
The fcTools User Manual

Annie Ressouche Robert de Simone

INRIA Sophia Antipolis

2004, route des Lucioles

B.P. 93 F-06902 Sophia Antipolis cedex

Amar Bouali Val�erie Roy

ENSMP-CMA

place Sohia La�tte

B.P. 207 F-06904 Sophia Antipolis cedex

Abstract

We describe a set of modular extensions to our Auto/Graph veri�cation toolset for networks

of communicating processes. These software additions operate from a common �le exchange for-

mat for automata and networks, called fc2. Tool functionalities comprise graphical depiction of

objects, global model construction from hierarchical descriptions, various types of model reduc-

tions and of veri�cation of simple modal properties by observers, counterexample production and

visualisation. We illustrate typical veri�cation sessions conducted on usual academic examples:

dining philosophers, mutual exclusion algorithms and round-robin schedulers.

Based on previous experience of drastic state explosion problems we aim here at e�ciency in

implementation. We use both explicit representation techniques and implicit techniques such as

BDDs, with functional overlap at places. Details on internal representations (as C++ classes)

and instructions on how to easily program new modular extensions can be found in the companion

Implementation Manual.

1 Presentation

Systems of communicating and synchronising entities are usually hard to specify in a correct fashion,

due to problems of distributed control and parallelism. In the last decade a number of veri�cation

softwares were implemented to provide computer assistance in the design and correctness checking of

such system descriptions, and used to study distributed algorithms, protocols and embedded systems.

Most commonly these toolsets are based on �nite state modeling of underlying global con�gurations,

and graph-theoretic algorithms.

Our pioneering Auto/Graph toolset was exploring the power of so-called \proof-by-reduction" tech-

niques, where methods for compositional reductions of �nite state structures try to suppress as much

as possible the combinatorial explosion problem. Functions such as state quotient (with respect to

behavioural equivalences), behavioural abstraction or context �ltering were at the heart of the sys-

tem, in addition to graphical or textual process algebraic hierarchical description facilities, and other

practical auxiliary functions.

The present User Manual describes basically the \next generation" Auto/Graph implementation.

Decision for this reimplementation was based on a number of facts. First, as functionalities were

progressively added the old implementation grew larger and harder to maintain; the new one had

to be modular, consisting in a set of carefully chosen functions which could be combined together

for e�cient veri�cation. Second,due to national and international collaborative projects we wanted

the new toolset to be open for joint use with other \foreign" veri�cation tools, which could nicely

complement its functionalities; a \low-level" �le exchange format (covering automata and hierarchical

networks of such) called fc2 was then designed, and used in particular in between various software

modules. Last, new symbolic techniques for implicit representation of �nite state machines by so-called

Binary Decision Diagrams had appeared, and were becoming proeminent in the neighboring domain of

synchronous reactive systems (real-time systems and synchronous hardware for instance). We adapted

1

our veri�cation techniques to this type of implementation structures and the relevant algorithmic style,

in the scope of asynchronous processes communicating by rendez-vous synchronisation.

The result is a new set of construction/reduction/analysis/diagnostics functions, corresponding to

a number of Unix commands working from and to fc2 �les. The three main software modules

are: Autograph, for graphical edition and display; fc2explicit, for manipulation of enumerated

�nite state machines; fc2implicit, for manipulation of symbolic �nite state machines. Each ful�ls

several distinct functions, sometimes with redundancy between fc2explicit and fc2implicit. Other
auxiliary modules exist as well.

By nature fcTools is in perpetual ongoing expansion, as more useful analysis functions are identi�ed

and characterised as e�cient algorithms. This manual describes only the current state, which may

already be obsolete by the time of reading in case a next version is already out. Information on system

availability and documentation can be obtained on request from fc2team@cma.cma.fr, or from URL

http://cma.cma.fr/Veri�cation/verif-eng.html.

The next section describes the overall architecture of software modules comprised in the toolset, with

an informal description of their individual functionalities and how they can be combined. Then a

working description of Unix commands and options is given, followed by a small session example. Each

veri�cation module is then further presented and explained, with insights on its internal algorithms,

and indications on how-to-use for best e�ciency.

2 Modular Software Architecture

The veri�cation toolset comprises a number of stand-alone tools, each implementing some well-de�ned

functionalities. Tools may be used in succession through the common fc2 �le description format. At

a deeper programming level, most of our tools use identical internal representation (in terms of C++

classes), so that combination of code is also possible there. See the appended Implementation Manual

for details.

Figure 1 sketches the overall software architecture, with tools/functions �gured in oval shapes and

objects/data in rectangular frames. Explicit mention is made to fc2 format where available for objects

(for instance, there is no direct representation of BDDs in fc2).
In the sequel we present the fc2 format and the individual veri�cation tools at very abstract level.

Each tool will be extensively presented later on.

2.1 The fc2 format

The fc2 format was originally designed to interface several preexisting veri�cation tools. In this way

these heterogeneous tools could be further developped independently, while used in cooperation for

their complementory features.

The format allows for description of labeled transition systems and networks of such. While the

format is not \syntax-friendly" (as it represent objects which are supposedly obtained by translation

or compilation), it is still reasonably natural: automata are tables of states, states being each in turn a

table of outgoing transitions with target indexes; networks are vectors of references to subcomponents

(i.e., to other tables), together with synchronisation vectors (legible combinations of subcomponent

behaviours acting in synchronised fashion). Subcomponents can be networks themselves, allowing

hierarchical descriptions.

In addition a permissive labeling discipline allows a variety of annotations on all distinct elements:

states, transitions, automata and networks as a whole. It is through this labeling that behavioural

action labels are provided of course, but also structural information for source code retrieval, logical

model-checking annotation and even private hooked informations. Processes augmented with time,

value or probability informationc could certainly bene�t from that, and this is not limitative. Anno-

tative labels are dealt with as regularly as possible in syntax, in simple form at predictable location,

so that they can be treated smoothly at parsing time by any tool, often by simply disregarding them

if they do not address the tool's speci�c functionalities. The actual labeling contents are stored in

tables forming the objects headers, so that only integers references to table entries are actually present

in the object bodies themselves (automata or networks). Finally, labels can be structured by simple

operators (sum, product and several others) to allow richer information.

More about the fc2 format can be found in [3].

2

2.2 Functional Modules

A typical case-study analysis will contain a number of typical design steps, corresponding to successive

application of distinct functional modules from our toolset. The main such functions are:

description of the network of communicating agents (possibly graphically) The graphical

editor Autograph allows to draw such descriptions much in the usual fashion of process-

algebraic terms, and then produces fc2 format representations. It also contains the annotation

labeling facilities. See autograph description in this manual for details.

linking of multi�le descriptions Large hirarchical system descriptions can be split between di�er-

ent �les (for instance as di�erent Autograph windows). The tabulated naming informations in

resulting fc22 �les need not be consistent across �les, and so merging these partial descriptions

into a single �le for later analysis takes some bookkeeping care.

construction of \some form of" global model Model-based automatic veri�cation relies on ex-

pansion of network into a global state-transition model. Two main implementation techniques

can be used here: the extensional approach with a classical representation of expanded automata

with enumerated states and transitions; the symbolic approach, based on implicit representation

by Binary Decision Diagrams of sets of states (only), while representation of the full transition

relation is avoided, and remain parted by possible events, somehow in the Petri net fashion. Our

tools cover both modes of implementation with large mutual redundancy, so that best e�ciency

can be thought according to each given speci�cation.

Of course global models can su�er state or bdd size explosion problems, leading to the well-

known bottleneck of the approach. Several methods can be used to refrain this explosion, like

abstracting or minimizing (explicit) subnetworks at intermediate level of hierarchical descrip-

tions. In all cases the global model expansion remains a fundamental part of veri�cation systems,

even if applied in particular settings or on transformed objects to cope with complexity.

reduction/abstraction of the model Smaller models can be obtained in roughly two ways. First,

one can abstract the actual concrete behaviours into new ones of a more concise nature; it cor-

responds to the converse of action re�nement, where more behavioural details are progressively

added (here they are abtracted away). Second, states with equivalent potential behaviours can

be merged (using bisimulation for instance). Note that behaviour abstraction paves the way to

state reduction, as it usually removes di�erences between otherwise similar states (consider for

instance observational behaviours, including tau invisible steps inside visible ones).

These techniques can be even more bene�cial when applied in a compositional fashion, minimis-

ing intermediate level descriptions.

Another way of reducing the model is by taking into consideration a given context limiting the

state-space exploration. This context can for instance be extracted from a given property to

check.

speci�cation of properties and model-checking There are several ways of specifying correctness

properties. Some basic obvious properties can be stated directly as characteristics of the �nite

state model, and checked by simple analysis on it: existence of deadlock, livelock or divergent

states for instance. More re�ned properties can be expressed either as modal temporal logic

formulae or as speci�cation automata. Distinctions are usually made according to visions of time:

in linear time frameworks properties of behavioural sequences are considered, while in arborescent

branching time frameworks one gets interested in properties of states through their past and

future neighbours. An abundant litterature was devoted to comparison of expressiveness and

design of algorithmic methods best adapted in various cases. Our tools focus on speci�cation of

properties as speci�cation automata, given that the temporal logic approach seemed well treated

elsewhere.

Again, there are two approaches to compare two �nite state models, one being the speci�cation

of some (maybe partial) intended behaviour of the other. The �rst one is bisimulation compari-

son; it works well when \partial" means \abstract", when time is \branching" and the processes

may both exhibit nondeterministic behaviours. The second one considers the speci�cation au-

tomaton as an observer, and performs some kind of product machine construction to deduce

3

CONSTRUCTION

h "automaton

nets 2

net 0

V 2

v0 E1

EXPLICIT AUTOMATON

net

Implicit Automata

Representation

fc2glob

Other textual

input

SOURCE
RECOVERY

FC2 FILE LINKAGE

SOURCE
RECOVERY

fc2link

nets 2

net 0

h "automaton

V 2

v0 E1

Sets of States (Fc2)

nets 2

net 0

h "automaton

V 2

v0 E1

Counter Example Path (Fc2)

net 0

h "automaton

V 2

v0 E1

atg

net 0

nets 2

V 2

v0 E1

REDUCTION
ABSTRACTION

fc2min,fc2abst

IMPLICIT STATE SPACE
CONSTRUCTION

fc2isp

ENUMERATION
fc2iglob

ABSTRACTION

fc2imin,fc2iabst
fc2iobs

REDUCTION
OBSERVERS

Representation

Explicit Automata

111 0 00
2

τ

a

b
0

1

3

τ

c

nets 2

net 0

h "automaton

V 2

v0 E1

EXTRACTION
ANALYSIS

TRANSLATION

nets 2

Result in Fc2 Format

FORMAT

h "automaton

Graphical Description Fc2 Files Descriptions

Hierarchical Fc2 Description

fc2idead,fc2write

Figure 1: Software hierarchy

4

whether (un)desirable joint con�gurations can be attained; this approach, known as \on-the-

y" technique, works well under determinism assumptions on the speci�cation automaton. Also,

as a rule of thumb, \explicit representation" methods win in the �rst approach, while \implicit

representation" are best suited to the second one.

Another dimension to the property speci�cation problem depends on whether the analysed

process is viewed as a transparent or a black box, that is whether the property may explicitly

refer to control points (states) in it, or only through behavioural abilities (leading to or possible

from the states in question). For instance a mutual exclusion property can most naturally be

stated by the afact that no global con�guration may contain speci�c local states in parallel

subcomponents. Thus the toolset will have to provide ways of composing this type of property

from the system description, and this without a�ecting the latter for each property to prove.

counterexample production at the network level Diagnostics from analysis and model-checking

on incorrect descriptions usually result in either sets of (undesirable) states, or counterexample

paths. Typically, deadlock or divergent states are of the �rst form, while runs without bisimilar

counterpart are of the second form.

With the addition of prior reduction phases these results are produced on smaller automata,

and are themselves usually smaller than the corresponding ones on original networks. But

these now have to be retrieved, if the user is to be informed at a level of description he/she

can understand. The struct annotation �eld of the fc2 format was in fact used to carry

exactly that minimal information which allows reconstruction. For instance, if weak bisimulation

minimisation was used and hidden transitions thus removed, these transitory behaviours may

have to be rediscoverded to glue actual visible steps back together.

Diagnostic reconstruction may be a time penalty, but is only necessary in case of property failure,

and avoids storing much extra information at all times, which could abort veri�cation for lack

of space.

toplevel object management1 . Successive object transformations can be applied while interme-

diate representations are kept and gathered on demand in a graphical environment, for later

reuse.

Figure 1 displays our global software architecture, with tool names and functionalities and types of

arguments and results. Next section will provide a synthetic overview of each tool and ways to use it

in practice.

1Warning: under construction

5

2.3 Tools and Commands

We now describe the di�erent software modules at the level of Unix commands, with names and

options.

Remark: most of the transformation tools generate single fc2 description, dumped on screen (Unix
standard output). In order to save the result in a �le, one has to redirect the output of the command

to that �le.

� atg:

synopsis:

Unix command for Autograph, the graphical editor and display system for fc2 descrip-

tions. Autograph uses usual process algebra conventions for graphical representation of

automata and networks, and provides translation into fc2 format. Autograph currently

reads only plain automata from this format, while a dedicated .atg �le format can be

loaded and written on �le for any drawing, even ill-structured or incomplete.

usage:

atg [�les.fc2][�les.atg]

result:

A menu bar for graphical edition and a speci�c window for each loaded �le (from .fc2

automata only initial states are displayed at �rst). Autograph and its functionalities are

further described in section 3.

� fc2link:

synopsis:

Linker of (partial) fc2 �les produced by Atg. It redirects references to a subcomponents

to its actual description (found from another �le), and matches the labeling indexes.

usage:

fc2link -main [-nodebug] �le.fc2 [�le1.fc2...[�leN.fc2]...]

result:

The result is a single fc2 �le containing the complete hierarchical fc2 description of net0

in �le �le.fc2 together with all its subcomponents found in any �le mentioned. Default

resulting �le contains veri�cation debugging information used by source recovery functions,

such as the �le names of individual fc2 components given under an fc2 expression recalling
the hierarchy of the network. This extra information can be discarded from the result by

setting the -nodebug option.

Misformed descriptions end up in so-called \consistency errors". The result is output on

screen.

� fc2min:

synopsis:

(Explicit) Automata minimizer with respect to strong, weak and branching bisimulation.

usage2:

fc2min -bisimulation [-fc2] [-debug] �le.fc2

The option bisimulation can be one of the options s, w or b for strong, weak and branching

bisimulation respectively.

result:

If option -fc2 is set, the result is the quotient automaton in fc2 format. Otherwise it is

a partition of the state space into equivalence classes. The -debug source recovery option

adds, for each quotient state or partition element, a description of its content as sum (union)

of state references from the initial automaton. This information is stored in the struct

�eld of the new states in the fc2 structure.

2�le.fc2 must contain a single automaton. Otherwise, an error message is generated. If minimization is asked for

the global automaton of a network described in a fc2 �le, fc2explicit/fc2implicit processors should be used instead.

6

� fc2implicit:

synopsis:

Symbolic manipulation of labeled synchronized automata vectors (fc2 networks). It con-

tains several functionalities, selected by options.

usage: The command can be invoked with either one or two argument �les:

1. One �le mode:
fc2implicit [-reach | -dead | -live | -dive]

[-s | -w | -b [-itau]] [-debug] [-fc2] �le.fc2

where

-reach: computes the set of reachable global states.

-dead, -live, -dive: computes the set of deadlock, livelock and divergent global

states of the network respectively. If option -fc2 is set in addition, fc2implicit

generates a counterexample path in fc2 (as a string automaton), leading from the

initial state to one of the computed states.

-s, -w, -b: computes the strong, weak and branching equivalence partition respec-

tively. If option -fc2 is set, then generates an fc2 description of the quotient

automaton. Option -itau can be added for branching bisimulation to turn o� the

� -closure memorization, replaced by a local recomputation at need.

-debug: adds extra information for source recovery in the structlabels of global nets,

states and transitions.

2. Two �les mode:

fc2implicit f-seq | -weq | -obs | -abstg [-debug] [-fc2] �le1.fc2 �le2.fc2

where

-seq, -weq: performs the strong and weak bisimulation comparison between the

topmost nets of both �les.

-debug: produces a counterexample path in fc2 leading to a state without equivalent

in the other automaton, with other infos (iteration level in the partitioning, ...).

-obs3: assumes �le1.fc2 is the net to observe and �le2.fc2 is the observer. Performs

the observation product of the net by the observer.

-abst3: assumes �le1.fc2 contains a net description and �le2.fc2 an abstraction crite-

rion. Performs the abstraction of the global automaton of net w.r.t. the abstraction

criterion.

shorthand commands:

The following Unix commands are equivalent to the general fc2implicit command with

particular options. The i letter following fc2 here stands for implicit.

fc2ireach = fc2implicit -reach

fc2iabst = fc2implicit -abst

fc2idead = fc2implicit -dead -fc2

fc2ilive = fc2implicit -live -fc2

fc2idive = fc2implicit -dive -fc2

fc2istrong = fc2implicit -s

fc2iweak = fc2implicit -w

fc2ibranch = fc2implicit -b

fc2iglob = fc2implicit -reach -fc2

fc2iobs = fc2implicit -obs

result :

Whenever option -fc2 is set, generates an fc2 description of the result. Otherwise produces
information messages (result size, existence of deadlocks for instance).

3This option is turned o� in the current version. The function shall be available in the next version.

7

� fc2explicit

synopsis:

Explicit manipulation of labeled synchronized automata vectors (fc2 networks). It contains
several functionalities, selected by options.

usage: The command can be invoked with either one or two argument �les. Currently only the

-abstract option uses two �les.

fc2explicit [-s | -w | -b | -abstract] [-comp | -global] [-bitset] [-fc2]

[-debug] [-o file.fc2] �le1.fc2 [�le2.fc2]

where

-abstract: Assumes one �le contains a net description and the other an abstraction

criterion. Performs the abstraction of the global automaton of net w.r.t. the abstraction

criterion. Further description of abstraction use can be found in section 7.

-comp: Computes the global automaton from the network contained in the argument �le

in a compositional way, following the hierarchical description in nested subnets. Used

in conjunction with -s, -w, -b options to alternate minimisation and construction

phases.

-global: Computes the global automaton from the network contained in the �le argument

in its \
attened" version (non hierarchical). Default value.

-s, -w, -b Applies strong, weak or branching bisimulation minimisation on network

contained in �le argument. Can be combined with -comp option. Internally invokes

fc2min (see above) on each intermediate automaton.

-bitset Computes the state space by applying action events under a bitset scheme algo-

rithm for replacement of local states in the vector. Used best with the -global option,

on large vectors of small individual automata components. See further fc22explicit
description in ??.

-o: provides a �lename for output.

-fc2: if set, result is the fc2 description of the quotient automaton; otherwise only size

�gures are printed. Prints on standard output, except if -o option is used.

-debug: if set, automata states are decorated with structure information for source recov-

ery on original network description.

shorthand commands:

The following Unix commands are equivalent to the general fc2explicit command with

particular options.

fc2glob = fc2explicit -global -fc2

fc2strong = fc2explicit -global -s -fc2

fc2weak = fc2explicit -global -w -fc2

fc2branch = fc2explicit -global -b -fc2

fc2compstrong = fc2explicit -comp -s -fc2

fc2compweak = fc2explicit -comp -w -fc2

fc2compbranch = fc2explicit -comp -b -fc2

fc2abst = fc2explicit -abstract -fc2

fc2abststrong = fc2explicit -abstract -s -fc2

fc2abstweak = fc2explicit -abstract -w -fc2

fc2abstbranch = fc2explicit -abstract -b -fc2

result :

Whenever option -fc2 is set, generates an fc2 description of the result. Otherwise produces
information messages (result size for instance).

8

� fc2view

synopsis :

Source recovery viewer. Pops up a main window and displays the fc2 description of a

counter-example. Creates as many (slave) windows as there are automata components in

the network, in their fc2 syntax. The user can simulate the path back and forth from the

graphical panel, and visualize e�ects on control points in the path display and in individual

subcomponents altogether.

usage4 : .

fc2view [-path | -hide] �le.fc2

where

-path option assumes �le.fc2 contains a path synthesized from a network using the -debug

option, so that it can be displayed as a distributed run on the range of corresponding

fc2 �les. Creates as many (slave) windows as there are automata components in the

network, in their fc2 syntax. Each window displays current local share of transition

in a graphical header, and fc2 text below on demand. Simulation can travel back and

forth under control of a graphical panel.

-hide option assumes �le.fc2 contains a network description. Then a selection panel is

built with all current visible signal names occurring in the main net of the �le. Signals

can then be hidden when selected, that is erased into � . A new network description

is provided with an updated main net. This allows to restrict the range of visible

behaviours, and thus to increase observational reduction.

result :

See above

2.4 First steps: a session example

We now illustrate the basic veri�cation features on the famous dining philosophers problem. More

advanced features will be demonstrated later on.

The graphical Atg description of the system (in the case of 3 philosophers) is displayed in �gure 2 (in

its Postscript output form). It consists essentially of the automata describing the possible behaviours

of the forks and of halfbrains for philosophers. A full philosopher is obtained by synchronising these

halves on eating and thinking (each half deals with one fork). The full synchronisation network is

also displayed, with visible actions becoming indexed by a philosopher's rank.

We now suppose these three parts (the fork, halfbrain automata and the network) have been translated

(by Atg) into distinct fc2 �les, say fork.fc2, halfbrain.fc2 and philonet.fc2. The fc2 version

of the fork automaton is displayed in �gure 3. The partial description of the network, with only

component interface declaration for the fork and halfbrain, is displayed in �gure 4.

Linking these �les will produce the appropriate correspondance between these \subsystem calls" and

their automata contents from the other �les.

0-duick$ fc2link -main philonet.fc2 fork.fc2 halfbrain.fc2 > philo.fc2

--- fc2link: education version v0

--- fc2tool: parsing fc2 file: philonet.fc2.

--- fc2tool: file: philonet.fc2 parsed successfuly

--- fc2tool: parsing fc2 file: fork.fc2.

--- fc2tool: file: fork.fc2 parsed successfully

--- fc2tool: parsing fc2 file: halfbrain.fc2.

--- fc2tool: file: halfbrain.fc2 parsed successfuly

--- fc2link: File "philonet.fc2"

--- fc2link: net number 0 has struct "philonet"

--- fc2link: net number 1 has struct "fork"

--- fc2link: net number 2 has struct "halfbrain"

--- fc2link: File "fork.fc2"

--- fc2link: net number 0 has struct "fork"

4The argument �le must contain a single string automaton containing a path (obtained by fc2idead for instance),

and containing debug informations

9

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

fork

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

eateateateateateateateateateateateateateateateateat

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

halfbrain

think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3eat3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3

eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1

think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1

drop
dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

dropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdropdrop

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateat

eateateateateateateateateateateateateateateateateat

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake
take

eateateateateateateateateateateateateateateateateatthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateatthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateat

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

eateateateateateateateateateateateateateateateateat

thinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthinkthink

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake
take

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

taketaketaketaketaketaketaketaketaketaketaketaketaketaketaketaketake

forkforkforkforkforkforkforkforkforkforkforkforkforkforkforkforkfork

forkforkforkforkforkforkforkforkforkforkforkforkforkforkforkforkfork
forkforkforkforkforkforkforkforkforkforkforkforkforkforkforkforkfork

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain halfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrainhalfbrain

philonet

Figure 2: The 3 dining philosophers speci�cation

--- fc2link: File "halfbrain.fc2"

--- fc2link: net number 0 has struct "halfbrain"

--- fc2link: Check consistency on class of net 0, file philonet

--- fc2link: Check consistency on class of net 0, file fork

--- fc2link: Check consistency on class of net 0, file halfbrain>

0-duick$

The result is displayed in �gure 5

Now the description can be submitted to our analysis and veri�cation tools.

2.4.1 Implicit evaluation of the global system

We �rst evaluate the global system to have an idea of the size of the state space. We use for that

symbolic methods based on BDDs that allow easy evaluation of global state spaces.

0-duick$ fc2implicit -reach philo.fc2

--- fc2implicit: education version v0

--- fc2tool: parsing fc2 file: philo.fc2.

--- fc2tool: file: philo.fc2 parsed successfuly

--- fc2implicit: Making reachable state space

--- fc2implicit: Reachable states: <<214>> -- BDD nodes: <<85>>

0-duick$

The global automaton has 214 states. The BDD that represents it has 85 nodes only.

10

nets 1

hook"main" > 0

struct"fork"

net 0

behavs 2

:0 "take"

:1 "drop"

logic "initial">0

hook "automaton"

vertice 2

vertex0

edges 1

edge0

behav 0

-> 1

vertex1

edges 1

edge0

behav 1

-> 0

Figure 3: �le fork.fc2

nets 3

hook"main" > 0

struct"philonet"

net 1

structs 1

:0 "fork"

behavs 2

:0 "take"

:1 "drop"

struct 0

behav 1+0

hook "synch_vector"

net 2

structs 1

:0 "halfbrain"

behavs 4

:0 "eat"

:1 "take"

:2 "drop"

:3 "think"

struct 0

behav 2+1+0+3

hook "synch_vector"

net 0

behavs 6

:0 "eat1"

:1 "eat2"

:2 "eat3"

:3 "think1"

:4 "think2"

:5 "think3"

struct _< 1,2,2,2,1,2,2,2,1

hook "synch_vector"

vertice 1

vertex 0

edges 18

edge 0

behav 3 < *,*,*,3,*,3,*,*,* ->0

edge 1

behav 0 < *,*,*,0,*,0,*,*,* ->0

edge 2

behav 5 < *,3,3,*,*,*,*,*,* ->0

edge 3

behav 2 < *,0,0,*,*,*,*,*,* ->0

edge 4

behav 1 < *,*,*,*,*,*,0,0,* ->0

edge 5

behav 4 < *,*,*,*,*,*,3,3,* ->0

edge 6

behav tau < *,*,*,*,*,2,*,*,1 ->0

edge 7

behav tau < *,*,*,*,*,1,*,*,0 ->0

edge 8

behav tau < 1,*,*,2,*,*,*,*,* ->0

edge 9

behav tau < 0,*,*,1,*,*,*,*,* ->0

edge 10

behav tau < 1,*,2,*,*,*,*,*,* ->0

edge 11

behav tau < 0,*,1,*,*,*,*,*,* ->0

edge 12

behav tau < *,2,*,*,1,*,*,*,* ->0

edge 13

behav tau < *,1,*,*,0,*,*,*,* ->0

edge 14

behav tau < *,*,*,*,*,*,2,*,1 ->0

edge 15

behav tau < *,*,*,*,*,*,1,*,0 ->0

edge 16

behav tau < *,*,*,*,1,*,*,2,* ->0

edge 17

behav tau < *,*,*,*,0,*,*,1,* ->0

Figure 4: �le philonet.fc2

11

% FC2 file generated by fc2link from FC2 files:

% philonet.fc2 (main) fork.fc2 halfbrain.fc2

D

prefix file(any any) -> any

nets 3

h "main">0

s file("philonet",0) < file("fork",0),file("halfbrain",0),file("halfbrain",0),

file("halfbrain",0),file("fork",0),file("halfbrain",0),file("halfbrain",0),

file("halfbrain",0),file("fork",0)

net 1

B2

:0 "take"

:1 "drop"

s "fork" l "initial">0 h "automaton"

V2

v0 E1

e0 b 0 r 1

v1 E1

e0 b 1 r 0

net 2

B4

:0 "eat"

:1 "take"

:2 "drop"

:3 "think"

s "halfbrain" l "initial">0 h "automaton"

V4

v0 E1

e0 b 3 r 1

v1 E1

e0 b 1 r 2

v2 E1

e0 b 0 r 3

v3 E1

e0 b 2 r 0

net 0

B6

:0 "eat1"

:1 "eat2"

:2 "eat3"

:3 "think1"

:4 "think2"

:5 "think3"

s "philonet"<1,2,2,2,1,2,2,2,1 h "synch_vector"

V1

v0 E18

e0 b 3<*,*,*,3,*,3,*,*,* r 0

e1 b 0<*,*,*,0,*,0,*,*,* r 0

e2 b 5<*,3,3,*,*,*,*,*,* r 0

e3 b 2<*,0,0,*,*,*,*,*,* r 0

e4 b 1<*,*,*,*,*,*,0,0,* r 0

e5 b 4<*,*,*,*,*,*,3,3,* r 0

e6 b tau<*,*,*,*,*,2,*,*,1 r 0

e7 b tau<*,*,*,*,*,1,*,*,0 r 0

e8 b tau<1,*,*,2,*,*,*,*,* r 0

e9 b tau<0,*,*,1,*,*,*,*,* r 0

e10 b tau<1,*,2,*,*,*,*,*,* r 0

e11 b tau<0,*,1,*,*,*,*,*,* r 0

e12 b tau<*,2,*,*,1,*,*,*,* r 0

e13 b tau<*,1,*,*,0,*,*,*,* r 0

e14 b tau<*,*,*,*,*,*,2,*,1 r 0

e15 b tau<*,*,*,*,*,*,1,*,0 r 0

e16 b tau<*,*,*,*,1,*,*,2,* r 0

e17 b tau<*,*,*,*,0,*,*,1,* r 0

Figure 5: The 3 philosophers in fc2 format

2.4.2 Finding and Recovering the Deadlocks

This academical problem is known to have deadlocks. We have a way to detect them and to extract an

example path leading to a deadlock from the global initial state. Here is the session using fc2implicit:

0-duick$ fc2implicit -dead -fc2 philo.fc2 > deadpath.fc2

--- fc2implicit: education version v0

--- fc2tool: parsing fc2 file: philo.fc2.
--- fc2tool: file: philo.fc2 parsed successfuly

--- fc2implicit: Making reachable state space

--- fc2implicit: State space depth: 13
--- fc2implicit: First deadlock(s) detected at depth 7

--- fc2implicit: Reachable states: <<214>> -- BDD nodes: <<85>>
--- fc2implicit: Global automaton has 2 DEADLOCKS state(s) -- BDD nodes: <<27>>

0-duick$

The �rst detected deadlocks have been found at depth 7 in the global automaton, that is the shortest

path leading to a deadlock has 7 states and 6 transitions. As we have set the option -fc2, a example

path hs been extracted and write in fc2 in deadpath.fc2.

12

Now in Atg we visualize back this result that we picture out in �gure 6.

tautautautautautautautautautautautautautautautautauthink1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1tautautautautautautautautautautautautautautautautauthink3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3tautautautautautautautautautautautautautautautautauthink2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2

Figure 6: A deadlock path

The deadlock corresponds to the case where each philosopher takes a fork (the � action after each

think action): then no action can be further enabled from any of them.

Now if -debug option was added to the fc2implicit command, further annotations were appended to

the path example so as to allow source recovery. Then the path can be simulated as a run on fc2 �les

using fc2view, or even visualised graphically on an original displayed network with Autograph. In
the latter case one needs only load the path in fc2 to Autograph, and then selects the Debug:Edge

button from the menu bar. Then each selection of an edge will highlight the source and target states

at all components in their respective Autograph windows, and active communications at ports in

the synchronisation network.

13

Figure 7: Autograph display

3 The Graphical Editor Autograph

Autograph (invoked under the unix command atg under Xwindows) is a graphical display system

for both labeled transition graphs and networks of communicating systems. Lay-out is very much in

the tradition of process algebra graphical depiction, as shown in �gure 7. Objects in Autograph can

also be extensively annotated so as to match the fc2 format standards. In section 2.4, �gure 2 was

produced from Autograph graphical displays.

Autograph can be used to graphically edit systems but also to visualise automata that were produced

elsewhere, typically as an output of veri�cation. Then when reading an fc2 �le Autograph prompts

the user for interactive unfolding and positionning of successive states. An automaton can also be

automatically drawn (using a spring-like attraction/repulsion algorithm between states). Visualisation

of networks is under construction, as is visualisation of counterexample runs on existing networks.

3.1 General Features

In practice Autograph is a multi-window, unstructured editor: system descriptions are checked for

structural coherency only at translation into fc2 format, and subsystem parts contained in di�er-

ent windows are translated independently in separate �les and not linked together. This allows the

user freedom to work temporarily with incomplete descriptions, and to reuse system parts in various

compositions. Therefore Autograph is based on two �le representation formats: fc2 for struc-

tured objects, and atg for possibly inconsistent drawing descriptions, containing additional graphical

positionning data.

3.1.1 Menu Bar

Autograph fronts the user with a single menu bar, from which all editing functions applicable to

all graphical windows are selected. As a result some functions may need an extra mouse click in the

window(s) to be concerned (like in the Save to File function). The Files, Windows, ObjectsEdit and

Labels menus deal with management of the respective types of objects. While rather self-explanatory

14

they are described in more details in the sequel. The Globals menu deals basically with cut-and-paste

and miscellaneous functions to be applied undistinctively on all editable objects. Placing deals with

positionning of folded objects, and Attributes allows to play with fonts and colors. The Abstract Action

menu deals with edition of an automaton representing an abstract criterion. The Help menu contains

useful information on how to use Atg.

3.1.2 Mouse Buttons

The three mouse buttons are di�erent bindings: the functions selected from menus have to be applied

using the left mouse button, while the middle button moves any kind of objects, and the right button

(pre)selects a number of objects, or all objects in a given rectangular zone, typically to be applied the

next function as a whole.

3.1.3 Editable objects

Consisting of graphical editable objects Autograph o�ers vertices for states, boxes for subsystems,

ports for signal interface, edges for both automata transitions and port connections, and \webs" for

multipoint extended connections. All such objects can be annotated with semantic informations as

allowed in the fc2 format. Behavioural labeling of automata transitions form their action abilities as

usual. The only structural requirement of autograph is that ports only occur on boxes and edges in

between vertices, ports and webs altogether (no free end to an edge).

3.2 File Management

This menu contains in addition the quit menu button.

Autograph saves �les in .atg, .fc2 or .ps formats. Postscript format is not scaled to �t (a given

page size).

Autograph reloads �les from .atg format, and reads from .fc2 format in case the �le contains a

single automaton (in the current version). In the second case the user must unfold successive states

to provide the actual lay-out. At �rst only the initial state is pictured. Then, by dragging a phantom

line to any point in the drawing zone the user indicates both a main direction and a minimal distance

from which to place new vertices.

3.3 Window management

Windows can be created and deleted from the corresponding menu. In addition they can be resized

to �t the actual drawing, or given a title name. Such names are important as they will become the

fc2 name of the window content (network or automaton).

In general drawings may exceed the window size (with usual scrollbar facilities). TheWindow:See/Hide

Global menu button alows to pop up a global view spanning the whole object. Such windows cannot

be edited, but unexplored vertices can easily be spotted from their highlighting, and the regular view

from the editable window can be repositioned by its phantom.

Each window keeps the memory of its last operation, which can be undone by the Window:Undo

button.

3.4 Edition

Objects can be edited from general functions in the ObjectsEditmenu. Shorthands keyboard bindings

allow fast selection of editing functions. All types of objects can be created, moved, deleted. In addition

boxes can be resized, edges can be added or removed intermediate points (called \nails") for broken

arrows, states can be declared initial and can be explored/unexplored (folded/unfolded).

There is no structural consistency requirement on edited objects. Only at translation into fc2 are

such consistency rules checked.

3.5 Labeling and Annotating

All object types can be labeled. Following the fc2 syntactic conventions these labels are split in

four distinct �elds: behav, struct, logic and hook according to intention. Of course labeling is

15

mostly optional. The Label:Create/Edit All menu button selects the full editor which is popped at

each further mouse click on objects. There are four edition areas, correpsonding to the four labeling

�elds above. As a shorthand the Label:Create/Edit Default menu button allows one-�eld edition, of

behav labels for edges, webs and ports, of struct labels for vertices and boxes. This simpler function

covers 90

Labels are displayed on the same drawing area as objects, which can be overwhelming sometimes.

Other buttons from the Label: menu allow to hide or unmask labels globally or individually (or as a

selection set), from speci�c labeling �elds or indistinctly.

Finally the Label:Show Label/Object highlights the bindings from labels and objects to one another.

3.6 Automatic Placing

The Placing:Explore button allows to start or resume unfolding on states/vertices. States with incom-

plete display of outgoing transitions are identi�ed by a smaller circle inside them. Placing:Unexplore

allows to fold back states or transitions out of sight.

From the Placing:Align submenu sets of selected objects (right mouse button, remember?) can be

aligned horizontally or vertically, from their centers, their left, right, upper or lower corners. They

can also be projected on a circle: drag the mouse from the intended center to any point to lay on the

circle itself.

Placing:Align:Spring calls an automatic layout algorithm called Spring (courtesy of Michel Baudoin-

Lafond, from LRI/Universit�e d'Orsay), based on minimisation of a certain attraction/repulsion func-

tion amongst states.

3.7 Abstract Action

With this menu one can add annotation on an automaton to provide relevant informations so that it

can be interpreted and translated as an abstract action.

The AbstractAction:begin menu button selects the abstract action initial state.

The AbstractAction:end menu opens a vertex as successful terminal state of an abstract action, whose

name has to be provided then in a textual editor.

The AbstractAction:save translates the window content in fc2 format as an abstract action. The net

contains a hook "abstract action", the begin state have a logic "initial" and the end state have a

behav giving the name of the abstract action.

3.8 Translation into fc2

Translation from graphical representations to fc2 �les is quite straightforward, specially on automata.

There is a number of consistency checks to insure safe interpretation (in fact just common sense

considerations):

� Automata must have an initial state;

� Boxes may not overlap (proper nesting);

� Innermost boxes must have all their ports labeled, and contain either a struct name (the

subcomponent to be instantiated later from another source description) or an automaton;

� Edges should not link a vertex to a port/web, and not two ports apart from neighbouring boxes

(siblings or \mother/daughter" in the containment tree).

� Connections should not contain more than one external port (without external port, the con-

nection is called internal to the subnetwork represented by the mother box, and correspond to

an action hidden at this level).

Connections here are sets of ports bound together by being linked to the same webs (so the fc2
format allows multipoint synchronisation). As a shorthand two ports can be directly linked by an

edge for a binary synchronisation. Each connection will produce a synchronisation vector describing

a possible behaviour of the (subnetwork translated from their) mother box. Synchronisation vectors

will be labeled (or internal) according to the external port of the connections.

16

Globally visible actions are formed by outermost webs, ports and edges bearing an explicit label (a

box is said to be outermost if not nested inside another one, outermost ports are ports on outermost

boxes, and outermost webs/edges are tied only to outermost ports).

The previous example from section 2.4 already showed Atg drawings and their fc2 counterpart.

17

4 The fc2 �le linker fc2link

A complete network description may be split amongst several actual �les, possibly originated from

di�erent sources, textual or graphical. This allows components reuse and modularity. On the other

hand most veri�cation tools will only accept a single �le input. Linking �les together consists mainly

in ensuring a proper correspondence in label references, between the locations where subcomponents

are de�ned and their invocation in a larger network. Example of this is provided in �gure 5, where the

fork description in �gure 3 is substituted to its reference inside previous network of �gure 4. Tabular

references must be merged, and so usually shifted to avoid con
icts.

fc2link requires a -main �lename, whose topmost network will be taken to become the global network.

Hierarchical subcomponents are only selected from the set of fc2 �les provided as arguments as they

are needed, through dependency analysis. mbiguity results in errors.

5 Global System Generators

The global model construction/expansion is a main part of model-based veri�cation tools. States

in such a model are vectors of component (local) states, and behavioural transitions are obtained

by interleaving or synchronization of local behaviours. Of course this means potential combinatorial

explosion, and methods for either succinct representation or actual reduction of global state spaces

are at the core of all approaches to model-based veri�cation techniques.

fcTools o�ers two alternative implementations of the product construction: fc2glob, classically

based on explicit representation of states and transitions; fc2implicit, a symbolic version based on

Binary Decision Diagrams for implicit representation of (sets of) states.

In symbolic implementation the transitions are only represented under the simpler form of state

transformers, one for each possible synchronization event in the network description. So while the

explicit product construction yields a full automaton (with its pros and cons), the implicit BDD

implementation only produces a symbolic version of the global reachable state space. This means less

space consumption (in addition to the symbolic treatment of states) and more recomputation when,

for instance, searching backwards from behaviours.

5.1 The Explicit Global System Generator fc2glob

The construction algorithm is there rather straightforward. Target states are stored when reached

together with the labeled transition reaching them as part of the source state description. Hash tables

allow to maintain the set of already reached states, and new discovered states are given an integer

reference and stored in a list of \states to explore".

When invoked recursively on a multi-level hierarchical network the explicit implementation can be

alternated with reduction functions at intermediate stages, provided these reduction functions enjoy

the proper \congruence" properties so as to preserve the essence of the results for the desired semantics

(say, strong or weak bisimulation). One recovers then the compositional model reduction approach

popularized through the original Auto tool.

5.2 The Implicit Global System Generator fc2iglob

fc2iglob (or fc2implicit -reach) computes the (BDD characteristic formula given a proper boolean

encoding of) the set of global reachable states of the system. No compositional speed-up method is in

sight yet, so that the network is
attened to a single-level vector of individual automata. The reachable

state space is of course evaluated in a breadth �rst search strategy, applying event synchronisation

vectors iteratively until �xpoint, staring from initial state.

Fixpoint reachable state computation can be re�ned to allow for on-line deadlock detection, and fol-

lowed by livelock or divergent states detection on the result (a divergent state may perform in�nite

sequences of hidden \tau" actions, a livelock state can exhibit only such behaviour). Symbolic com-

putation of bisimulation classes can also be applied from this BDD description of reachable states,

following results from [1].

The tool only enumerates states if asked to produce the fc2 automaton on �le. If bisimulation

computaion was applied, it produces the quotient minimal automaton then.

18

6 Bisimulation minimisation and equivalence checking

These functionalities are implemented both with implicit and explicit representation technologies.

Experience showed that explicit methods can run substantially faster when the size of the considered

automaton is still manageable for them. On the other hand symbolic methods are still feasible on

large systems, provided the number of classes remain low (for instance in weak bisimulation when

only a few signals are left visible to distinguish betwen states). Also they have a clear use when only

comparing two distinct networks (the equivalence checking problem).

6.1 The Explicit Algorithm

The Relational Coarsest Partitionning Algorithm of Kanellakis and Smolka [2] is used to re�ne a

partition of the states, until �xpoint. fc2explicit o�ers all three kinds of famous bisimulations,

namely strong, weak and branching bisimulation.

The equivalence checking problem is solved by �rst building the dijoint union of the two state spaces,

and then partitioning them as a whole. The only di�ernce is that the algorithm posibly aborts

because a class contains no states from one of the automata, before reachig �xpoint. Then a list of

states without match is provided as counterexample.

See section 2.3 for Unix command syntax.

6.2 The Implicit Algorithm

Symbolic computation of strong, weak or branching bisimulation equivalence classes was described

in [1]. The quotient automaton can be produced in fc2 through symbolic projection functions to

replace any (symbolic) state by a uniquely determined representative, and then providing integer

representations of such representative to use in place of target states.

When checking for equivalence between two distinct networks, the synchronous product is built so that

only couple of states reached in some way through a common path are challenged for bisimulation.

See section 2.3 for Unix command syntax.

7 The Model Abstraction

Abstract Actions allow us to de�ne the atomicity level at which we want to observe an automaton.

The idea is to consider terminated sequences of concrete behaviours as atomic and and to call such

a set abstract action. Reducing a global system wrt a set of abstract actions results in a system

conceptually simpler where meaningful activities have been isolated.

Abstract actions are gathered in a new alphabet and they compact pathes in the initial global system

under unique transitions. We describe abstract actions as automata in the fc2 format using the

following syntax to represent sequence of concrete actions:

single� action = IDj?IDj#IDj!IDj ?

abstract� action = � single� actionjsingle� action:abstract� action

? is the \true" action and and represents any concrete action while the \false" action is � ?. To

match any path that contains the concrete action ?a.#b.!c, we have to provide in the abstract action

automaton a transition labeled by ?a.#b.!c.?.

For instance, in �gure8 we use the Atg abstract-action feature to describe an abstract action for the

philosopher example who matches all pathes in the global system where two philosophers have a fork

and eat and the third one can take a fork without any drop have been performed. if such a path exits

it will be replace by a single transition labeled with bad-philo.
The fc2 description below corresponds to the translated form of the �gure8.

nets 1

hook"main" > 0

struct"Autograph Window"

net 0

19

abstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-actionabstract-action

think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1think1

tautautautautautautautautautautautautautautautautau

eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1eat1

~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau
think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2think2

tautautautautautautautautautautautautautautautautau

eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2eat2

~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau~tau

think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3think3 tautautautautautautautautautautautautautautautautau

bad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philobad-philo

Figure 8: philosophers abstract-action

structs 1

:0 "abstract-action"

behavs 6

:0 "eat1"

:1 "eat2"

:2 "think1"

:3 "think2"

:4 "think3"

:5 "bad-philo"

struct 0

logic "initial">0

hook "abstract_action"

vertice 9

vertex0

edges 1

edge0

behav 2

-> 1

vertex1

edges 1

edge0

behav tau

-> 2

vertex2

edges 1

edge0

behav 0

-> 3

vertex3

edges 2

edge0

behav 3

-> 4

edge1

behav ~tau

-> 3

vertex4

edges 1

edge0

behav tau

20

-> 5

vertex5

edges 1

edge0

behav 1

-> 6

vertex6

edges 2

edge0

behav 4

-> 7

edge1

behav ~tau

-> 6

vertex7

edges 1

edge0

behav tau

-> 8

vertex8

behav 5

7.1 The Explicit Abstractor fc2abst

To run the explicit abstractor, two fc2 �les must be provided:

1. the network description of the system

2. the automaton description of abstract actions

The global product is computed wrt the abstract action and instead of producing the whole global

system, only the abstracted one is built.

7.2 The Implicit Abstractor fc2iabst

From the transition relation of the global automaton and the abstraction criterion, an abstract tran-

sition relation is built. Then, to get the abstract model, we compute the reachable states from the

initial state with the new transition relation. The command fc2iabst is actually a restricted use

of the tool command fc2implicit. One has in fact to give two fc2 �les as input to the command,

the �rst being the network description and the second the abstract criterion. Result output option is

automatically set. See section 2.3 for Unix command syntax.

8 Veri�cation by Observers and Comparisons

A great deal of practical veri�cation is usually conducted by compiling an automaton-like structure

from the property to establish, with possibly additional annotations on states and transitions of various

sorts (success, failure or recur states, don't care transitions,...). Veri�cation then starts by constructing

a synchronised product of the (usually large) network state space with the (usually smaller) state space

of the observer stucture. One can attempt to introduce the actual veri�cation algorithms in the middle

of this construction, to get potential negative results as early as possible (known as \on the
y" or

\local" techniques).

Here again the distinction between implementations based on explicit and implicit state representation

are relevant, and here symbolic techniques are usually a clear winner, the more so if no representation

of subsets of transitions are required, and only forward search across states is needed (since backward

search may exit the reachable state space and needs to be controled).

The combined construction poses little problem. For counterexample facility one has to recover

symbolically these states from the network which can be couple (in the synchronous product) to

particular states of the observers (these showing success or failure...). Results are then analysed,

21

which in case of undesirable reachable states leads usually to a counterexample path in the product.

Source recovery functions are then needed to uplift this diagnostic back to the original multi�le network

description.

22

9 Top-Level Interface: fc2tcl

To rend easy the use of the di�erent tools and their related commands, we have encapsulated them in

a single environment within a Tcl top-level interpretor. New Tcl commands have been added to call

properly the tools' functionnalities. Its related Unix command is called fc2tcl and need no option.

When called, the tool displays a prompt and waits for commands.

All prede�ned Tcl commands are accepted, see [4]. We have de�ned a set of new Tcl commands

related to the fc2 tools functionnalities. Commands are designed in an object-oriented style: objects

are those de�ned in fc2 desriptions (automata and networks), and methods are the functions that

can be applied on them. As one can imagine, ojects have to be created �rst and this is done by the

reading and the parsing of fc2 �les.

Object creation: the interface provides two commands for object creation, one for each kind of

representation, i.e. explicit or implicit, called estage and istage respectively. They both return an

object of type corresponding to type of the the main net declared in the read �le. Both commands

need two arguments exactly: �rst the name of the variable in which the object has to be stored

followed by the name of the fc2 �le de�ning the object. If varcmd is the name of the variable in the

command line, then a new new Tcl command with the same name is also created. This command

serves for the manipulation of the created object.

Automata manipulation: when the object de�ned in a �le is just an automaton, the object creation

commands stores it in the given variable, say varcmd. Then the automaton can be manipulated

through the command varcmd in the following way:

varcmd options -fc2 �le.fc2

With options, one speci�es which operation one wants to operate on the automaton represented by

varcmd. The -fc2 option saves the result in an fc2 �le whose name follows. Options are:

mini bisimulation :

to perform a bisimulation minimization. The kind of bisimulation is speci�ed just after with one

of the keywords strong, weak or branching or their abbreviation s, w, b. If option -fc2 is

set, then the quotient automaton is saved in the speci�ed �le.

abstract �le.fc2 :

to abstract the automaton w.r.t. an abstract criterion given in the fc2 �le �le.fc2. If option

-fc2 is set, then the abstract automaton is saved in the speci�ed �le.

Network manipulation: when the object is a hierarchical network, varcmd contains it and the

command is used for the manipulation of the network. The general command line is similar to the

one of automata, but options are di�erent. We give them in details:

reach type :

to compute the global reachable states of the network. The speci�er type can be one of dead,

live or dive: if added, it computes the set of deadlock states, livelock states and divergent

state respectively. If option -fc2 is set and no speci�er is given, then the global automaton is

saved in the given fc2 �le, else, an example path leading to a selected state belonging to the

computed set is extracted and saved in the given fc2 �le.

mini bisimulation :

same as automata. The minimization is here performed on the global automaton attached to

the network, that has to be �rstly evaluated.

abstract �le.fc2 :

same as automata.

compare f-seq | -weqg �le.fc2 :

to compare the global automaton with the speci�cation given in the fc2 �le with the help of

strong (resp. weak) bisimulation if -seq (resp. -weq) speci�er is given. The command outputs

true or false.

23

The current version works only with implicit techniques when dealing with networks. Future versions

shall use also explicit tools included in the package. Also, we shall improve the toplevel environment by

saving results in reusable variables instead of saving them in �les. We plan to add graphical facilities to

represent each object in the environment: speci�c menus shall provide the set of operations appliable

on each objects.

24

References

[1] A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Fourth Workshop on

Computer-Aided Veri�cation, volume 663 of LNCS, pages 96{108, Montreal, 1992. Springer-Verlag.

[2] P.C. Kanellakis and S.A. Smolka. CCS expressions, �nite state processes, and three problems of

equivalence. Information and Computation, 86:43{68, 1990.

[3] E. Madelaine and R. de Simone. The FC2 Reference Manual. available by ftp from

cma.cma.fr:pub/verif as �le fc2refman.ps.gz, 1993.

[4] J.K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series. Addison-Wesley, 1994.

25

