Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

.The Journal of
Systems and Software

i

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

The Journal of Systems and Software 85 (2012) 2479-2493

journal homepage: www.elsevier.com/locate/jss

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

iy

il

JCSI: A tool for checking secure information flow in Java Card applications

Marco Avvenuti?, Cinzia Bernardeschi?*, Nicoletta De Francesco?, Paolo Masci®

a Department of Information Engineering, University of Pisa, 56126 Pisa, Italy

b School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS London, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 3 May 2011

Received in revised form 30 April 2012
Accepted 17 May 2012

Available online 26 May 2012

Keywords:

Java card

Java bytecode

CAP file

Secure information flow
Abstract interpretation

This paper describes a tool for checking secure information flow in Java Card applications. The tool per-
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1. Introduction

Java Cards are pocket-size cards equipped with an embed-
ded micro-controller that supports the execution of a Java Virtual
Machine (Chen, 2000). They are typically used in credit and loyalty
systems, electronic cash, health-care and e-government.

A Java Card application consists of a set of applets bundled
into a package. In multi-applicative Java Cards, new applications
can be installed after card issuance. In order to enforce security
and protection, applications are executed within protected spaces,
called contexts. Each application is associated with a unique con-
text. A component of the Java Card system, denominated firewall,
uses an access control mechanism to enforce security policies. The
basic rules enforced by the firewall are: (i) each applet can access
only objects belonging to the context of the applet; (ii) informa-
tion exchange between applets belonging to different contexts can
be performed only through specific shared objects, denominated
shareable interfaces. Applications providing shared resources are
supported by the Java Card system with mechanisms suitable to
customize the access policy. For instance, limited inspection of the
call stack for checking the identity of the application willing to use
the shared resource.

* Corresponding author: Tel.: +39 050 2217541; fax: +39 050 2217600.
E-mail addresses: m.avvenuti@ing.unipi.it (M. Avvenuti),
cinzia.bernardeschi@ing.unipi.it (C. Bernardeschi),
nicoletta.defrancesco@ing.unipi.it (N. De Francesco),
paolo.masci@eecs.qmul.ac.uk (P. Masci).

0164-1212/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/].jss.2012.05.061

Although powerful, access control mechanisms are not suf-
ficient to avoid unauthorized disclosure of information (Smith,
2007). The Electronic Purse case study (Cazin et al., 2000) is a well-
known example that shows how a Java Card application can exploit
information propagation for overriding access control policies.

In this work, we present a tool, denominated Java Card Secure
Information (JCSI), for analyzing information flows in Java Cards.
The tool implements a binary code disassembler for Java Card appli-
cations, and a data flow analysis (Lam and Ullman, 2007) based on
a multi-level security policy and the theory of abstract interpreta-
tion (Cousot and Cousot, 1992). The multi-level security policy is
used to associate security levels to applications, and the theory of
abstract interpretation is used to re-define the semantics of byte-
code instructions over a lattice of security levels. The lattice is given
by the powerset of the applications’ levels. The analysis uses a set
of rules for detecting information flows in the bytecode. Applica-
tions are analyzed one at a time, and the analysis is carried out on
a per-method basis. This enables a modular analysis similar to that
performed by the Java bytecode verifier, which aims to check type-
correctness of Java bytecode (Leroy, 2001). We use an ambient file
to store and propagate security levels of methods (i.e., methods’
arguments, return, and calling environment), and the security lev-
els of objects in the heap. With this approach, information flows in
the bytecode are assessed by checking that the security level of the
applications’ shared resources do not exceed the level specified in
the security policy.

The ultimate aim of this tool is to help developers under-
stand how information is propagated in different multi-applicative
scenarios. On the one hand, developers can model different multi-
applicative scenarios simply by customizing the security levels of
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Fig. 1. The Java Card System.

methods and objects in the heap. On the other hand, developers can
also study how information stored in specific variables propagates
within the bytecode.

The contribution of this work is twofold: (i) we extend the
approach for checking information flow in the bytecode defined in
our previous work (Avvenuti et al.,2003; Barbuti et al., 2004), which
covered only a limited subset of the Java language; (ii) we devel-
oped a tool that covers the Java Card 2.2.2 instruction set and that
allows the user to define different security policies. The tool embeds
a CAP file disassembler and visualizer, which enables to identify the
precise cause of information flow. A preliminary version of the tool
has been presented in Avvenuti et al. (2009). The current version of
JCSIis available at http://[www.eecs.qmul.ac.uk/ masci/JCSL

The rest of the paper is organised as follows. Section 2 describes
the Java Card system. Section 3 explains the information flow prob-
lem in Java Cards. Section 4 presents the architecture of the JCSI
tool, and describes in detail how the analysis is performed. Section
5 reports examples of application of JCSI. Section 8 concludes the

paper.
2. Java Card System

The Java Card System is a platform for executing applications.
The system relies on the Java Card Runtime Environment (JCRE) for
managing resources, executing programs and applying access con-
trol mechanisms. The JCRE consists of a native operating system
(0S), aJava Card Virtual Machine (JCVM) and a number of Applica-
tion Programming Interfaces (APIs). Java Card applications reside
in a user space and they can use JCRE services (see Fig. 1).

Java Card applications and JCRE’s APIs are bundled into pack-
ages, which are data structures that store the compiled bytecode of
Java classes and interfaces. A package! is uniquely identified and
selected by an application identifier (AID), which is specified in the
CAP file.

The Java Card firewall enforces access control mechanisms on
applets. In order to enforce the access control rules, the firewall
checks all operations performed by applets at run-time, and enables
information exchange between applets belonging to different con-
texts only through specific shareable objects: Entry Point Objects
(EPOs) and Shareable Interface Objects (SIOs). EPO objects belong
to the JCRE’s context, and they provide methods for exchanging
messages (e.g., to request access to a resource), and for customiz-
ing access control rules (e.g., to identify the identity of another
application). SIO objects, on the other hand, belong to applications’

1 In this paper we use the term package and application indifferently.

context, and they provide methods to define the functionalities of
applications’ shared objects.

Java Card bytecode. Java Card applications are composed of
applets, and they are compiled into binary CAP (Converted APplet)
files, which contain an executable representation of the classes and
interfaces defined in the applets. Methods defined in the applets
are encoded as sequences of Java Card bytecode instructions. The
semantics of Java Card bytecode instructions is defined in the Java
Card Virtual Machine Language, which is an assembly language for
Virtual Machines with an operand stack and a memory of local vari-
ables (registers). Instructions are typed: for example, iload (where
i is an abbreviation for int) loads an integer onto the stack, while
aload (where a stands for address of the Object) loads a refer-
ence which may point to any class and interface type, or array type.
The instruction set includes, among others, construct for defining
sub-routines and exception handlers.

In this work, we consider the complete Java Card 2.2.2 instruc-
tion set, which is summarized in Fig. 2. Let 7 denote all types. T
includes the set B = {boolean, short, byte, int} of primitive (basic)
types, the set ¢’ = CU {Object} of user defined classes, together
with the pre-defined object class, the set Z of user defined inter-
faces and the set A of array types. In the instruction set, we let
B = BU {Object}. Given a class c € C, we use the syntax c.f: t to
denote field f(with type t) of class c, the syntax [t to denote arrays
of type t and the syntax tg.mt(t1, ..., Tn): Tr to denote the method
mt of the class or interface 7y € C U Z with arguments of type 71, ...,
Tn and return type 7.

In the following, given a method mt, Bn: denotes the finite
sequence of bytecode instructions of mt. Givenaset £ ={0,1, ...}
of instruction addresses, we use B[], i € £, to indicate the i-th
instruction in the sequence, being Bi;:[0] the entry point. The sub-
script mt is omitted when clear from the context.

3. Information flow in Java Cards

Given a program with variables partitioned into two disjoint
sets of high security (i.e., confidential) and low security (i.e., public)
variables, the program has secure information flow if observations of
the final value of low security variables do not reveal information
about the initial values of high security variables (Bell and Padula,
1973; Denning, 1976; Denning and Denning, 1977).

In order to exemplify the concept of secure information flow,
consider the following situations. Assume that vy is a variable that
stores confidential data (i.e., a high security variable), and x a
public variable (i.e., a low security variable). In order to have
secure information flow, programs should not contain instruc-
tions that assign y to x, which is called explicit information flow.
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Pop the top of the stack.

Duplicate the top of the stack.

(8 € B) Takes two operands of type S from the stack, and pushes the result of type 5 onto
the stack.

(r € 8") Loads a constant d of type T onto the stack.

(t € B") Loads the value of type T from register r to the stack.

(7 € B) Takes a value of type 7 from the stack and stores it into register r.

(L € L) Takes a value of type int from the stack, and jumps to L if the value satisfies cond
(L e .L)Jumpsto L.

(r € C' U I) Creates an instance of class T and adds a reference to the created instance on
top of the stack.

(to € C’,7 € T) Takes an object reference of class 1o from the stack; fetches field f (of type
7) of the object and loads the field on top of the stack.

(to € C’',7 € 7)) Takes a value of type T and an object reference of class 7 from the stack;
saves the value in field f of the object.

(r € C" U I) If the reference on top of the stack is of type 7 leaves the stack unchanged,
otherwise raises an exception.

(r € T) Creates an instance of an array of class 7 and adds a reference to the instance on top
of the stack.

(r € B') Takes a reference to an array and an integer index from the stack. The array
reference is of type [r. Loads on the stack the value, of type 7, stored at the index position
in the referenced array.

(r € B’) Takes an array reference, an integer index and a value from the stack. The array
reference is of type [7, the value of type 7. The value is saved in the referenced array at the
index position.

Takes a reference to an array from the stack and places the length of the array on the stack.
(r € C' U I U A) Takes a reference from the stack and pushes 1 on top of the stack if the
reference is not null and is an instance of type 7, 0 otherwise.

(ro € C'" U I,1y,...Ty, 7, € T) Takes the values vy,...,v, (of types 71,...,7,) and an
object reference of class 1o from the stack. Invokes method to.mt of the object with actual
parameters vy, ..., v,; places the method return value (of type 7,) on top of the stack.

(t € B’) Takes the value of type 7 from the stack and terminates the method.

Takes an object reference from the stack and raises an exception.

(L € .L) Places the address of the successor on the stack and jumps to L.

Jumps to the address specified in register r.

Fig. 2. Arepresentative subset of Java Card 2.2.2 instruction set.
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Similarly, programs should not contain sequences of instructions
that assigns values to x depending on the value of y, which is
called implicitinformation flow (forexample,if (y>10) then x=1
else x=2). In this case, the value of x revels information on the
value of y.

In the Java (and Java Card) bytecode, given the richness of the
language, explicit and implicit information flows are not due only
to assignments and conditional branches, but also to instructions
that dynamically create objects, access arrays, and invoke methods
(Amtoft etal., 2006). Furthermore, when studying information flow
in the Java bytecode, the problem is also complicated by the fact
that the bytecode is unstructured, and approaches based on theory
of graphs must be used to properly handle implicit information
flows. In this work, we use the concepts of control flow graph and
post-dominators (Ball, 1993).

A control flow graph (CFG) is a directed graph (V, L), where
V is a set of nodes, and LV x V is a set of edges. Given a byte-
code B, the CFG associated with B is built as follows: V contains
one node for each instruction; L contains all edges (i, j) such that
instruction j can be executed immediately after i, i.e., either j is the
natural successor of i (j=i+1), oriis a branching instruction (goto,
if, switch, etc.) and j is one of the targets. Note that conditional
branching instructions can have two or more successors. Instruc-
tion i: ifcond L, for instance, has two successors: instructions

i+1, which is the natural successor, and 1, which is the target of
the conditional instruction. We assume the CFG has a final node,
END, and an edge from each return instruction of the bytecode to
node END.

In the CFG, given two nodes i, j € V, j postdominates i, denoted by
jpdi, ifj # iandj is on every path from i to the final node. Node j
immediately postdominates i, denoted by j=ipd(i), if j pd i and there
is no node r such thatj pd r pd i.

For conditional branching instructions, the instruction itself is
the point where an implicit information flow begins. Such implicit
flow affects instructions belonging to all the paths from i to ipd(i).
The first instruction not affected by the implicit flow is ipd(i),
because it represents the joining point of all branches of the con-
ditional instruction. In the following we use scope(i) to denote the
set of instructions belonging to the paths from i to ipd(i) (note that
i and ipd(i) are not included in scope(i)).

Examples of information flow in Java Cards. We now show a
situation to exemplify (i) how applets can use and customize access
control policies when sharing information, and (ii) how the access
control policies can be overridden. For the sake of clarity, we show
the source code of applets, instead of their compiled bytecode.

Using access control policies to control information sharing.
Assume that 2 and B are two applets belonging to different pack-
ages. Assume that A stores sensitive data in a private field balance,
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file Alnt. java

import javacard.framework.Shareable;

public interface AInt extends Shareable{
public short foo(); }

file A. java
import javacard.framework:
import a.AInt;
public class A extends Applet implements AInt{
private short balance;
public Shareable getSIO(AID client, byte num){
if(client.equals(B)) return this;
return null;
1
public short foo(){
AID client = getpreviouscontextAID();
if(client.equals(B)) return balance;
return §;

}
}

Fig. 3. Package a.

and that A wants to share balance with B, but not with other
applets. To this end, A can implement a SIO (A1nt), which contains
method foo () for returning the content of balance only to B.

If B wants to invoke the method foo () of the SIO shared by a, the
chain of method invocations imposed by the JCRE is the following
(see Fig. 1):

(1) Applet B must invoke getAppletSIO(AID, byte), imple-
mented in a static EPO of the JCRE; the first parameter (A1D)
identifies the applet implementing the shared object (2, in this
case), and the second parameter (byte) selects, if necessary, a
specific SIO (this parameter is used when applets share more
than one SIO).

(2) The JCRE dispatches a request for the shareable object to a
by triggering the invocation of method getSIO(AID, byte)
implemented by a, where the first parameter (A1D) identifies
the applet that requested the shared object (B, in this case) and
byte defines a specific SIO.

(3) If applet A accepts the request, a pointer to the shareable object
is returned to the JCRE, which in turn returns the pointer to B.
If the request is not accepted (this may happen, for example,
when the applet that requested the SIO is not authorized), A
returns a null pointer to the JCRE, which in turn returns a null
pointer to B.

Applet B can invoke method foo () after receiving a non-null
pointer to the SIO. When method foo () is invoked, the JCRE auto-
matically performs a context switch: the current active context (i.e,
the context of the applet being executed by the system -B, in this
case) is saved, and the context of the owner of the SIO (a, in this
case) becomes the new current active context. When the execu-
tion of the method completes, the context of the caller is set as the
current active context.

In the Java Card System, an applet that obtains a reference to
a SIO can pass the reference to applets of other packages. In order
to enable SIOs’ owners to determine the identity of the caller, the
JCRE provides a static EPO, denominated JCSystem, which provides
a method for a limited inspection of the call stack (getPrevious-
Context ()).

For instance, consider the code shown in Fig. 3. Method get-
SIO(AID, byte) of package a checks the identifier of the client,

file BInt. java

import javacard.framework.Shareable;

public interface BInt extends Shareable{
public a.AInt bar(); }

file B.java
import javacard.framework;
import a.AInt;
public class B extends Applet implements BInt{
private static AInt AObj;
private short ABalance;
private void work (){
AObj = (AInt) (JCSystem.getAppletSIO(A, 8));
ABalance = AObj.foo();
}
public Shareable getSIO(AID client, byte num){
return this;

1
public AInt bar(){return AObj;}

}

Fig. 4. Package b.

and if it is different from B, then the method returns a null pointer.
Moreover, in order to avoid that other applets use a copy of the SIO
granted to B, method foo () checks the identity of the caller through
getPreviousContextAID(), and returns the value of field bal-
ance only in the case the caller is actually B. The code of package
b is shown in Fig. 4. B implements a private method work () that
requests the SIO to 2, saves it into the private static field A0bj and
invokes method foo () to update its private field ABalance.

Overriding access control policies. Let us consider an applet c,
belonging to package c, that wants to override the access control
policy imposed by a. If c requests the SIO directly to a, the request is
rejected because C’s identity is passed to A by JCRE and a checks the
client identity before returning the SIO. Assume that B implements
a SIO, named BInt, which includes method bar (). If ¢ gets A’s SIO
by calling method bar (), C is able to invoke method foo () of A, but
A does not return the value of field balance because the identity
of the caller is checked in method foo (). The implementation of
these possibilities is reported in Fig. 5.

Applet ¢, however, may gather information on the value of field
balance as follows.

Method 1. B may send c the balance of A by implementing a
method get () that returns B’s private field ABalance:

public short get(){ return ABalance;}

Alternatively, B may send information on the balance of 2 by return-
ing the value of a variable x that depends on ABalance:

public short get(){
short x = (short)((ABalance <= 180)? 8 : 1);
return x;

}

Method 2.  or B may perform conditional invocations to shared
methods of ¢ depending on the value of a’s balance. Let cInt be a
shareable interface of ¢ and let mh () be a method of cInt; C can
infer information on the amount of A’s balance by checking if mh ()
has been invoked:

CObj = (CInt)(JCSystem.getAppletSIO(C, 9));
if (ABalance > 100) CObj.mh();
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file Clnt.java

import javacard.framework.Shareable;

public interface CInt extends Shareable(
public void mh();}

file C.java
import javacard.framework;
import a.AInt;
import b.BInt;
public class C extends Applet implements CInt{
private static AInt AObject;
private static BInt BObject;
private short ASecret;
public Shareable getSIO(AID client, byte num){
return this;}
public void work(){
BObject = (BInt) JCSystem.getAppletSIO(B, 0);
AObject = BObject.bar();
ASecret = AObject.foo();

}
}

Fig. 5. Package c.

Method 3. Calls to JCRE’s EPOs can contribute to information
flows. If B makes a request for c’s SIO depending on the value
of a’s balance, ¢ may infer information because the invocation of
getAppletSIO(C,0) made by B triggers getSIO(B,0):

if (ABalance > 100)
CObj = (CInt)(JCSystem.getAppletSIO(C, 9)),

Similarly, if B returns a SIO to ¢ depending on 2’s balance, ¢ infers
information on A through the release of the SIO from B. An imple-
mentation of getsI0() in B that triggers this information flow is
the following:

public Shareable getSIO(AID cl, byte num){
if(cl.equals(C) && ABalance > 100)
return this;
return null;

}

4. The JCSI tool

JCSl is a tool for checking secure information flow in the binary
CAP files of Java Card applications. The analysis performed by the
tool is grounded on our previous work (Barbuti et al., 2004), which
we briefly summarize in the following.

Starting from the semantics of the language, we define a set of
inference rules in structured operational semantics style (Siveroni,
2004). Then, we define an enhanced semantics of the language
to keep track of the information flow during program execution.
Such an enhanced semantics was obtained by annotating values
with information flow levels, and by executing instructions under
a security environment, which takes into account the security level
of the implicit flows. We proved that the approach is able to detect
unauthorized disclosure of confidential information.

The approach we previously proposed applies only to a limited
subset of the Java bytecode, which does not include, among others,
array, objects and method calls. The tool described here extends
our previous work in order to cover the complete Java Card 2.2.2

010
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binary
CAP t A results

DeCAP =
(parser + visualiser) - >

CAPFile
object

Vision
(GUI)

\
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(abstract interpreter)

XTrim < .
{control flow graph & dependencies)

Fig. 6. JCSI architecture.

instruction set. The tool has been developed in the Java Program-
ming Language.

In order to perform the data flow analysis, the bytecode of the
CAP file must be type-correct - this can be checked, for instance,
through the Java Card bytecode Verifier (Leroy, 2001). The data flow
analysis is performed on one CAP file at a time.

The tool implements an analysis wizard which guides the user
during the analysis, which is carried out through the following in
three main steps:

e Step 1: multi-applicative scenario setup. The tool prompts to iden-
tify the number and names of the packages already installed on
card. Such an information will be used by the tool to assign secu-
rity levels to methods and objects in the heap. In particular, each
package name is used as place-holders for the security level of
such a package.

e Step 2: multi-level security policy setup. The tool prompts to setup
a multi-level security policy for methods, fields, and objects in
the heap. The multi-level security policy can be either automat-
ically generated by the tool, or loaded from previously saved
policies. In any case, the tool allows the user to customize all pol-
icy parameters in order to perform different analyses. The tool
stores the policy in a configuration file, named ambient file. Dur-
ing the data flow analysis, the ambient file is used to propagate
security levels among objects in the heap, fields and methods
(internal, imported, and exported). Partial analyses of the byte-
code can be performed, e.g., by including in the ambient file only
a subset of the implemented methods.

e Step 3: data flow analysis execution. The tool shows how infor-
mation is propagated through the bytecode during the data flow
analysis. The tool constantly updates the level of objects in the
heap, fields and methods in the ambient file in order to prop-
agate information flows. The fixpoint of the iterative data flow
is reached when all methods specified in the ambient file have
been analyzed and the security levels in the ambient file are
unchanged.

At the end of the analysis, the security levels in the ambient file
register data dependencies. The tool reports if the CAP file satisfies
the multi-level security policy described in the ambient file. If the
CAP file does not satisfy the policy, the tool reports a detailed log
of the bytecode instructions violating the policy.

The software architecture of the tool is shown in Fig. 6. The tool is
composed of four main modules: Vision, Engine, XTrim and DeCAP.

Vision. This module implements the graphical user interface
of the tool (Fig. 7). The user interface provides the following
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Fig. 7. JCSI's graphical user interface.

functionalities: select the package to be analysed; load export files;
specify number and names of packages already installed on the
card; load, save, view and edit ambient files (see Fig. 8); choose the
stopping rule for the analysis, (i.e., either stop at the first violation,
or at the fixpoint).

Engine. This module implements the abstract interpreter that
performs the data flow analysis of the bytecode. At the end of
the abstract execution, the Engine compares the security levels of
methods belonging to sharable interfaces against the defined secu-
rity policy. A detailed discussion of the module is reported in the
following.

XTrim. This module generates the control flow graph of the byte-
code for each method defined in the CAP file under analysis. XTrim
is also responsible of computing the scope of conditional branching
instructions.

DeCAP. A CAP file disassembler and visualizer. DeCAP is a tool
that provides a set of APIs suitable to read binary CAP files used by
Java Cards. This tool is invoked by the Engine in order to parse CAP
files. Binary CAP files are represented through a Java class called
CapFile. DeCAP also provides a GUI that enables users to explore
the structure of CAP and export files, and to visualize their binary
content in a more comprehensive mnemonic format (see Fig. 9).

In the following, we explain the security model and the ambient
file. Then, we give details of the algorithm implemented by the
Engine to perform the analysis.

4.1. Security model

We define a set P of security levels, one for each package. We
consider the powerset ¥ =2, i.e., the set of all subsets of P, ordered
by subset inclusion. (£, ) is a complete lattice (every pair of ele-
ments of ¥ has both a greatest lower bound, glb, and a least upper

s ava Card Informat Verifier 1.1 x Ambient File Editor x |G x

Ambient File

" Imported Methods | _Internal Methods | _Exported Methods | Heap Section
:aIrlranceiln(ernal_(lass‘_lS{dni(:(tB.S.B)v'_purse ~airfrance T -
airfrance/internal_class_15/<init>([B,5,B)V _rentacar ~airfrance [
javacard/framework/Applet/<init>0V _airfrance ~airfrance I
javacard/framework/AppletiregisterQV _airfrance ~airfrance ‘

javacard/framework/APDU/getBuffer()[B _airfrance ~airfrance
javacard/framework/Applet/selectingApplet()Z _airfrance ~airfrance
javacard/framework/ISOException/throwit(S)V _airfrance ~airfrance
|airfrance/internal_class_103/internal_ method_103(Ljavacard/framework/APDUIV _purse ~airfr i
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Fig. 8. Ambient file editor.

bound, lub). The lub is given by the union (U) and the glb is given
by the intersection of subsets (N). GivenACB,AUB=Band ANB=A.
The minimum of ¥ is the empty set (i.e., {}).

The analysis operates over security levels in X. At the begin-
ning of the analysis each data is annotated with a security level. For
instance, {p} denotes a secret of p, the empty set {} denotes public
data. At the end of analysis, the singleton set {p} denotes informa-
tion that depends only on package p, the set {p1, ..., pn} denotes
information that depends on private data of packages p1, ..., pn.

4.2. Ambient file

The ambient file has two sections: the heap section, which
stores and propagates security levels of objects in the heap, and
the methods section, which is dedicated to methods. Each entry in
the ambient file specifies the security levels held by the item and,
optionally, the security policy that must be checked.

Heap section. The heap is a private resource of the package. The
ambient file maintains a security level for each class field and
for each array type. Objects are abstracted into classes. Arrays are
abstracted into array types. Arrays of objects and array of arrays are
all abstracted into array of references type. These abstractions are
due to the fact that the bytecode does not contain enough infor-
mation to keep track of object instances and specific elements in
arrays. Assuming we are analyzing the package p, the tool initial-
izes the security levels to the default value equal to {p}. This level
can be customized by the user to model the desired policy.

The security level of each class field c. fis initially set to {p}. The
level of class fields will be updated during the analysis according to
the flow of information and the dependencies between instructions
in the program. When the analysis completes, the security level of
c.f is the maximum security level of the field f of all objects of
class c. Similarly, the security level of each array type is set to the
security level {p}. When the analysis completes, the security level
of arrays of type [t is the maximum security level saved into all
array instances of type [t.

Methods section. Let M denote the set of all methods occurring in
package p. Methods in M can be either internal methods (i.e., meth-
ods defined in p - they can be invoked only by applets belonging
to the packages), imported methods (i.e., methods defined in other
packages - they are invoked by p), or exported methods (i.e., meth-
ods defined in p that can be used by other package). The level of a
method characterizes how the method is called in terms of the level
of the method’s actual parameters, return and calling environment.

The syntax we use for denoting an entry for a method mt is the
following: mtg,(‘(o, T1, ..., Tn)Tr: Te (S), where pis the package that
implements mt, p’ is the package that invokes mt, 7 is the implicit
parameter (this), 74, ..., Tn are the method’s arguments, 7, is the
return, and t, is the calling environment. The security level Se &
specifies the security policy that must be satisfied by mt.

The policy is optional. When the security policy is not speci-
fied for a method, the tool does not check any constraint on such
a method. This is useful for modeling situations where any infor-
mation flow is allowed through the method. Examples include
invocation of JCRE methods and invocation of methods within
third-party collaboration scenarios.

4.2.1. Default initialization of the methods section

The default initialization of the ambi ent file configures the anal-
ysis for the worst-case scenario: any package already installed on
card may implement methods imported by the applet under analy-
sis and may invoke exported methods of the applet under analysis.
The default policy enforces that information shared between two
packages only depends on these two packages.
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3: dup
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o [ applet_component 6: sload_2
o Jimport_component 7: invokespecial 3 |
o [ constant_pool_component 10:pop
i, 11:return

o [ class_component
¢ [ method_component
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[ size: 610
[ handler_count: 0
[} Exception_Handler_Info() (0)
¢ [ Method_Info[] (12)
¢ [ method_1([B.S.B):V
[ flags: 0
[ max_stack: 5
[ nargs: 3

I o [ (args & return value)
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-

Loading project complete, capfile analisys can be performed. )

Fig. 9. DeCap tool.

The default initialization of the methods section is shown in
Fig. 10. For internal methods, denoted as Internal(p), a single
instance of each method is inserted with levels of arguments, return
and calling environment set to {p}. As internal methods always sat-
isfy the secure information flow, the security policy is omitted (i.e.,
any information flow is accepted for such methods).

For imported methods, denoted as Import(p), the worst case sce-
nario is that any package on card may implement such methods.
JCRE methods can be identified by the signature. Imported meth-
ods belonging to the JCRE, except getAppletSIO(), have default level
p and the security policy is omitted (i.e., any information flow is
allowed). Method getAppletSIO() has default level p, and security
policy ({p}).

For other imported methods, the levels of parameters and calling
environment are set to {p}. The level of the return is set to lub of
all packages. The security policy for a method mtg, is set to glb({{p,
p'} | p’ installed on card), where p is the applet under analysis and p’
is the applet that implements the method.

For exported methods, denoted as Export(p), the worst case
scenario is that any package installed on card may invoke such
methods. This implies that the ambient file contains an item mtg/
with level {p, p’} for parameters, return and calling environment.
The security policy for such an item is set to ({p, p'}).

Y mt € Internal(p) :
mtp((p), -+, {PHip}: (P}

Y mt € Import(p) :
—mt € JCRE
if (mt # getAppletS 10())
mt,({p}, -+, {pH{p}: {p)

else

getAppletS I00,({p}, {PH(p}; (P} {{p)
—mt ¢ JCRE

mty,({p}, -+, {pPHW:{p} () where
W = lub({{p, p'} | p’ installed on card })
S = glb({{p, p’} | p’ installed on card })

Y mt € Export(p) :
Vp’ such that p” installed on card

mt ({p, 0’} - (2, DD P Y Aps ) s ')

Fig. 10. Default initialization of the methods sections in the ambient file.

The security policy ({p, p’}), which guarantees that private infor-
mation of a third package cannot be released by p to p’, also applies
to the invocation of getsT0 (), which is actually triggered by other
packages through the getapplets1o (). The default initialization
includes an instance of method getSIO() for every other package p’
on card.

4.2.2. Custom initialization of the methods sections

The default initialization of the ambient file is fully automatic.
However, it does not take advantage of the knowledge of real inter-
actions between packages. As a consequence, the analysis may lead
to false positives that in practice may result over restrictive. This
applies also to Java Card entry point methods for JCRE - such as
methods for APDU-related instructions, the applet constructor, and
the applet life-cycle methods install(), select(), deselect(), process(),
getSIO() — to which the default initialization assigns the same pol-
icy as the methods invokable by user packages. In order to perform
a more accurate and realistic analysis, the tool enables the user to
change the levels and the security policy by manually editing the
ambient file. In general, when the CAP files of the other applets
installed on card are available, the user, assisted by the DeCAP tool,
can look at those files for identifying which packages can poten-
tially invoke the exported methods, and modify the ambient file
accordingly.

A simple customization strategy can exploit information con-
tained in the Import components of the other CAP files installed on
card and the information contained in the Export components. By
matching such an information, the user can identify which pack-
ages implement a given method, as well as which packages may
potentially invoke a given method. Such a strategy is shown in
Fig. 11. Packages(mt) denotes the set of packages that implement
method mt.

For imported methods, the security policy is (glb({{p,p} | D €
Packages(mt)})).

For exported methods, if mt is one of the entry point methods for
JCRE and mt is not getSIO(), the user can release the security policy,
as the invocation of such methods propagates information to JCRE
only. For these methods, the ambient file contains an instance of mt
with level p and without a security policy (mtg({p}, .o iPDIDY: P

If the exported method is getSIO(), we need to identify all pack-
ages that may potentially request a shareable object by invoking
method getAppletSIO() (see Section 3). To control the informa-
tion flow, the ambient file must contain an instance of mt for
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Y mt € Internal(p) :
mty({p}, -+, {PH{p}: (P}

Y mt € Import(p) :
—mt € JCRE
if (mt # getAppletS 10())
mib({p}, -+ -, (PYIpY; (p)
else
getApplerS I00;({p). {pHp}: (P} {pH
—mt ¢ JCRE
mtr,((p}, -+, {PHW; {p} (S ) where
W = lub({{p,p'} | p’ € Packages(mt)})
S =glb({{p, P’} | p’ € Packages(mt)})

Vmt € Export(p) :
— mt entry point for JCRE
if (mt # getS10())

my({p}. -~ - {(PHipk: (P}
else

¥V p' such that getAppletS 10() invokable by p’

gerS 105 ({p, 'Y, {p. o' Dip P )i Ap, ) Ko ')
— mt not entry point for JCRE
Vp’ such that m¢ invokable by p’

mtﬁ'({P, L' e 'l p'Y e p'h

Fig. 11. Example of custom strategy for initialising the methods sections in the
ambient file.

each package that invokes getAppletSIO(), with the security policy
mtp ({p}, ..., (PP} P} (D, P'D).

For all other exported methods, the policy is the same as the one
defined by the default initialization.

4.3. Engine

In this section, we explain in detail the analysis implemented by
the Engine module.

Iterative data flow analysis. The data flow analysis is performed
on a per-method basis. The analysis starts from an initial ambi-
ent file D%, and checks all methods in M that are implemented by
the package under analysis. The set T of methods to be analyzed is
maintained in a work-list.

The analysis uses an abstract interpreter, named Method Secu-
rity Checker (MSC), for verifying a method with the algorithm
shown in Fig. 12. Given a method mteT and an ambient file D,
MSC performs an abstract execution of the bytecode of mt with
respect to the security levels in D and produces a new ambient file
D'. If D’=D, then the fixpoint has been reached for that method,
and another method is analyzed. If D’ # D, all methods are verified

D:=D"
T :={mt € M| p implements mt)}
MT =T

while(MT # 0)
select mt € MT
MT := MT — {mz}
D’ := MSC(mt,D)
if(D’ # D)

D =D
MT =T

Fig. 12. Iterative data flow analysis of a package (pseudo-code).

again starting from the ambient file D'. The verification terminates
when, starting from an ambient file, all methods are analyzed and
the ambient file remains unchanged.

Given a method mt, when verifying the bytecode B, we use
a global state (D, Q), where D is the ambient file, and Q is a table
containing a row Q; for every instruction i € £ of the method.

Given an ambient file D, an element t of D is denoted with Dy:
D;=oc iftisaclass field or an array type; D; = (00,01, ---0n)or; 0 ift
isamethod with n parameters o, - - - o, plus the implicit parameter
09, o is the return and o, is the environment. For static methods,
0g is omitted.

Given Q, Q; represents the state of JCVM in which instruction i is
executed and we will refer to it as the before-state of instruction i.
Moreover, we will refer to the state generated after the execution
of instruction i as the after-state of i. Q; is a triple (E, M, St), where
E € ¥ is the security level of the environment, M : Registers — X is a
mapping from local registers to security levels (the memory) and
Ste X*, where * denotes the set of finite sequences over a set, is a
mapping from the elements in the operand stack to security levels
(the stack).

Qenp represents the final state reached after the execution of
the last instruction of the method. The standard concatenation
operator is - and the empty stack is represented by the symbol A.
We assume that the values on top of the stack appear on the left
hand-side of the sequence (i.e., given st=s7 - - - Sy, the element s; is
the top of the stack).

The initial state QO reflects the state of JCVM on method
entrance. The operand stack is empty for every instruction. Q°
assigns the bottom element of the lattice to the environment and
to every register of all instructions but instruction 0. For instruc-
tion 0, the registers containing the method’s actual parameters
are initialized to the security level taken from the ambient file.
The level of the environment of instruction 0 is equal to the level
of the calling environment taken from the ambient file for the
method.

In order to execute the analysis, the CFG of the method is derived
from the bytecode, and the dependency between instructions is
computed (i.e., for each instruction i, we compute scope(i)). The CFG
defined in Section 3 is extended in order to consider information
flow due to subroutines and exceptions.

Subroutines are sections of code shared between multiple exe-
cution paths. Instruction jsr L jumps to instruction 1, which is
the first instruction of the subroutine, and places a return address
onto the stack. Typically, the first instruction of the subroutine
pops the return address from the stack and stores it in a regis-
ter; this way, when the subroutine completes, a ret instruction
can be used to fetch the return address from the register, and
jump back to the instruction following jsr L. The actual return
address can be determined only in real executions. Hence, in order
to take into account all execution flows, we need model the ret r
instruction as a jump to all possible return address. To this end, the
CFG is extended with edges from the ret r to all possible return
points.

Exception handlers are identified through an exception table,
denoted by E. For each exception handler, E defines the entry point
of the handler, the range of protected instructions, and the type of
exception caught. Note that the entry point of an exception han-
dler can only be reached by raising an exception (i.e., there are no
explicit jumps to the entry point of the exception handler). This
is a constraint enforced by the Bytecode Verifier. We denote byte-
code sequences protected by exception handlers with triples (i, j, k),
where i is the first instruction protected by the handler, j is the first
instruction not protected by the handler, and k is the entry point
of the exception handler. Since the exception type is only known
at run-time and cannot be derived from the bytecode, we cannot
distinguish between different types of exceptions thrown by an
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instruction. In order to take into account all execution flows, we
impose that all the exception handlers that protect instructions are
possible successors of such instructions. Given an instruction i, we
use H(i) to denote the set of entry points of the exception handlers
protecting i. The CFG is extended as follows. For every protected
instruction i, we add an arc in the CFG from i to the entry point
of every exception handler protecting i (H(i)). We add an arc from
instructions that raise exceptions (athrow and throwIt () ) to the
END node.

Abstract interpreter. The abstract interpreter executes byte-
code instructions over the abstract domain of security levels. The
rules of the abstract interpreter define a relation — < (D, Q) x (D,
Q).

When instruction at position i (hereafter, we will use the term
“instruction i” with the same meaning of “instruction at position
i”) gets executed, the after-state of i is propagated to every succes-
sor of i. The propagation is obtained through a merge operator, lub,
between the after-state of i and the state of the successor of i. The
lub operator is defined separately on memories, stacks and envi-
ronments: (o, M, St)u (o', M, St')=(c Uo’, MUM', StUSt'). The lub
operator on memories is defined point-wise on memory registers.
Given two memories M and M', MUM' is defined as: M(r)uM'(r)
for every register r. Similarly, the lub operator on stacks is defined
point-wise on the elements in the same position. Note that, for each
bytecode address i, the stack size when i gets executed is indepen-
dent from the control flow. This is a property of all type-correct
bytecodes generated by compilers. Such property is also enforced
by the standard Bytecode Verifier (Leroy, 2001). The lub operator
on methods stored in D is defined point-wise on method parame-
ters (according to their position), calling environment and return:
(00,01, ..., On)or;0eU(kg, k1, ..., kn)kr; ke=(0gUkg, 01 Ukq, ...,
onUkp)orUky; oeUke.

Instructions to be verified are inserted into a worklist wr, ini-
tialized with instruction 0. When wL is empty, the verification of
a method completes. Whenever an instruction i is fetched from
WL, instruction i is executed starting from its current state Q;, and
the after-state of instruction i is computed. The after-state is then
merged with the before-state of every successor of the instruc-
tion. If the state of a successor j changes, or if a successor has not
been visited yet, j is inserted in wL. Note that Q; stores a state that
merges all possible states in which j can be executed. Note that,
when an instruction i is executed, every state Q; corresponding to
the entry point of an exception handler protecting the instruction
is also updated. The stack at the entry point of exception handlers
contains one operand. In the rules, this operand is set equal to the
lub between the levels in the stack positions and the level of the
security environment.

The data flow analysis used in this work is conservative,
i.e., all packages that may potentially disclose confidential infor-
mation are rejected, but also some secure packages might be
rejected. This is due to the fact that during the abstract execu-
tion of a method, all branches of control instructions are checked,
even those that in the real execution would have never been
executed.

Rules of the abstract interpreter. A set of rules for various types
of instructions is presented in the Appendix. In the following we
describe the notation used for the rules and then we describe the
implemented rules.

Notation. Q[Q; U= (o, M, St)] denotes a table Q' which is equal to
Q except for entry i, that is set equal to the lub between Q; and (o,
M, St): Q] = Q;U(o, M, St). A list of entries to be updated may be
specified. Given s € X*, D|D; U =s] denotes an ambient file D’ which
is equal to D except for entry ¢, that is set equal to the lub between
D¢ and s. For methods we have a sequence of security levels whose
length depends on the number of parameters. M[v/r| denotes a
memory M’ which differs from M only for register r, whose value is

M’(r) = v. Function™ maps an array type into either an array of basic
types or an array of references

R [t if T € Base
[r=
[Reference otherwise
Function Li4(D) denotes the lub of the security levels of arrays
inD

U4(D) = UrerD([T)

Given aninstructioni, h(Q;)is used to denote the after state of iin
the casein which instructioniraises an exception. Specifically, h(Q;)
isa state equal to Q; except for the stack. The stack contains only one
element, obtained as the [ub of the security levels of stack positions
and the environment. Given Q; = (o, M, St) with St =57 - - - s, we have
that h(Q;)= (0, M, (0 U(Ueqn,...m51)))-

In the rules, the security level of the result of an expression is
computed by using both the security level of its operands and the
security level of the environment (implicit flow). Each rule updates
the before state of the entry point of exception handlers protecting
the instruction.

Rule op, for example, inserts onto the stack the [ub between
two parameters taken from the stack and the environment of
the instruction. A control instruction at program point i (rule if)
upgrades the level of the environment of instructions belonging to
scope(i) to the lub between the level saved in the ambient file and
the level of the tested value on the stack (implicit flow). Rule jsr
pushes the security level of the environment onto the stack. Rule
ret updates the state of every possible return point (ji, .. .,jn) of the
subroutine. Rule athrow updates the before-state of END node, in
addition to the entry point of exception handlers. Rule new pushes
the security level of the environment onto the stack.

A partial order relation is defined on the domain of global states:
given two global states (Q, D) and (Q', D), (Q, D) < (Q/, D’y if and only
ifQcQ and Dc D', where Q< Q' if and only if Vi, Q; € Q1’ andDcD’
if and only if Dy € D; for every entry t. For memories and stacks, <
is defined point-wise on registers and stack positions. For method
entries, C is defined point-wise for elements in the same positions.

The data flow framework defined by our rules is monotone (Lam
and Ullman, 2007). The proof is done by cases for any rule. This is a
key point, because we are guaranteed that the analysis completes
in a finite number of iterations, and independently from the order
of application of the rules.

Analysis results. When the analysis of a package completes, the
ambient file stores the highest security level of calling environ-
ment, actual parameters and return for each method. lllegal flows
of information can be detected by looking at methods of shareable
interface objects in the ambient file.

Checking exported methods. Given a security policy (S) for an
exported method mtgl, the return level of the method must be <S.

Checking imported methods. Given a security policy (S) for an
imported method mtg,, the parameters, return, and calling environ-
ment of the method must be CS.

5. Examples of analysis

In this section, we exemplify the analysis performed by the tool
with two examples. In the first example, we show in detail a step-
by-step application of the rules applied by the Engine of JCSI in a
simple example derived from those described in Section 2. In the
second example, we show the functionalities of the JCSI tool by
using it for the analysis of the well-known Electronic Purse case
study (Cazin et al., 2000). In both cases, we initialized the ambient
file using the custom strategy shown in Fig. 11.

Example 1: Step-by-step execution. Let us consider the analysis
package b where method gets10 () returns a SIO to c if and only
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.method public getSIO(AID, byte)Shareable 0
.locals 3 {
0 aloadr®; i
1 aloadrl; |
2 getstatic b/B.C; 3
3  invokevirtual JCSystem.AID.equals() £
4  ifeqll; f
5 aloadr®; 5
6 getfield ABalance; l
7 push 100; j
8 if_icmple 11; 7
9 aloadr®; i
10 areturn;
11 aconst.null; ( \1'1
12 areturn; l l
10 12

Fig. 13. Bytecode of gets10() of B and its CFG.

if the balance of a is greater than a given threshold (shown at the
end of subsection 2). Fig. 13 shows the bytecode of the method and
its control flow graph. The bytecode uses 3 registers; on method
entrance, the implicit parameter (applet B reference) is saved into
register ro, the AID parameter is saved into register r1 and the byte
is saved into register r2.

Let us analyze getsIO() when it is invoked by package c.
The corresponding entry in the ambient file is getSIO()j. Assume
method foo () has already been analyzed. In this case the security
level of field ABalance in the ambient file is {a, b}. Verification of
getSIO; () starts from the initial global state (D%, Q%) shown in Fig. 14.
The before-state of instruction 0 is set according to the security
levels of the method in the ambient file.

Instruction 0 is executed. Rule load pushes the [ub of the security
level of the environment and the register r0 onto the stack. The
after-state ({b, c}, ({b, c}, {b, c}, {b, c}), {b, c}) is propagated to
instruction 1, the successor of 0. The before-state of 1 becomes Qf U
({b, c}, ({b, c}, {b, c}, {b, c}), {b, c}) and instruction 1 is inserted into
the WL. When instruction 2 is executed, Rule getstatic pushes the
lub between the security level of the environment and the level
of the static field b/B.cC saved in the ambient file onto the stack.
Instruction 3 updates the entry corresponding to method equals ()
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in the ambient file, removes the parameters from the stack and
pushes the return taken from the ambient file onto the stack.

There are two implicit flow in the code; the first one starts at
4, the second one starts at 8. Both flows terminate at node END
(ipd(4)=ipd(8)=END) and instructions 9, 10, 11, 12 dependon
both implicit flows. The security level of the first implicit flow
is equal to {b, c} and the environment of instructions under the
implicit flow is updated accordingly. The security level of the
implicit flow at 8 is instead equal to {a, b, c} because instruction
6 pushes onto the stack field ABalance whose level in the ambient
file is equal to {a, b}. Both instructions 9 and 11 are executed in
the environment {a, b, ¢} and push onto the stack a constant whose
security level is equal to {a, b, c}. As a consequence, instruction
10 and instruction 12 both return {a, b, c}. Rule return modifies
the security level of the return of method getSIO;() in the ambi-
ent file, which is set equal to {a, b, c}. Fig. 15 shows the global
state (Q, D) at the end of the analysis of the method. Since D # D,
the analysis of the whole set of methods is executed again starting
from D.

The analysis result is that method getSI0 () does not guarantee
secure information flow. Indeed, from the content of the ambient
file D at the end of the analysis, we can notice that the return of
method getSIOf() has security level {a, b, c}. This is a symptom of
information flow that carries confidential information. The maxi-
mum level should be {b, c}, and {a, b, ¢} ¢ {b, c}.

Example 2: The Electronic Purse. Let us consider the well-
known Electronic Purse case study of PaCap (Cazin et al., 2000).
The case study considers the interactions between a Purse applet
and two Loyalty applets (see Fig. 16).

Purse. The Purse applet performs debit and credit operations
in different currencies, plus some administration functions. To this
purpose, Purse implements a shareable interface, PurseLoyalty-
Interface, which contains method getTransaction () that can
be invoked by loyalty applets to get transaction records stored in
the transaction log. This log has a limited dimension, thus Purse
may over-write old records to save new records. Client applets may
need lossless transaction logs, hence Purse offers a log-full service
that can be subscribed. Client applets that are registered to the
log-full service must implement a shareable interface defined by
Purse (LoyaltyPurseInterface). Thisinterfaceis used by Purse to
invoke method 1ogFull (), which notifies registered applets that
the transaction log is going to be over-written.

AirFrance. AirFrance is a loyalty applet. This applet is a client of
Purse and can interact with other loyalty applets. AirFrance imple-
ments two shareable interfaces: LoyaltyAirFranceInterface,

class fields, arrays
AObj = {b)
ABalance = {a, b}

static fields
B.A = (b} B.C = {b)

internal methods
D= equalst({{b), b)){b}: (b}

workp((b)){b); (B}

imported methods
getApplerS 10}({b), (B)){b}; {b) (b))
fodk({a, b)ia, b); {a, b} {a. b))

E M St
0 {b,c} | ({b,ch{b, ¢} {b.c}) | A
1 { @ .4 4
0° = 2 0 (AT 4
3 0 . 4
2 10 @00 4
END | () an o, 4

exported methods

getS105({b, c}, (b, c}, {b, )b, c}; (b, c} {{b, c}}
getS 103({a, b}, {a, b), {a, b}){b, a}; {a, b} {{a, b)}
barj({b,c})(b, c}; {b, c} {{b, c})

Fig. 14. Initial global state (D°, Q°) during the analysis of package b.
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class fields, array
AObj=(b)
ABalance = {a, b}

static fields
B.A={b} B.C={b}

internal methods
equalsb({b, c}, {b, c}){b, c}; (b, c}

work? ({b)){b); (b}

imported methods

getAppletS10,({b}, (b)){b}; (b} (b))
fook({a, ba, b}; {a, b} ({a, b))

exported methods

getS 10;5([b, ¢}, (b, c)a, b, c}: {a, b, c) {{b,c])
get§S 10;({a, b}, {a, bIMa, b}; {a, b} ({a, b))
bary({b, )b, c}; {b, ¢} (b, c})
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E M St
0 {b,c} | ({b,c){b,c).{b,c)) | 4

I {b,c} | (b, c}, {b,ch, (b, c)) | {b,c)

2 (b} | (b, el {b,c) (b, c)) | {b,c) - {b,c)

3 {b,c} | ({b,c},{b,c},{b,c}) | {b,c} - {b,c}- {b,c}
4 {b,c} ({b.c}), {b,c}, {b,c)) | {b,c}

5 b, | {b,c),{b,ch{bch) | 4

6 {b,c} | ({b,c).{b,c},{b,c)) | {b.c)

7 {b,e} | ({b,c), (b,c), {b,c)) | {a,b,c)

8 {b,c} | (b,chib,clib,c)) | tb.c}-la,b,c)

9 {a,b.c} | Ub,cl{b.ch{b,c) | A

10 {a,b,c} | ({b,c}),{b,c},{b,¢)) | {a,b,c)

11 {a,b,c} | ({b,c),{b,c}, {b,ch) | 4

12 |{ab.c} | Ub,cl{b.ch{b,c) | {a.b,c)

END | {b,c} ({b,c), {b,c}, {b,c)) | A

Fig. 15. Global state (Q, D) at the end of the analysis of package b.

which contains, among others, method getBalance () which can
be invoked by other loyalty applets to get the current number
of miles collected; LoyaltyPurseInterface, which is needed
because AirFrance is registered to the log-full service of Purse.

RentACar. RentACar is a loyalty applet. Similarly to AirFrance,
RentACar implements a shareable interface LoyaltyRentACarIn-
terface which contains methods that can be invoked by other
loyalty applets to get the current number of miles collected (get-
Balance()). RentACar is also a client of Purse, but it is not
registered for the log-full service, thus RentACar does not imple-
ment the shareable interface LoyaltyPurseInterface.

Assume that AirFrance requests RentACar the amount of miles
every time Purse notifies AirFrance that the transaction log is full.
In this case, the 1ogFull () method implemented by AirFrance
contains an invocation of method getTransaction () of Purse fol-
lowed by an invocation of method getBalance () of RentACar.
Applet RentaACar, whenever observes an invocation of getBal-
ance (), can infer that Purse is going to over-write the transaction
log. Thus, even without subscribing to the log-full service, RentACar
is able to benefit from such a service. Purse is not able to detect
such information flow. Moreover, this flow cannot be detected by
the firewall, because (i) both AirFrance and RentACar are allowed to
invoke getTransaction () of Purse to retrieve the transaction log;
(ii) AirFrance is allowed to invoke getBalance () of RentACar; (iii)
RentACar is allowed to invoke getBalance () of AirFrance. The case
study is an example of information flow caused by nested calls to
methods of shareable interface objects between different packages.

Fig. 17 shows an excerpt of the initial ambient file generated by
JCSI for the analysis of AirFrance. The tool represents {pl, p2} as
pl+p2.Let airfrance, purse and rentacar be the security levels

of AirFrance, Purse and RentACar packages, respectively. In the ini-
tial ambient file, method 1ogFull () implemented by AirFrance
and invoked by Purse has security level {airfrance, purse},
while method getBalance() implemented by RentACar and
invoked by AirFrance has security level {airfrance, rentacar}.

The package does not guarantee secure information flow
because the level of the calling environment of getBal-
ance() is {airfrance, purse, rentacar}, while it should be
{airfrance, rentacar}. This is due to the implementation
of method logFull(), which invokes getBalance() depend-
ing on data provided by other packages (the environment is
indeed {airfrance, purse}). According to rule invoke, envi-
ronment, parameters and return of getBalance() become
{airfrance, rentacar}U{airfrance, purse}={airfrance,
purse, rentacar}. Part of the analysis results for package Air-
France are shown in Fig. 18.

We analyzed also the other two packages. The result is that
Purse guarantees secure information flow, while RentACar does
not. Specifically, the analysis of RentACar shows that, in method
getBalance (), RentACar invokes getTransaction () of Purse for
obtaining the transaction log when the level of the calling environ-
ment depends on data provided by other packages.

6. Related work

Secure information flow in the bytecode has been studied in
many works (e.g. Barthe and Rezk (2005), Genaim and Spoto
(2005)). Here we summarize a number of works that are closely
related to Java Cards. An extensive survey of the techniques applied
for enforcing information flow security policies is not in the scope

purse

logFull()

oydityPurse
Interface

3

airmiles

-

3 8

Eg| gesaancey |Z 3 rentacar

= T >

%) zel |/

!E = £ = RentACarApplet
-]

= getBalance() |~

i

PirseLolalty
nlerfafe

getTransaction()

getTransaction()

Fig. 16. The Electronic Purse.
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<Internal methods>
% - install(array of byte,short,byte):void

method_1([B,S,B) :V_airfrance airfrance(airfrance,airfrance,airfrance)#;

airfrance
% - <init>(array of byte,short,byte):void

method_15([B,8,B) :V_airfrance airfrance(airfrance,airfrance,airfrance,airfrance)#;

airfrance

<Exported methods>
% - logFull()

method_294() :V_airfrance purse(airfrance+purse)#;

airfrancetpurse <airfrance+tpurse>
% - getBalance()

method_473() :S_airfrance”rentacar(airfrance+rentacar) airfrance+rentacar;

airfrance+rentacar <airfrance+rentacar>
% - updatePoints(byte,short)

method_503(B,S) :V_airfrance"rentacar(airfrance+rentacar,airfrancetrentacar,airfrance+rentacar)#;

airfrancetrentacar <airfrancetrentacar>
% - exchangeRate()

method_607() :V_airfrance”purse(airfrance+purse)#;

airfrancetpurse <airfrance+purse>

Fig. 17. An excerpt of the ambient file of Airfrance.

of this paper. Readers interested in a fairly accurate survey on infor-
mation flow in the bytecode can refer to (Sabelfeld and Myers,
2003).

For Java Cards, (Girard, 1999) introduced the concept of trust
relationship between applications and the use of a multi-level
security policy to detect illegal data sharing. The verification
of information flow has been coped in Cazin et al. (2000) by
using model checking. The approach is based on a security pol-
icy that defines the allowed flows of information between applets;
the verification is done by the SMV model checker. A tool has
been developed that computes all call graphs of the application
and generates an SMV model per graph. The analysis imple-
mented in JCSI has an advantage with respect to this work, as
the implemented iterative data flow we use does not require the
explicit construction of the complete abstract transition system
(which is required in model checking approaches). An abstract
transition system would generally result in a large number of
states. For complex applications, the state space may become
intractable because the same instruction can be executed in differ-
ent states, with different security levels for memory, environment
and the stack. Instead, during a data flow analysis, the number of
states is limited by the number of bytecode instructions in each
method.

Recently, a different approach has been proposed in Ghindici
and Simplot-Ryl (2008). The authors define a domain specific lan-
guage for defining security policies, use contracts as a support to
the developers for expressing the expected behavior of applica-
tions. Then, they annotate the bytecode with proof elements which
are verified at loading time by a custom class loader. A Security-
by-Contract approach was also developed in Dragoni et al. (2011),
where new applications to be installed on the card are first verified
by a Policy Checker to check if they comply with the contracts and
with the smart card security policy.

The analysis proposed in these approaches can be more accurate
than the one implemented in our tool. The analysis implemented
in our tool is monomorphic, in the sense that it is not possible
to distinguish between instances and method invocations. The
analysis could be improved by collecting in the ambient file, for
each object instance and array instance, the program point of
their creation and, for each method, the program point of method
invocation. The ultimate aim of our paper, however, is not to

propose an innovative analysis technique, but to explore the effort
needed for developing a fairly complete analysis tool to support
Java Card applet developers. The functionalities of the CAP file
disassembler are directly accessible from the user interface made
ready-to-use - as such, that module can be conveniently used by
developers for exploring the content of the compiled Java Card
applications.

Other works apply static analysis for checking correctness prop-
erties of Java card applets, see for example Almaliotis et al. (2008),
Albert et al. (2008), or formalize the security policy of the Java
Card firewall. In Eluard et al. (2001), Eluard and Jensen (2002),
for instance, a formal specification of the firewall is presented
and an operational semantics of a subset of the Java Card lan-
guage that includes the security checks of the firewall is defined.
In Caromel et al. (2001) an analysis is proposed for detecting
whether an access to shared objects violates the rules of the
firewall.

2 wa Card mal F 3 * Anal ] x Analysis Details x

(x

View Log

method_554(Ljavacard/framework/AID,B):Ljavacard/framework/

' Failed
.

Raport

method_34():Z _airfrance ~purse ‘, verified | _|
The method is safe.
Report.
|
method_34():Z _airfrance “rentacar .J Verified

The method is safe.
Report

o —

Fig. 18. Example of analysis results.
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7. Discussion

The development of the JCSI tool for the analysis of compiled
CAP files was more challenging than we thought in the first place. It
started as a mere “programming exercise”, where one has to follow
specifications and invest time and effort for implementing a tool set
that is capable of handling the complete instruction set of the Java
bytecode. Almost immediately, it turned out to be instead a contin-
uous error-and-trial approach for obtaining a “right interpretation”
of the JCVM specification. In fact, although the JCVM specifica-
tion is quite precise about the format of the CAP/Export files, it
does not always deliver a complete and clear view of the whole
picture.

A topic we have found particularly challenging and error-
prone has been the token-based linking mechanism of the Java
Card system, which provides the rules for referencing objects and
methods exported by other packages. Tokens are numbers used in
CAP/Export files for identifying classes, methods and fields, instead
of Unicode strings used in Java class files. Due to aliasing of token
names, the way the Java Card compiler uses tokens to encode meth-
ods appears to be potentially fragile.

In order to explain this problem, we report a situation we faced
while analyzing the package Purse of the PaCap example, where
we need to resolve an external method reference in the byte-
code of method dellLoyalty (Ljavacard/framework/AID). For
resolving external references in method calls we apply the pro-
cedure outlined in the JCVM specification step-by-step. Consider
the following invocation in the bytecode of method removeNoti-
fication(Ljavacard/framework/AID;)Vin Purse?:

17: invokevirtual 596

We aim to resolve the identity of method 596. According to the
JCVM specification, the argument of invokevirtual is an index
to a constant pool item of type CONSTANT _VirtualMethodref_info
(see instruction invokevirtual, JCVM specification JCVM 2.2.2
(2006)).

The entry in the constant pool provides the following informa-
tion: a tag, whose value is always 3; a class item that represents
the class that contains a declaration or definition of the virtual
method (the class can be defined either in the current package
or in an imported package); a token item that represents the vir-
tual method token of the referenced method (Sections 6.7.2, 7.5.54
and 7.5.57 of the JCVM specification JCVM 2.2.2 (2006)). The frag-
ment of the purse.cap CAP file (as disassembled by the DeCAP
tool) corresponding to constant pool index 596 is as follows:

|| purse.cap

constant_pool[596]
CONSTANT_VirtualMethodref_info
tag
package_token
class_token
method_token

oo Ww

In this case, as the class is defined in an imported package,
the DeCAP represents its reference as a pair, package_token and
class_token (see Section 6.7.1 of the JCVM specification JCVM 2.2.2
(2006)). The value of package_token represents a package token
defined in the Import component of the CAP file, which must be
used to identify the AID of the imported package. In this case, the
AID is A0:0:0:0:62:0:1, which identifies the java.lang package.
The Export file of java.lang is lang.exp.

The value of class_token and method_token are then used to
identify the class and the method in the Export file. The methods

2 The method name as visualized by the DeCap tool is method_2953.

belonging to the class are described by array methods of elements
of type Method_info (see Section 5.7 in the JCVM specification
JCVM 2.2.2 (2006). In the considered export file (1ang.exp), for
class token O we have the following array:

// lang.exp (classes[0].methods)
Method._info[0]

token :0
access_flags : PUBLIC
name_index :0
descriptor.index |
Method.info[1]
token :0
access_flags : PUBLIC
name_index 12
descriptor_index 13

There is aliasing of token names - the two Method_info structures
report the same value (0) for method_token. Also, they have the
same value for the access_flags (public). The procedure has lead us
to a situation where the identification of the method is ambiguous,
as the JCVM specification does not provide information about how
to resolve this situation.

The specification of instruction invokevirtual indicates that
“The method must not be <init>, an instance initialization method, or
<clinit>, a class or interface initialization method.” (see page 188,
instruction invokevirtual in the JCVM specifications 2.1.1 JCVM
2.2.2(2006)). We believed that this was a constraint enforced in the
bytecode - Section 7.1 “Assumptions: The Meaning of Must” of the
JCVM specification JCVM 2.2.2 (2006) suggested how to correctly
interpret the text in the specification.

The workaround we used to correctly identify the method
was then check all methods names indexed by the Method_info
structured with identical token, and check whether only one
of the candidate methods was not an initialization method. The
name_index and descriptor_index in the Method_info struc-
tures are references to entries in the constant pool component of
the Export file:

// lang.exp

constant_pool[0] : <init>
constant_pool[1] (W
constant_pool[2] : equals

constant_pool[3]

The first Method_info structure is therefore
related to method <init> ()v, and the second to
equals (Ljava/lang/Object) z. In this case, the method invoked
isequals (Ljava/lang/Object) z.Similar issues also occurred for
other Export files. With the information we have at the moment,
we don’t know whether there will be particular situations where
this workaround will fail.

The issue described above raises the following questions:
What are the actual rules implemented in the Java Card com-
piler/converter? Which aspects of the JCVM specification are
provided in a way that is open to different interpretations? We
believe that these questions are worth of further investigation, as
these gaps in the JCVM specification may lead to implementations
of the Java Card system that may potentially be exposed to unfore-
seen security breaches.

: (Ljava/lang/Object)Z

8. Conclusion

This paper describes a tool for studying the information flow in
multi-applicative Java Cards. Based on a multi-level security policy
and on the theory of abstract interpretation, the tool analyses the
packages installed on card to check if information flow is secure
according to a given policy. The tool can also be used to view
the content of binary CAP files. The security policy is described
in an ambient file, in term of security levels that are assigned to
methods. The ambient file is automatically initialized by taking a
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worst-case scenario as default. In such a scenario, any applet
installed on card may invoke methods exported by others, and any
applet may implement methods of a given interface. The default
policy enforces that information shared between two packages only
depends on these two packages. The analysis setup can be manu-
ally customized by the user, that can modify the constraints posed
by the default policy (e.g., allowing third party collaboration) and
better select the method entries based on the real interaction pat-
terns among packages. To this purpose, can be of great help the CAP
file disassembler provided with the tool. The customization of the
analysis setup is up to skilled users. As a future work, the usability
of the tool can be improved by, for instance, taking advantage of
domain specific languages to specify the security policy and set the
entries of the ambient file.
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Appendix A. Some rules of the abstract interpreter

pop Bli]=pop, Q;=(o,M,k-St)
(Q.D)—(Q[Qs41U=(0,M,St), Qjepy(iU=h(Q;)]. D)
Bli]=dup, Q;=(o,M,k-St), y=o0Uk
(Q.D)~(Q[Qiy1U=(0, M,y - ¥ - 5t),Qjen(i)V=h(Q;)]. D)
op Blil=aop, Q;=(0,M,kq -k -St) y=0Uk Uk,
{@D)—{QlQs;1U=(0. M.y -56), Qjcpyy U=R(Q]. D}
Bli]=aconstd, Q;=(o,M,St)
(Q.D)—(Q[Q41Y=(M,0 - St),Qjep(i)U=h(Q;)].D)
load Bli]=tloadr, Q;=(c,M,St) y=0UM(r)
(Q.D)—(Q[Qj41U=(M,y - 5t),Qjep(i)V=h(Q;)]. D)
Blil=tstorer, Q;=(o,M,k-St), y=0Uk
(Q. D)~ (Q[Qj4-1 U=(M[y/rT,5t),Qjch(iU=h(Q;)]. D)
Bli]=ifcondL, Q;=(o,M,k-St), Oﬁ-z(a’.M’.S[’), y=oUk
(Q D)~ (QIQjcscope(iy =(0" U7:M" SE),Qjciz 1,1 U=(0" U:M,S6),Qjpy(iy o=h(Q)1.D)
Bli]=gotoL, Q;=(o,M,St)

dup

const

store

if

8O0 5 1= 1Q1QLU=(0,M;50). Qi U=H(GT,D)
Bli]=new t, Q;=(o,M,St)
NEW QD)= QlQ:.1U=(0:M.0-51).Qepr(y)=NQ)T.D)
Bli]=getfield t.f, Q;=(o,M,k-St), y=cUkUD(t.f)
getfield 5= 070, 0=to. M.y 0.0, U=RQT.D)
Blil=putfield .f, Q;=(c,M,kq -ky-St), y=0UkqUky
putfield 5 =010, 0=(0.M.50). Qo) =G DID, /U=7]
Bli]=checkcast T, Q;=(o,M,k-St), y=0Uk
checkeast 155 "707q, U=t .7 -56,Q) 1) U=R(Q D)
Bli]=newArrayt, Q;=(o,M,k-St) y=0Uk
NeWAITaY  55-751q,, 1 U=(0, M. 50, Qjeriy U=RQT.DY
aload Blil=taload, Q;=(0,M,kq -k;-St) y=0Uk;Uk,UD(T)
(Q.D)—(Q[Qi1U=(0. M,y - 5t),Qjep()V=h(Q;)]. D)
astore Bli]=tastore, Q;=(o,M,kq -ky -ks-St), y=0UkiUkyUks
(Q.D)~(QlQi11Y=(0.M.58), Qje(iy v=h(Q)1. DD =¥ ]
Bli]=arraylength, Q;=(o,M,k-St), y=0UkULl4(D)
arraylength < 5 o0 G=(o.M,y-50,Ggry =@ D)
. Bli]=instanceof T, Q;=(o,M,k-St), y=0Uk
instanceof 5010, U=(o,M.y 501 0y U=RQLD)
. Bli]=invokemt() Q;=(o,M.kq -kn -St), D,m()z(agﬂ1 ..... On)or;0e, y=0eUo
invoke 1@ D1~ (QIQ 1 U=(0:M;0707 50 Qa5 U=h( Q). D[ Dy, U=k Uy 1 U7 KaUp )i D
Bli]=treturn, Q;=(o,M,k-St), D, [O=((70,rrl,.,,,rr,,)rr,;rrg, y=0Uk
TetUIn o G =0 M) G S=HQ T DBy =00 01— om)777eT
Bli]=athrow Q;=(o,M,k-St), y=0Uk
Athrow 15 1 O TeNo U= (7 M1,y =R T D)
jSl‘ Blil=jsr L Q;=(0,M,St)

{@D)—(QIQU=(0.M.0 - 5t).Qjops(yU=RQ)1.D)

Bli]=retr Q;=(o,M,St)

ret @D~ QI ....Q, U=(0.M.50. Qe U=h(G 1. D)
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