∈ D via a UG-closed
binary relation RD ⊆ D ×A

1 Define γ : A → P(D) as γ(a) = {d | dRDa}.
2 Define this partial ordering on A : a 2 a′ iff γ(a) ⊆ γ(a′). If there

are distinct a, a′ ∈ A such that γ(a) = γ(a′), then merge them.
This forces U-closure.

3 Ensure that γ[A] is a Moore family by adding greatest-lower-bound
elements to A as needed. This forces G-closure.

4 Use the existing machinery to define the Galois connection between
P(D) and A.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
157



Sound approximation

For Galois connection C〈α, γ〉A, and functions f : C → C, we can say
that f " : A → A is a sound approximation of f iff

(α ◦ f )(c) 2A (f " ◦ α)(c), for all c ∈ C
iff

(f ◦ γ)(a) 2C (γ ◦ f ")(a), for all a ∈ A

Note that α acts like a “semi-homomorphism” with respect to f and f ":

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
158



Synthesising f ( from f

Given the Galois connection C〈α, γ〉A, and operation f : C → C, the
most precise f "

best : A → A that is sound with respect to f is

f "
best = α ◦ f ◦ γ

Proposition: f " is sound with respect to f iff f "
best 2A→A f ".

Note that

f 2A→A g iff for all a ∈ A, f (a) 2A g(a).

f "
best has a mathematical definition, and not an algorithmic one;

hence, f "
best might not be finitely computable.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
159



Completeness

Given C〈α, γ〉A, we state soundness of f " with respect to f as
α ◦ f 2A→A f " ◦ α iff f ◦ γ 2C→C γ ◦ f ".

Definitions:

f " is forwards (γ) complete with respect to f iff f ◦ γ =C→C γ ◦ f "

f " is backwards (α) complete with respect to f iff α ◦ f =A→A f " ◦α

Note that the two completeness notions are not equivalent.

For an f " to be (forwards or backwards) complete, it must equal
f "
best = α ◦ f ◦ γ. Indeed, the structure of the Galois connection and

f : C → C determines whether f "
best is complete.

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
160



Completeness (contd.)

Forwards (γ) completeness: f "
best is forwards-complete iff f maps image

points of γ to image points of γ, i.e., f (γ[A]) ⊆ γ[A].

Backwards (α) completeness: f "
best is backwards-complete iff f maps

all points in the same α-equivalence class to points in the same
α-equivalence class, i.e., α(c) = α(c ′) → α(f (c)) = α(f (c ′)).

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
161



References

C. Hankin, F. Nielson, H. R. Nielson: “Principles of Program Analysis”,
Springer, 1999

A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: “Compilers: Principles,
Techniques, and Tools”, Addison-Wesley, 2006

P. Cousot, R. Cousot: “Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints” in
POPL77, pages 238–252, Los Angeles, California, 1977

P. Cousot, R. Cousot: “Systematic Design of Program Analysis Frameworks”,
in POPL79, pages 269–282, San Antonio, Texas, 1979.

D. Schmidt: Course on Abstract interpretation and static analysis, held at the
International Winter School on Semantics and Applications, Uruguay, 2003
(http://santos.cis.ksu.edu/schmidt/Escuela03/).

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
162



Part IV

Introduction to Software Testing

Hélène WAESELYNCK

ReSIST Courseware v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck Testing, Verification, and Validation
163



164
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Testing



165
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Software: first failure cause of computing systems

Size: from some (tens) of thousands of code lines to some millions of code
lines

Development effort:
0,1-0,5 person.year / KLOC (large software)
5-10 person.year / KLOC (critical software)

Share of the effort devoted to fault removal:
45-75%

Fault density:
10-200 faults / KLOC created during development

0,01-10 faults / KLOC residual in operation

- static analysis
- proof
- model-checking
- testing



166
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

! Issues of controllability and observability

" Examples :

! Oracle problem = how to decide about the correctness of the observed

outputs?

" Manual computation of expected results, executable specification, back-to-

back testing of different versions, output plausibility checks, ...

! To reveal a fault, the following chain of conditions must be met:

" At least one test input activates the fault and creates an error

" The error is propagated until an observable output is affected

" The erroneous output violates an oracle check

Program
Under test

Test
inputs

Test
outputs 

Oracle
Verdict
(pass/fail) 

??? ???



167
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

If x>0: output (x+1)/3 + 1
Else: output 0

Example_function (int x)
BEGIN
   int y, z ;
   IF x ! 0 THEN

 z = 0
   ELSE
      y = x-1 ; /* y = x+1 */
      z = (y/3) +1 ;
   ENDIF
   Print(z) ;
END

! Activation of the fault if x > 0

! Error propagation: incorrect output if (x mod 3) !  1

! Violation of an oracle check:

" Expected result correctly determined by the operator #  fault revealed

" Back-to-back testing of 2 versions, V2 does not contain this fault  #  fault

revealed

" Plausibility check 0 <  3z-x <  6 #  fault revealed if (x mod 3) = 0



168
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Explicit consideration of testing
in the software life cycle

Example: V life cycle

BUSINESS
REQUIREMENTS

ACCEPTANCE
TESTS

REQUIREMENTS SYSTEM TESTS

HIGH-LEVEL
DESIGN

INTEGRATION
TESTS

DETAILED
DESIGN

UNIT
TESTS

CODING



169
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

• Whatever the adopted life-cycle model, it defines a testing process,
in interaction with the software development process

– Planning test phases associated with development phases

– Progressive integration strategy (e.g., top-down design, bottom-up testing)

– Tester/developer independence rules (according to software phase and
criticality)

– Rules guiding choice of test methods to employ (according to software phase
and criticality)

– Procedures for coordinating processes

• Documents are produced at each testing step

– Employed test methods

– Test sets + oracle

– Test platform: host machine, target machine emulator, target machine, external
environment simulator

– Other tools: compiler, test tools, drivers and stubs specifically developed

– Test reports



170
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

E.g.: bottom-up strategy

Test {C}, test {D}
Test {B, C, D}
Test {A, B, C, D}

! no stub to develop

" High-level components are tested late, while it may be important 
    to test them early
# because they are major components of the system (e.g.,  GUI)
# to reveal high-level faults (e.g.,  inadequate functional decomposition)

• Unit testing = testing of an isolated component

• Integration testing = gradual aggregation of components

Test driver

Oracle

Unit 

under test

Test inputs

Outputs

C D

B

A

Stub

Stub

calls

!  Other strategies : top-down, sandwich



171
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Test design methods: problem

No model of all possible software faults

• Very large, or even infinite, input domain
– Testing a simple program processing three 32 bits integers:

296 possible inputs

– Testing a compiler: infinite input domain

• Relevance of the very notion of exhaustiveness?
– Elusive faults (Heisenbugs): activation conditions depend on complex

combinations of internal state x external requests

Exhaustive testing is impractical!

Partial verification using a (small) sample
of the input domain

Adequate selection?



172
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Classification of test methods

$

%

criterion

input generation process

%
$

SELECTIVE CHOICE

FUNCTIONAL
MODEL

STRUCTURAL
MODEL

RANDOM CHOICE
statistical

structural

The model synthesizes information about the program to be tested.
The criterion indicates how to exploit the information for selecting test data: it defines
a set of model elements to be exercised during testing.

Deterministic: selective choice of inputs to satisfy (cover) the criterion.

Probabilistic: random generation according to a probabilistic distribution over the
input domain; the distribution and number of test data are determined by the
criterion.

deterministic

structural

deterministic

functional

statistical

functional



173
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Fault finding test: test aimed at uncovering fault  

Conformance test: functional test aimed at checking whether a software
complies with its specification (integrated testing level,
required traceability between test data and specification)

Robustness test: test aimed at checking the ability of a software to work
acceptably in the presence of faults or of stressing
environmental conditions

Regression test : after software modification, test aimed at checking
that the modification has no undesirable consequence

Purposes of testing



174
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

& Introduction

& Structural testing

& Functional testing

& Mutation analysis

& Probabilistic generation of test inputs



175
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Control flow graph

• built from the program source code

• A node = a maximal block of consecutive statements i1, … in
– i1 is the unique access point to the block

– the statements are always executed in the order i1, … in
– the block is exited after the execution of in

• edges between nodes = conditional or unconditional branching

Oriented graph giving a compact view
of the program control structure:

Based on:
- control flow graph
- control flow graph + data flow

annotations

Structural criteria



176
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

1

W= 0
W! 0

Y"0

Y<0

read (X,Y)

W=abs(Y)

Z=1

Z=Z.X

W =W-1

Z=1/Z

print(Z)

2

3

4

6

5

POWER function:
computes Z = XY, where X and Y are two integers (X!0)

BEGIN
   read (X,Y) ;
   W = abs (Y) ;
   Z = 1;
   WHILE (W <> 0) DO
      Z = Z * X ;
      W = W-1 ;
   END
   IF (Y<O) THEN
      Z = 1/Z ;
   END
   print (Z) ;
END

Program execution = activation of a path in the graph

Structural Criterion: guides the selection of paths



177
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

1

W= 0
W! 0

Y"0

Y<0

read (X,Y)

W=abs(Y)

Z=1

Z=Z.X

W =W-1

Z=1/Z

print(Z)

2

3

4

6

5

! All Paths

" Non-executable path:
1 ! 2 ! 4 ! 5 ! 6

" Infinite (or very large) number of paths:
number of loop iterations 2 ! (3 !2)*

determined by |Y|

! All Branches

" Two executions are sufficient
Y < 0 : 1 ! 2 ! (3 ! 2)+ ! 4 ! 5 ! 6
Y " 0 : 1 ! 2 ! (3 ! 2)* ! 4 ! 6

! All Statements

" Covered by a single execution
Y < 0 : 1 ! 2 ! (3 ! 2)+ ! 4 ! 5 ! 6



178
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Other criteria

• Criteria for covering loops
– Intermediate between “all paths” and “all branches”

– E.g., pick paths that induce 0, 1 and n>1 loop iterations
(you may, or not, consider all subpaths for the loop body
at each iteration)

• Criteria for covering branch predicates
– Refinement of  “all branches” (and also possibly “all

paths”) when the branch predicate is a compound
expression with Boolean operators.

– Example: A " (B # C)

Test every possible combination of truth values for
conditions A, B et C ' 23 cases

Test a subset of combinations such that each condition
independently affects the outcome of the decision to
False and True
…/...



179
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Principle

A
¬A

2 test cases F T

A # B 3 test cases FF FT TF

 AB Dec. Cond. Affect. 

Dec. 

0 FF F – 

1 FT F A (3) 

2 TF F B (3) 

3 TT T A (1), B (2) 

 

A " B 3 test cases FT TF TT

A1 " A2 … " An $ n+1 test cases
single Ai is F (n cases) + case TT…T

A1 # A2 … # An $ n+1 test cases
single Ai is T (n cases) + case FF…F

 AB Dec. Cond. Affect. 

Dec. 

0 FF F A (2), B (1) 

1 FT T B (0) 

2 TF T A (0) 

3 TT T – 

 

… Test a subset of combinations such that
each condition independently affects the
outcome of the decision to F and T…

Very much used in the avionics
domain: required by DO-178B
for Level A software

MC/DC criterion = Modified
Condition / Decision Coverage



180
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Ex : A " (B # C)

ABC Res. Oper. Affect.

Res.

1 TTT T A (5)

2 TTF T A (6), B (4)

3 TFT T A (7), C (4)

4 TFF F B (2), C (3)

5 FTT F A (1)

6 FTF F A (2)

7 FFT F A (3)

8 FFF F —

Take a pair for each operand
A : (1,5) or (2,6) or (3,7)
B : (2,4)
C : (3,4)

Hence two minimal sets for covering the
criterion

 {2, 3, 4, 6} ou {2, 3, 4, 7}

i.e., 4 cases to test (instead of 8)

Generally: [n+1, 2n] instead of 2n

Remark: MC/DC can be applied to instructions involving Boolean
expressions, in addition to branching conditions

If (A and (B or C)) res := A and (B or C);



181
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

MC /DC and coupled conditions

• Example: (A " B) # (A " C)

2 occurrences of A: 2 pairs for A

Occurrence 1 -> pair (6,2) Occurrence 2 -> pair (5,1)

A B C  res A B C  res

6 T T F    T 5 T F T    T

2 F T F    F 1 F F T    F

• Some cases may be impossible to cover when conditions are
not independent

Example 1: (A " B) # ¬A

1st occurrence of A cannot affect the decision outcome F

Example 2 : (A "  x # y) # (x > y-10 )

x # y cannot affect the decision outcome F

«$If a condition appears more than once in a decision,
each occurrence is a distinct condition$»



182
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

MC / DC in practice

• A priori approach via complete truth table often infeasible (e.g.,
number of operands > 4)

• A posteriori evaluation of an existing (functional) test set
– Coverage analysis tools: IPL Cantata, LDRA Testbed

• According to results, complement, or not, the test set



183
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Data flow

• Node i

– Def (i) = set of variables defined at node i, which can be used externally to i

– C-use (i) = set of variables  used in a calculus at node i, not defined in i

• Edge (i,j)

– P-use (i, j) = set of variables appearing in the predicate conditioning transfer of
control from i to j

Annotating the control graph:

For each variable v defined in node
i, selection of subpaths between
this definition and one or several

subsequent uses of v

Associated criteria



184
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

1

W= 0
W! 0

Y"0

Y<0

read (X,Y)

W=abs(Y)

Z=1

Z=Z.X

W =W-1

Z=1/Z

print(Z)

2

3

4

6

5

node i def(i) c-use (i) arc (i,j) p-use (i,j)

1 X, Y,

W, Z

(1,2)

2 (2,3)

(2,4)

W

W

3 W, Z X, W, Z (3,2)

4 (4,5)

(4,6)

Y

Y

5 Z Z (5,6)

6 Z

Example : definition of Z at node 1 --> covering all uses?   

• use at node 3: test with |y| > 0
• use at node 6: test with y = 0
• use at node 5 impossible, as path 1 ! 2 ! 4 ! 5 ! 6 is infeasible



185
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

criteria:

• All definitions

– Selection of a subpath for each variable definition, for some use (equally in a
calculus or predicate)

• All C-uses / some P-Uses (resp. all P-uses / some C-Uses)

– Use in calculation (resp. in predicate) is favored

• All Uses

– Selection of a subpath for each use

•  All DU paths

– Selection of all possible subpaths without iteration between definition and each use



186
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

All paths

All C-Uses / some P-Uses

All uses

All P-Uses / some C-Uses

All P-Uses

Branches

Instructions

All definitionsAll C-Uses

All DU paths

MC/DC

Ordering of
structural criteria

(subsumption)



187
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Structural Criteria – conclusion

• Criteria defined in a homogeneous framework
– Model = control flow graph (+ possibly data flow)

• Mainly applicable to  the first test phases (unit
testing, integration of small sub-systems)

– Complexity of analysis rapidly grows

– Note: for integration testing, a more abstract graph may be
used (call graph)

• Tool support (except for data-flow)
– Automated extraction of control-flow graph, coverage analysis

• Structural coverage is required by standards
– Typically: 100% branch coverage

– Can be more stringent: MC/DC for DO-178B



188
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

& Introduction

& Structural testing

& Functional testing

& Mutation analysis

& Probabilistic generation of test inputs



189
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Equivalence classes + boundary values

Partition the input domain into equivalence classes to be covered
Classes determined from the functional requirements (set of values for which
functional behavior is the same),
and/or from the data types (e.g., for int, positive, negative)

Consider both valid and invalid classes (robustness testing)

Identify boundary values for dedicated tests
E.g., -1, 0, 1, +/- MAXINT

Principle

Example

“The price entered by the operator must be a strictly positive integer.
If  price # 99%, then … From 100% and above, the processing …” 

Valid classes:

1 #  price # 99
100 # price

Invalid class:

price #  0

Boundary values:

price = -1, 0, 1, 98, 99, 100,

101, +/- MAXINT

+ possibly: price = real number    nothing entered ($)

price = string



190
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

• Informal approach, as based on natural language specification
– Differing partitions and limit values can be obtained from same specification analysis

• Analysis granularity?
– Separate analysis of input variables  (  considering all case combinations?

For price input variable 1 # price # 99 100 # price

For in_stock input variable in_stock = TRUE  in_stock = FALSE

– Class defined by composite predicate (  breaking up in disjoint cases?

discount = 10% or discount = 20%

– Classes with non-empty intersection  (  breaking up in disjoint cases?

1 # price # 99 prix * (1-discount) # 50

" Rapid explosion of the number of created classes!

• Examples of selective choice strategies aimed at covering the classes
– Selecting one test input for each class, without considering possible intersections

– Minimizing the number of test inputs while favoring the patterns covering several valid
classes; contrarily, testing separately each invalid class

– Pairwise strategies for covering combinations of values from classes



191
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Decision Table

For a combinatorial function

 

  rule 1 rule 2 rule 3 rule 4 

LIST OF C 1 T R U E T R U E FALSE FALSE 

CONDITIONS C 2 X  T R U E FALSE FALSE 

 C 3 T R U E FALSE FALSE T R U E 

LIST OF A 1 Y E S  Y E S  N O  N O  

ACTIONS A 2 Y E S  N O  Y E S  Y E S  

 

 

- Ci : input conditions
Ai : disjoint actions, order in which they are executed does not matter

- completeness and consistency of the rules (exactly one rule is eligible)
( document the impossible cases

& Rule coverage = 1 test case for each rule



192
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Finite State Machine

For a sequential function

- S : finite set of states

- S0 : initial state

- % : finite input alphabet

- & : finite output alphabet

- ' : transition relation, ' : S x % ! S

- ( : output relation, ( : S x % ! &

1 2

) / r

) / s

* / r

Graphical representation Tabular representation

) *

1 2/r ?

2 1/s 2/r

Preliminaries:  - Check completeness. E.g.,  add self-loop &*/-' on State 1

-  Deterministic? Minimal? Strongly connected?



193
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Graphical representation Tabular representation

)  coverage of states, transitions, switches (pairs of transitions)

• Testing wrt original machine or completed one

Impact on the input domain + oracle

• controllability: reach State i to test transition i->j?

Availability of a &reset' function in the test driver

)  Other strategies based on fault models 

1 2

) / r

) / s

* / r

) *

1 2/r 1/-

2 1/s 2/r
* / -

… / …



194
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

faults leading to output errors faults leading to transfer errors

• observability: observing state j?

Existence of a &status' function?

spec

impl1

1 2
) / r

1 2
) / s

impl2 1 1
) / r

)  Testing all transitions + checking the arrival state



195
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Generally, direct observation of state i is impossible
Selective choice strategy often used:

Ti,j = preamblei • eij • SCj

With: Tij = test sequence for transition i!j

preamblei = input sequence starting at initial state,
and arriving at  i

eij = input activating transition i!j

SCj = caracterising sequence for state j

1 2

) / r

) / s

* / r

* / -

Input ) enabling to distinguish between ! and ":
! --> r output       " --> s output

Testing transition "               ! via sequence: 
) / s

Reset . )  .  ) .  )



196
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

- Distinguishing sequence DS (same + j)

- Sequence UIO (unique for each j)

- Set W (set of sequences enabling to
distinguish states 2 by 2)

Do not always exist {

Exists for each minimal  {
and complete MEF

Ti,j = preamblei • eij • SCj 

With: Tij = test sequence for transition i!j

preamblei = input sequence strating at initial state,
and arriving at  i

eij = imput activating transition i!j

SCj = caracterising sequence for state j

Generally, direct observation of state j is impossible
Selective choice strategy often used:



197
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

[ 1 2 ]

%
[1] [2]

W = {)}

(Here, DS)

General case

[ 1 2 … n]

%

[1 3] [2, 4 … n]

%

[1] [3] [2, ...] [4] [5,…]

W = {)}

W = {), *•*}

Test tree Test sequences

1

12

21

W

WW

W W

Reset • )
Reset • * •  )
Reset • ) •  )
Reset • ) • ) •  )
Reset • ) • * •  )

)

)

*

*

Example: Cho's W Method

1 2

) / r

) / s

* / r

* / -



198
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Reset • )
Reset • * •  )
Reset • ) •  )
Reset • ) • ) •  )
Reset • ) • * •  )

* 

*

*

W method Transition tour

Reset • ) • * •  ) • * 

W method:

For a completely specified, minimal, deterministic FSM
of n states

If implementation is also deterministic, with n states at
most, the driver implements correctly the Reset,

Then the W method guarantees to reveal faults
producing output errors (according to the output
alphabet) and transfer errors

Rapid explosion of the test size

Strong
assumptions
...

1 2

) / r

) / s

* / r

* / -



199
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Transition systems

• Basic LTS: input and output events are not distinguished

$ IOLTS (Input/Output LTS) for testing

• Test approaches referring to relations between LTSs

Chosen relation = conformance relation between spec and impl

LTS (Labelled transition system) = low level formalism for describing
process systems / communicating automata
Example: specifications in LOTOS, SDL, Estelle, … can be translated in LTS

? a

,2,1

! x ! y

! z Input event: a
Output event: x, y, z
Internal actions: ,1, ,2

non-determinism, quiescence



200
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Example: ioco relation

? a

,2,1

! x ! y

! z

Implementation not in conformity if it can exhibit outputs or quiescences
not present in specification

Spec Impl1 not in conformity

? a

,4,3

! x ! z

! z

Impl2 not in conformity

? a

,4,3

! x ! y

! z

,5

? a

! x

! c

! z

Impl3 in conformity 

? b



201
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Test cases

Test case = IOLTS with specific trap states (Pass, Fail, Inconclusive)
--> incorporates inputs, expected outputs, and verdict

? a

! x

FAIL

Example:

! y
! other

PASS! z

PASSFAIL

! other

• enables non conformity of impl1 to be uncovered
Observation of !z after ?a

• enables non conformity of impl2 to be uncovered
Observation of a quiescence after ?a !x

Test case automatically synthesized from a test purpose

Test purpose
=IOLTS X

Spec
=IOLTS

Test case
=IOLTS

(Actually, the mirror image ?- ! is taken, because
inputs/outputs  of the system are outputs/inputs of the tester)



202
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Test purpose

• handwritten

• automatically generated from a specification coverage criterion

Example: transition coverage of the SDL model

Example: purpose = produce !z

! z

other

ACCEPT

(= covered purpose)

X
? a

,2,1

! x ! y

! z

? a

! x

FAIL

! y
! other

INCONCL.! z

PASSFAIL

! other

(Actually, the mirror image of this)



203
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Functional Testing

• No homogeneous framework, methods depend on the used
model

– Equivalence classes

– Decision tables

– Finite state machines

– Statecharts

– SDL

– Logic-based specifications (algebraic, model-oriented)

– …

• Model abstraction level & criterion stringency depend on
the complexity (integration level) of the tested software

• Formal models used for specification and design $ makes it
possible to (partially) automate testing  = input generation,
oracle



204
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

& Introduction

& Structural testing

& Functional testing

& Mutation analysis

& Probabilistic generation of test inputs



205
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Assessing the fault-revealing power of test methods? 

• Feedback from past projects
– Assessment wrt real faults

– But reduced sample of faults

• Mutation analysis = controlled experiments
– Assessment wrt seeded faults

– Large sample of faults



206
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Mutation analysis (1)

& introduction of a simple fault (= mutation)
“C” ! “C +1” “true” ! “false” “+” ! “-” “<” ! “#” “low” ! “mid”

& execution of each mutant with test set T

– killed (fault revealed by the test set)

– alive (fault not revealed)

& measurement = mutation score

  Number of mutants killed by T

  Total number of mutants

& mutations are syntactically not representative of development faults

 but produce similar errors

(it is as difficult to reveal mutations as to reveal real faults)

& Tools

– Mothra (Georgia Inst. of Techn.): Fortran

– Sesame (LAAS): C, Pascal, Assembly, Lustre

– JavaMut (LAAS): Java

– and many others…



207
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Mutation analysis (2)

! Comparing test methods (academic research)

! Identifying imperfections of a structural or functional test set

        --> complement test set with additional cases

! Evaluating software propensity to mask errors

--> locally more stringent test

But …

" Explosion of the number of mutants

" Identification of equivalent mutants partly by hand

equivalent mutant = mutant which cannot be distinguished from

the original programme by any test input



208
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Effectiveness of structural criteria: some
experimental results

Mutation score

FCT3: 1416 mutations

0.5

0.6

0.7

0.8

0.9

1

All defspaths All uses,
P-uses,

branches

FCT4:  587 mutations

0.80

0.84

0.88

0.92

0.96

1

All uses All defsP-uses branches

Mutation score

! All paths: score < 100%

! For a given criterion, strong impact of the chosen input values

! Criterion stringency + no guarantee



209
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Imperfection of test criteria

& Deterministic approach: criterion refinement

Examples :

instructions ! branches ! paths ! paths + decomposition of branch

conditions

states ! transitions ! W method ! W+1 method (number of implemented
states # number of specified states +1) ! … ! W+n method

! exhaustiveness according to fault assumptions

" explosion of test size in order to account for weaker assumptions

& Probabilistic approach

Random, less focused, selection: exhaustiveness according to fault

assumptions not searched for, reasoning in terms of failure rate according to a

sampling profile.

…/...

Remark: increase of the test size in both cases
# Necessity to automate input selection and oracle procedure



210
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

& Introduction

& Structural testing

& Functional testing

& Mutation analysis

& Probabilistic generation of test inputs



211
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Probabilistic approaches

Random testing

Uniform distribution over the input domain

! Easy to implement

" “blind” selection, usually inefficient… usually not recommended!

Operational testing

Input distribution is representative of operational usage

! Removal of faults that will have the greatest impact on reliability +
software reliability assessment

" inadequate for revealing, or assessing the consequences of,
faults that induce small failure rates (e.g.,  < 10-4/h)

Statistical testing   =  criterion  + random selection

Imperfect but relevant 
information

compensates imperfection
of criterion



212
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Operational testing

• Population of users $ test according to several operational
profiles

• Definition of operational profile(s):  functional modeling
– Identifying operating modes, functions which can be activated in a

mode, input classes

– Quantifying  probabilities associated to the model according to
operating data for similar systems, or to projected estimates
$ introducing measurement capabilities in the system («$log$» files)

• Some figures (Source: AT&T)
– Operational profile(s) definition = 1 person.month for a project

involving 10 developers, 100 KLOC, 18 months

– Definity project: duration of system test %2, maintenance costs %10



213
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Criterion-based statistical testing

criterion ! {elements to activate}

(i) Search for an input distribution
maximizing P, prob. of least probable element

! balance of element weight according to
selected profile

(ii) Calculation of the number of inputs
to generate

N " ln (1-QN) / ln (1-P)
QN =  test quality wrt criterion
Rq : QN = 0,999   ! 7 activations on average
        QN = 0,9999 ! 9 activations on average

(structural or
fonctional)

Structural statistical testing

Probabilitic analysis of control graph and data flow

Functional statistical testing

Probabilitic analysis of behavior models
Finite state machine, decision table, Statechart



214
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Example

 C = {paths}  +  SC = {k1,  k2}

 p1 = Prob[0 # Y # 99]

 p2 = Prob[99 < Y # 9999]

  p1 = p2 = 0.5

0 ! Y ! 99 99 < Y ! 9999

path
k1

path
k2

Structural distribution / C

B0 0 ! Y ! 9999
& Analytical techniques

& Empirical techniques 

 Successive refinements of an initial distribution 

B4

B1 B2

QN = 0,999   ! N = 10 inputs to generate



215
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

     TEST TYPE  LIVE    MUTATION SCORE

Structural deterministic from 312 to 405 [85,6% — 88,9%]

Uniform random from 278 to 687 [75,6% — 90,1%]

Structural statistical          6          99,8%

results for 4 unit functions and 2816 mutations :

Contribution of probabilistic
approach?

Contribution of criterion to efficiency
of random inputs?

Compensates imperfection
of structural criteria

Adequate test profiles

MUTANTS

Typical cases for limit value testing



216
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

Functional statistical
testing: mastering

complexity?

 ! adoption of weak criteria (e.g., states,...) and
possibly definition of several profiles

 ! high test quality  (e.g., qN = 0.9999)

Example : component from a nuclear control system

Functional modeling: hierarchy of Statecharts
$ Statistical testing according to two complementary profiles N = 85 + 356 = 441

Efficiency wrt actual faults?

Efficiency wrt injected faults?

«$Student$» version: 12 faults (A, …, L)

«$industrial$» version: 1 fault Z (hardware

compensation)

 + programming: A, G, J

 + understanding: B, …, F, I

 + initialisation: H, K, L, Z

«$Student$» version: mutation score = 99.8 - 100%

«$industrial$» version: mutation score =   93 - 96.1% Necessity of initialisation
process specific test



217
ReSIST Courseware           v. Henke, Bernardeschi, Masci, Pfeifer, Waeselynck                 Testing, Verification and Validation

General conclusion

• Numerous test methods

– General approach: take a (structural or functional) model and define
model elements to be covered

• Choice

– Depends on available models and their complexity

– Complementarity of “global” coverage and testing of specific cases
(boundary values, transient modes, …)

– Deterministic or probabilistic selection

• (Semi-)automation of testing is highly recommended

– B. Beizer : “About 5% of the software development budget should be
allocated to test tool building and/or buying$”

• Beyond this introductive lecture...

– Not covered here: specificities wrt testing OO, concurrent, distributed,
real-time software systems


	teil1_vorspann_pp_1-2.pdf
	Model Checking
	Theorem Proving
	Static Program Analysis
	Introduction to Software Testing

	course_4.11_MC.pdf
	teil3_TP+AI_pp_63-163.pdf
	Model Checking
	Theorem Proving
	Static Program Analysis
	Introduction to Software Testing

	teil4_Testing_pp_164-217.pdf

