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Abstract

We describe a set of modular extensions to our Auto/Graph verification toolset for networks
of communicating processes. These software additions operate from a common file exchange for-
mat for automata and networks, called FC2. Tool functionalities comprise graphical depiction of
objects, global model construction from hierarchical descriptions, various types of model reduc-
tions and of verification of simple modal properties by observers, counterexample production and
visualisation. We illustrate typical verification sessions conducted on usual academic examples:
dining philosophers, mutual exclusion algorithms and round-robin schedulers.

Based on previous experience of drastic state explosion problems we aim here at efficiency in
implementation. We use both explicit representation techniques and implicit techniques such as
BDDs, with functional overlap at places. Details on internal representations (as C++ classes)
and instructions on how to easily program new modular extensions can be found in the companion
Implementation Manual.

1 Presentation

Systems of communicating and synchronising entities are usually hard to specify in a correct fashion,
due to problems of distributed control and parallelism. In the last decade a number of verification
softwares were implemented to provide computer assistance in the design and correctness checking of
such system descriptions, and used to study distributed algorithms, protocols and embedded systems.
Most commonly these toolsets are based on finite state modeling of underlying global configurations,
and graph-theoretic algorithms.

Our pioneering AUTO/GRAPH toolset was exploring the power of so-called “proof-by-reduction” tech-
niques, where methods for compositional reductions of finite state structures try to suppress as much
as possible the combinatorial explosion problem. Functions such as state quotient (with respect to
behavioural equivalences), behavioural abstraction or context filtering were at the heart of the sys-
tem, in addition to graphical or textual process algebraic hierarchical description facilities, and other
practical auxiliary functions.

The present User Manual describes basically the “next generation” AuTO/GRAPH implementation.
Decision for this reimplementation was based on a number of facts. First, as functionalities were
progressively added the old implementation grew larger and harder to maintain; the new one had
to be modular, consisting in a set of carefully chosen functions which could be combined together
for efficient verification. Second,due to national and international collaborative projects we wanted
the new toolset to be open for joint use with other “foreign” verification tools, which could nicely
complement its functionalities; a “low-level” file exchange format (covering automata and hierarchical
networks of such) called FC2 was then designed, and used in particular in between various software
modules. Last, new symbolic techniques for implicit representation of finite state machines by so-called
Binary Decision Diagrams had appeared, and were becoming proeminent in the neighboring domain of
synchronous reactive systems (real-time systems and synchronous hardware for instance). We adapted



our verification techniques to this type of implementation structures and the relevant algorithmic style,
in the scope of asynchronous processes communicating by rendez-vous synchronisation.

The result is a new set of construction/reduction/analysis/diagnostics functions, corresponding to
a number of UNIX commands working from and to FC2 files. The three main software modules
are: AUTOGRAPH, for graphical edition and display; FC2EXPLICIT, for manipulation of enumerated
finite state machines; FC2IMPLICIT, for manipulation of symbolic finite state machines. Each fulfils
several distinct functions, sometimes with redundancy between FC2EXPLICIT and FC2IMPLICIT. Other
auxiliary modules exist as well.

By nature FCTOOLS is in perpetual ongoing expansion, as more useful analysis functions are identified
and characterised as efficient algorithms. This manual describes only the current state, which may
already be obsolete by the time of reading in case a next version is already out. Information on system
availability and documentation can be obtained on request from fc2team@cma.cma.fr, or from URL
http://cma.cma.fr/ Verification /verif-eng.html.

The next section describes the overall architecture of software modules comprised in the toolset, with
an informal description of their individual functionalities and how they can be combined. Then a
working description of Unix commands and options is given, followed by a small session example. Each
verification module is then further presented and explained, with insights on its internal algorithms,
and indications on how-to-use for best efficiency.

2 Modular Software Architecture

The verification toolset comprises a number of stand-alone tools, each implementing some well-defined
functionalities. Tools may be used in succession through the common rC2 file description format. At
a deeper programming level, most of our tools use identical internal representation (in terms of C++
classes), so that combination of code is also possible there. See the appended Implementation Manual
for details.

Figure 1 sketches the overall software architecture, with tools/functions figured in oval shapes and
objects/data in rectangular frames. Explicit mention is made to FC2 format where available for objects
(for instance, there is no direct representation of BDDs in FC2).

In the sequel we present the FC2 format and the individual verification tools at very abstract level.
Each tool will be extensively presented later on.

2.1 The rc2 format

The rc2 format was originally designed to interface several preexisting verification tools. In this way
these heterogeneous tools could be further developped independently, while used in cooperation for
their complementory features.

The format allows for description of labeled transition systems and networks of such. While the
format is not “syntax-friendly” (as it represent objects which are supposedly obtained by translation
or compilation), it is still reasonably natural: automata are tables of states, states being each in turn a
table of outgoing transitions with target indexes; networks are vectors of references to subcomponents
(i.e., to other tables), together with synchronisation vectors (legible combinations of subcomponent
behaviours acting in synchronised fashion). Subcomponents can be networks themselves, allowing
hierarchical descriptions.

In addition a permissive labeling discipline allows a variety of annotations on all distinct elements:
states, transitions, automata and networks as a whole. It is through this labeling that behavioural
action labels are provided of course, but also structural information for source code retrieval, logical
model-checking annotation and even private hooked informations. Processes augmented with time,
value or probability informationc could certainly benefit from that, and this is not limitative. Anno-
tative labels are dealt with as regularly as possible in syntax, in simple form at predictable location,
so that they can be treated smoothly at parsing time by any tool, often by simply disregarding them
if they do not address the tool’s specific functionalities. The actual labeling contents are stored in
tables forming the objects headers, so that only integers references to table entries are actually present
in the object bodies themselves (automata or networks). Finally, labels can be structured by simple
operators (sum, product and several others) to allow richer information.

More about the Fc2 format can be found in [3].



2.2 Functional Modules

A typical case-study analysis will contain a number of typical design steps, corresponding to successive
application of distinct functional modules from our toolset. The main such functions are:

description of the network of communicating agents (possibly graphically) The graphical
editor AUTOGRAPH allows to draw such descriptions much in the usual fashion of process-
algebraic terms, and then produces FC2 format representations. It also contains the annotation
labeling facilities. See autograph description in this manual for details.

linking of multifile descriptions Large hirarchical system descriptions can be split between differ-
ent files (for instance as different AUTOGRAPH windows). The tabulated naming informations in
resulting rC22 files need not be consistent across files, and so merging these partial descriptions
into a single file for later analysis takes some bookkeeping care.

construction of “some form of” global model Model-based automatic verification relies on ex-
pansion of network into a global state-transition model. Two main implementation techniques
can be used here: the extensional approach with a classical representation of expanded automata
with enumerated states and transitions; the symbolic approach, based on implicit representation
by Binary Decision Diagrams of sets of states (only), while representation of the full transition
relation is avoided, and remain parted by possible events, somehow in the Petri net fashion. Our
tools cover both modes of implementation with large mutual redundancy, so that best efficiency
can be thought according to each given specification.

Of course global models can suffer state or bdd size explosion problems, leading to the well-
known bottleneck of the approach. Several methods can be used to refrain this explosion, like
abstracting or minimizing (explicit) subnetworks at intermediate level of hierarchical descrip-
tions. In all cases the global model expansion remains a fundamental part of verification systems,
even if applied in particular settings or on transformed objects to cope with complexity.

reduction/abstraction of the model Smaller models can be obtained in roughly two ways. First,
one can abstract the actual concrete behaviours into new ones of a more concise nature; it cor-
responds to the converse of action refinement, where more behavioural details are progressively
added (here they are abtracted away). Second, states with equivalent potential behaviours can
be merged (using bisimulation for instance). Note that behaviour abstraction paves the way to
state reduction, as it usually removes differences between otherwise similar states (consider for
instance observational behaviours, including tau invisible steps inside visible ones).

These techniques can be even more beneficial when applied in a compositional fashion, minimis-
ing intermediate level descriptions.

Another way of reducing the model is by taking into consideration a given context limiting the
state-space exploration. This context can for instance be extracted from a given property to
check.

specification of properties and model-checking There are several ways of specifying correctness
properties. Some basic obvious properties can be stated directly as characteristics of the finite
state model, and checked by simple analysis on it: existence of deadlock, livelock or divergent
states for instance. More refined properties can be expressed either as modal temporal logic
formulae or as specification automata. Distinctions are usually made according to visions of time:
in linear time frameworks properties of behavioural sequences are considered, while in arborescent
branching time frameworks one gets interested in properties of states through their past and
future neighbours. An abundant litterature was devoted to comparison of expressiveness and
design of algorithmic methods best adapted in various cases. Our tools focus on specification of
properties as specification automata, given that the temporal logic approach seemed well treated
elsewhere.

Again, there are two approaches to compare two finite state models, one being the specification
of some (maybe partial) intended behaviour of the other. The first one is bisimulation compari-
son; it works well when “partial” means “abstract”, when time is “branching” and the processes
may both exhibit nondeterministic behaviours. The second one considers the specification au-
tomaton as an observer, and performs some kind of product machine construction to deduce
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whether (un)desirable joint configurations can be attained; this approach, known as “on-the-
fly” technique, works well under determinism assumptions on the specification automaton. Also,
as a rule of thumb, “explicit representation” methods win in the first approach, while “implicit
representation” are best suited to the second one.

Another dimension to the property specification problem depends on whether the analysed
process is viewed as a transparent or a black box, that is whether the property may explicitly
refer to control points (states) in it, or only through behavioural abilities (leading to or possible
from the states in question). For instance a mutual exclusion property can most naturally be
stated by the afact that no global configuration may contain specific local states in parallel
subcomponents. Thus the toolset will have to provide ways of composing this type of property
from the system description, and this without affecting the latter for each property to prove.

counterexample production at the network level Diagnostics from analysis and model-checking
on incorrect descriptions usually result in either sets of (undesirable) states, or counterexample
paths. Typically, deadlock or divergent states are of the first form, while runs without bisimilar
counterpart are of the second form.

With the addition of prior reduction phases these results are produced on smaller automata,
and are themselves usually smaller than the corresponding ones on original networks. But
these now have to be retrieved, if the user is to be informed at a level of description he/she
can understand. The struct annotation field of the FC2 format was in fact used to carry
exactly that minimal information which allows reconstruction. For instance, if weak bisimulation
minimisation was used and hidden transitions thus removed, these transitory behaviours may
have to be rediscoverded to glue actual visible steps back together.

Diagnostic reconstruction may be a time penalty, but is only necessary in case of property failure,
and avoids storing much extra information at all times, which could abort verification for lack
of space.

toplevel object management! . Successive object transformations can be applied while interme-
diate representations are kept and gathered on demand in a graphical environment, for later
reuse.

Figure 1 displays our global software architecture, with tool names and functionalities and types of
arguments and results. Next section will provide a synthetic overview of each tool and ways to use it
in practice.

L Warning: under construction



2.3 Tools and Commands

We now describe the different software modules at the level of UNIX commands, with names and
options.

Remark: most of the transformation tools generate single FC2 description, dumped on screen (UNIX
standard output). In order to save the result in a file, one has to redirect the output of the command
to that file.

e atg:

SYNOPSIS:

UNIX command for AUTOGRAPH, the graphical editor and display system for FC2 descrip-
tions. AUTOGRAPH uses usual process algebra conventions for graphical representation of
automata and networks, and provides translation into FC2 format. AUTOGRAPH currently
reads only plain automata from this format, while a dedicated .atg file format can be
loaded and written on file for any drawing, even ill-structured or incomplete.

USAGE:

atg [files.fc2][files.atg]
RESULT:

A menu bar for graphical edition and a specific window for each loaded file (from .fc2
automata only initial states are displayed at first). AUTOGRAPH and its functionalities are
further described in section 3.

e fc2link:

SYNOPSIS:
Linker of (partial) rC2 files produced by ATG. It redirects references to a subcomponents
to its actual description (found from another file), and matches the labeling indexes.
USAGE:
fc2link -main [-nodebug] file.fc2 [filel.fc2...[fileN.fc2]...]
RESULT:

The result is a single Fc2 file containing the complete hierarchical FC2 description of net0
in file file.fc2 together with all its subcomponents found in any file mentioned. Default
resulting file contains verification debugging information used by source recovery functions,
such as the file names of individual FC2 components given under an FC2 expression recalling
the hierarchy of the network. This extra information can be discarded from the result by
setting the -nodebug option.

Misformed descriptions end up in so-called “consistency errors”. The result is output on
screen.

e fc2min:

SYNOPSIS:
(Explicit) Automata minimizer with respect to strong, weak and branching bisimulation.
USAGE?:
fc2min -bisimulation [-fc2] [-debug] file.fc2
The option bisimulation can be one of the options s, w or b for strong, weak and branching
bisimulation respectively.
RESULT:

If option -fc2 is set, the result is the quotient automaton in FC2 format. Otherwise it is
a partition of the state space into equivalence classes. The -debug source recovery option
adds, for each quotient state or partition element, a description of its content as sum (union)
of state references from the initial automaton. This information is stored in the struct
field of the new states in the FC2 structure.

2file.fc2 must contain a single automaton. Otherwise, an error message is generated. If minimization is asked for
the global automaton of a network described in a fc2 file, fc2explicit/fc2implicit processors should be used instead.



o fc2implicit:

SYNOPSIS:
Symbolic manipulation of labeled synchronized automata vectors (FC2 networks). It con-
tains several functionalities, selected by options.

USAGE: The command can be invoked with either one or two argument files:

1. One file mode:
fc2implicit [-reach | -dead | -live | -divel

[-s | -w | -b [-itaul] [-debug] [-fc2] file.fc2

where

-reach: computes the set of reachable global states.

-dead, -live, -dive: computes the set of deadlock, livelock and divergent global
states of the network respectively. If option -fc2 is set in addition, fc2implicit
generates a counterexample path in FC2 (as a string automaton), leading from the
initial state to one of the computed states.

-s, -w, —-b: computes the strong, weak and branching equivalence partition respec-
tively. If option -fc2 is set, then generates an FC2 description of the quotient
automaton. Option —itau can be added for branching bisimulation to turn off the
7-closure memorization, replaced by a local recomputation at need.

-debug: adds extra information for source recovery in the structlabels of global nets,
states and transitions.

2. Two files mode:
fc2implicit {-seq | -weq | -obs | -abst} [-debug]l [-fc2] filel.fc2 file2.fc2
where
-seq, -weq: performs the strong and weak bisimulation comparison between the
topmost nets of both files.
-debug: produces a counterexample path in FC2 leading to a state without equivalent
in the other automaton, with other infos (iteration level in the partitioning, ...).
-obs?: assumes filel.fc2 is the net to observe and file2.fc2 is the observer. Performs
the observation product of the net by the observer.
-abst?3: assumes filel.fc2 contains a net description and file2.fc2 an abstraction crite-
rion. Performs the abstraction of the global automaton of net w.r.t. the abstraction
criterion.

SHORTHAND COMMANDS:

The following UNIX commands are equivalent to the general fc2implicit command with
particular options. The i letter following fc2 here stands for implicit.

fc2ireach = fc2implicit -reach
fc2iabst = fc2implicit -abst
fc2idead = fc2implicit -dead -fc2
fc2ilive = fc2implicit -live -fc2
fc2idive = fc2implicit -dive -fc2
fc2istrong = fc2implicit -s
fc2iweak = fc2implicit -w
fc2ibranch fc2implicit -b
fc2iglob = fc2implicit -reach -fc2
fc2iobs = fc2implicit -obs

RESULT :

Whenever option —fc2 is set, generates an FC2 description of the result. Otherwise produces
information messages (result size, existence of deadlocks for instance).

3This option is turned off in the current version. The function shall be available in the next version.



o fc2explicit

SYNOPSIS:

Explicit manipulation of labeled synchronized automata vectors (FC2 networks). It contains
several functionalities, selected by options.

USAGE: The command can be invoked with either one or two argument files. Currently only the
-abstract option uses two files.

fc2explicit [-s | -w | -b | -abstract] [-comp | -global] [-bitset] [-fc2]
[-debugl [-o file.fc2] filel.fe2 [file2.fc2]

where

-abstract: Assumes one file contains a net description and the other an abstraction
criterion. Performs the abstraction of the global automaton of net w.r.t. the abstraction
criterion. Further description of abstraction use can be found in section 7.

-comp: Computes the global automaton from the network contained in the argument file
in a compositional way, following the hierarchical description in nested subnets. Used
in conjunction with -s, -w, -b options to alternate minimisation and construction
phases.

-global: Computes the global automaton from the network contained in the file argument
in its “flattened” version (non hierarchical). Default value.

-s, -w, -b Applies strong, weak or branching bisimulation minimisation on network
contained in file argument. Can be combined with -comp option. Internally invokes
fc2min (see above) on each intermediate automaton.

-bitset Computes the state space by applying action events under a bitset scheme algo-
rithm for replacement of local states in the vector. Used best with the —global option,
on large vectors of small individual automata components. See further FC22explicit
description in 77.

-o: provides a filename for output.

—-fc2: if set, result is the FC2 description of the quotient automaton; otherwise only size
figures are printed. Prints on standard output, except if -o option is used.

-debug: if set, automata states are decorated with structure information for source recov-
ery on original network description.
SHORTHAND COMMANDS:

The following UNIX commands are equivalent to the general fc2explicit command with
particular options.

fc2glob = fc2explicit -global -fc2
fc2strong = fc2explicit -global -s -fc2
fc2weak = fc2explicit -global -w -fc2
fc2branch = fc2explicit -global -b -fc2
fc2compstrong = fc2explicit -comp -s -fc2

fc2compweak fc2explicit -comp -w -fc2
fc2compbranch = fc2explicit -comp -b -fc2

fc2abst = fc2explicit -abstract -fc2

fc2abststrong = fc2explicit -abstract -s -fc2
fc2abstweak = fc2explicit -abstract -w -fc2
fc2abstbranch = fc2explicit -abstract -b -fc2

RESULT :

Whenever option -fc2 is set, generates an FC2 description of the result. Otherwise produces
information messages (result size for instance).



o fc2view

SYNOPSIS :

Source recovery viewer. Pops up a main window and displays the rC2 description of a
counter-example. Creates as many (slave) windows as there are automata components in
the network, in their FC2 syntax. The user can simulate the path back and forth from the
graphical panel, and visualize effects on control points in the path display and in individual
subcomponents altogether.

USAGE? :
fc2view [ -path | -hide ] file.fc2
where

-path option assumes file.fc2 contains a path synthesized from a network using the -debug
option, so that it can be displayed as a distributed run on the range of corresponding
rc2 files. Creates as many (slave) windows as there are automata components in the
network, in their FC2 syntax. Each window displays current local share of transition
in a graphical header, and FC2 text below on demand. Simulation can travel back and
forth under control of a graphical panel.

-hide option assumes file.fc2 contains a network description. Then a selection panel is
built with all current visible signal names occurring in the main net of the file. Signals
can then be hidden when selected, that is erased into 7. A new network description
is provided with an updated main net. This allows to restrict the range of visible
behaviours, and thus to increase observational reduction.

RESULT
See above

2.4 First steps: a session example

We now illustrate the basic verification features on the famous dining philosophers problem. More
advanced features will be demonstrated later on.

The graphical ATG description of the system (in the case of 3 philosophers) is displayed in figure 2 (in
its Postscript output form). It consists essentially of the automata describing the possible behaviours
of the forks and of halfbrains for philosophers. A full philosopher is obtained by synchronising these
halves on eating and thinking (each half deals with one fork). The full synchronisation network is
also displayed, with visible actions becoming indexed by a philosopher’s rank.

We now suppose these three parts (the fork, halfbrain automata and the network) have been translated
(by AT@) into distinct FC2 files, say fork.fc2, halfbrain.fc2 and philonet.fc2. The FC2 version
of the fork automaton is displayed in figure 3. The partial description of the network, with only
component interface declaration for the fork and halfbrain, is displayed in figure 4.

Linking these files will produce the appropriate correspondance between these “subsystem calls” and
their automata contents from the other files.

0-duick$ fc2link -main philonet.fc2 fork.fc2 halfbrain.fc2 > philo.fc2
--- fc2link: education version vO

--- fc2tool: parsing fc2 file: philonet.fc2.

--— fc2tool: file: philonet.fc2 parsed successfuly
--— fc2tool: parsing fc2 file: fork.fc2.

--— fc2tool: file: fork.fc2 parsed successfully

--— fc2tool: parsing fc2 file: halfbrain.fc2.

--— fc2tool: file: halfbrain.fc2 parsed successfuly
---— fc2link: File "philonet.fc2"

--— fc2link: net number O has struct "philonet"

--- fc2link: net number 1 has struct "fork"

—--- fc2link: net number 2 has struct "halfbrain"
--- fc2link: File "fork.fc2"

--- fc2link: net number O has struct "fork"

4 The argument file must contain a single string automaton containing a path (obtained by fc2idead for instance),
and containing debug informations
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Figure 2: The 3 dining philosophers specification

--- fc2link: File "halfbrain.fc2"

--- fc2link: net number O has struct "halfbrain"

--— fc2link: Check consistency on class of net 0, file philonet
--— fc2link: Check consistency on class of net 0, file fork

—--- fc2link: Check consistency on class of net 0, file halfbrain>
0-duick$

The result is displayed in figure 5
Now the description can be submitted to our analysis and verification tools.

2.4.1 Implicit evaluation of the global system

We first evaluate the global system to have an idea of the size of the state space. We use for that
symbolic methods based on BDDs that allow easy evaluation of global state spaces.

0-duick$ fc2implicit -reach philo.fc2

--- fc2implicit: education version vO

—--- fc2tool: parsing fc2 file: philo.fc2.

--— fc2tool: file: philo.fc2 parsed successfuly

--- fc2implicit: Making reachable state space

---— fc2implicit: Reachable states: <<214>> —- BDD nodes: <<85>>
0-duick$

The global automaton has 214 states. The BDD that represents it has 85 nodes only.

10
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Figure 3: file fork.fc2

nets 3
hook”main” > 0
struct”philonet”
net 1

structs 1
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Figure 4: file philonet.fc2
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% FC2 file generated by fc2link from FC2 files:
% philonet.fc2 (main) fork.fc2 halfbrain.fc2

prefix file(any any) -> any

nets 3

h "main” >0
s file("philonet™,0) < file("fork”,0).file("halfbrain™,0).file("halfbrain”,0),
file("halfbrain” ,0),file("fork™,0).file("halfbrain™,0) file("halfbrain™,0),

file("halfbrain™,0),file("fork™,0)

net 1

B2

{0 "take”
i1 "drop”
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Figure 5: The 3 philosophers in #C2 format

2.4.2 Finding and Recovering the Deadlocks

This academical problem is known to have deadlocks. We have a way to detect them and to extract an
example path leading to a deadlock from the global initial state. Here is the session using fc2implicit:
0-duick$ fc2implicit -dead -fc2 philo.fc2 > deadpath.fc2

0-duick$

fc2implicit:
fc2tool: parsing fc2 file: philo.fc2.

fc2tool: file: philo.fc2 parsed successfuly
- fc2implicit:
- fc2implicit:
- fc2implicit:
- fc2implicit:
- fc2implicit:

education version vO

Making reachable state space

State space depth: 13

First deadlock(s) detected at depth 7

Reachable states: <<214>> —- BDD nodes: <<85>>

Global automaton has 2 DEADLOCKS state(s) -- BDD nodes: <<27>>

The first detected deadlocks have been found at depth 7 in the global automaton, that is the shortest
path leading to a deadlock has 7 states and 6 transitions. As we have set the option -fc2, a example
path hs been extracted and write in FC2 in deadpath.fc2.
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Now in Ara we visualize back this result that we picture out in figure 6.

©
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think2

Figure 6: A deadlock path

The deadlock corresponds to the case where each philosopher takes a fork (the 7 action after each
think action): then no action can be further enabled from any of them.

Now if -~debug option was added to the FC2IMPLICIT command, further annotations were appended to
the path example so as to allow source recovery. Then the path can be simulated as a run on FC2 files
using FC2VIEW, or even visualised graphically on an original displayed network with AUTOGRAPH. In
the latter case one needs only load the path in FC2 to AUTOGRAPH, and then selects the Debug:Edge
button from the menu bar. Then each selection of an edge will highlight the source and target states
at all components in their respective AUTOGRAPH windows, and active communications at ports in
the synchronisation network.
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Figure 7: AUTOGRAPH display

3 The Graphical Editor AUTOGRAPH

AUTOGRAPH (invoked under the unix command atg under Xwindows) is a graphical display system
for both labeled transition graphs and networks of communicating systems. Lay-out is very much in
the tradition of process algebra graphical depiction, as shown in figure 7. Objects in AUTOGRAPH can
also be extensively annotated so as to match the FC2 format standards. In section 2.4, figure 2 was
produced from AUTOGRAPH graphical displays.

AUTOGRAPH can be used to graphically edit systems but also to visualise automata that were produced
elsewhere, typically as an output of verification. Then when reading an rC2 file AUTOGRAPH prompts
the user for interactive unfolding and positionning of successive states. An automaton can also be
automatically drawn (using a spring-like attraction/repulsion algorithm between states). Visualisation
of networks is under construction, as is visualisation of counterexample runs on existing networks.

3.1 General Features

In practice AUTOGRAPH is a multi-window, unstructured editor: system descriptions are checked for
structural coherency only at translation into FC2 format, and subsystem parts contained in differ-
ent windows are translated independently in separate files and not linked together. This allows the
user freedom to work temporarily with incomplete descriptions, and to reuse system parts in various
compositions. Therefore AUTOGRAPH is based on two file representation formats: FC2 for struc-
tured objects, and ATG for possibly inconsistent drawing descriptions, containing additional graphical
positionning data.

3.1.1 Menu Bar

AUTOGRAPH fronts the user with a single menu bar, from which all editing functions applicable to
all graphical windows are selected. As a result some functions may need an extra mouse click in the
window(s) to be concerned (like in the Save to File function). The Files, Windows, ObjectsEdit and
Labels menus deal with management of the respective types of objects. While rather self-explanatory
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they are described in more details in the sequel. The Globals menu deals basically with cut-and-paste
and miscellaneous functions to be applied undistinctively on all editable objects. Placing deals with
positionning of folded objects, and Attributes allows to play with fonts and colors. The Abstract Action
menu deals with edition of an automaton representing an abstract criterion. The Help menu contains
useful information on how to use ATG.

3.1.2 Mouse Buttons

The three mouse buttons are different bindings: the functions selected from menus have to be applied
using the left mouse button, while the middle button moves any kind of objects, and the right button
(pre)selects a number of objects, or all objects in a given rectangular zone, typically to be applied the
next function as a whole.

3.1.3 Editable objects

Consisting of graphical editable objects AUTOGRAPH offers vertices for states, bozes for subsystems,
ports for signal interface, edges for both automata transitions and port connections, and “webs” for
multipoint extended connections. All such objects can be annotated with semantic informations as
allowed in the FC2 format. Behavioural labeling of automata transitions form their action abilities as
usual. The only structural requirement of autograph is that ports only occur on boxes and edges in
between vertices, ports and webs altogether (no free end to an edge).

3.2 File Management

This menu contains in addition the quit menu button.

AUTOGRAPH saves files in .atg, .fc2 or .ps formats. Postscript format is not scaled to fit (a given
page size).

AUTOGRAPH reloads files from .atg format, and reads from .fc2 format in case the file contains a
single automaton (in the current version). In the second case the user must unfold successive states
to provide the actual lay-out. At first only the initial state is pictured. Then, by dragging a phantom
line to any point in the drawing zone the user indicates both a main direction and a minimal distance
from which to place new vertices.

3.3 Window management

Windows can be created and deleted from the corresponding menu. In addition they can be resized
to fit the actual drawing, or given a title name. Such names are important as they will become the
FC2 name of the window content (network or automaton).

In general drawings may exceed the window size (with usual scrollbar facilities). The Window:See/Hide
Global menu button alows to pop up a global view spanning the whole object. Such windows cannot
be edited, but unexplored vertices can easily be spotted from their highlighting, and the regular view
from the editable window can be repositioned by its phantom.

Each window keeps the memory of its last operation, which can be undone by the Window:Undo
button.

3.4 Edition

Objects can be edited from general functions in the ObjectsEdit menu. Shorthands keyboard bindings
allow fast selection of editing functions. All types of objects can be created, moved, deleted. In addition
boxes can be resized, edges can be added or removed intermediate points (called “nails”) for broken
arrows, states can be declared initial and can be explored/unexplored (folded/unfolded).

There is no structural consistency requirement on edited objects. Only at translation into FC2 are
such consistency rules checked.

3.5 Labeling and Annotating

All object types can be labeled. Following the FC2 syntactic conventions these labels are split in
four distinct fields: behav, struct, logic and hook according to intention. Of course labeling is
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mostly optional. The Label:Create/Edit All menu button selects the full editor which is popped at
each further mouse click on objects. There are four edition areas, correpsonding to the four labeling
fields above. As a shorthand the Label:Create/Edit Default menu button allows one-field edition, of
behav labels for edges, webs and ports, of struct labels for vertices and boxes. This simpler function
covers 90

Labels are displayed on the same drawing area as objects, which can be overwhelming sometimes.
Other buttons from the Label: menu allow to hide or unmask labels globally or individually (or as a
selection set), from specific labeling fields or indistinctly.

Finally the Label:Show Label/Object highlights the bindings from labels and objects to one another.

3.6 Automatic Placing

The Placing:Ezplore button allows to start or resume unfolding on states/vertices. States with incom-
plete display of outgoing transitions are identified by a smaller circle inside them. Placing:Unexplore
allows to fold back states or transitions out of sight.

From the Placing:Align submenu sets of selected objects (right mouse button, remember?) can be
aligned horizontally or vertically, from their centers, their left, right, upper or lower corners. They
can also be projected on a circle: drag the mouse from the intended center to any point to lay on the
circle itself.

Placing:Align:Spring calls an automatic layout algorithm called SPRING (courtesy of Michel Baudoin-
Lafond, from LRI/Université d’Orsay), based on minimisation of a certain attraction/repulsion func-
tion amongst states.

3.7 Abstract Action

With this menu one can add annotation on an automaton to provide relevant informations so that it
can be interpreted and translated as an abstract action.

The AbstractAction:begin menu button selects the abstract action initial state.

The AbstractAction:end menu opens a vertex as successful terminal state of an abstract action, whose
name has to be provided then in a textual editor.

The AbstractAction:save translates the window content in fc2 format as an abstract action. The net
contains a hook ”abstract_action”, the begin state have a logic "initial” and the end state have a
behav giving the name of the abstract action.

3.8 Translation into rFc2

Translation from graphical representations to FC2 files is quite straightforward, specially on automata.
There is a number of consistency checks to insure safe interpretation (in fact just common sense
considerations):

e Automata must have an initial state;
e Boxes may not overlap (proper nesting);

e Innermost boxes must have all their ports labeled, and contain either a struct name (the
subcomponent to be instantiated later from another source description) or an automaton;

e Edges should not link a vertex to a port/web, and not two ports apart from neighbouring boxes
(siblings or “mother/daughter” in the containment tree).

e Connections should not contain more than one external port (without external port, the con-
nection is called internal to the subnetwork represented by the mother box, and correspond to
an action hidden at this level).

Connections here are sets of ports bound together by being linked to the same webs (so the rc2
format allows multipoint synchronisation). As a shorthand two ports can be directly linked by an
edge for a binary synchronisation. Each connection will produce a synchronisation vector describing
a possible behaviour of the (subnetwork translated from their) mother box. Synchronisation vectors
will be labeled (or internal) according to the external port of the connections.
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Globally visible actions are formed by outermost webs, ports and edges bearing an explicit label (a
box is said to be outermost if not nested inside another one, outermost ports are ports on outermost
boxes, and outermost webs/edges are tied only to outermost ports).

The previous example from section 2.4 already showed ATG drawings and their FC2 counterpart.
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4 The rc2 file linker FC2LINK

A complete network description may be split amongst several actual files, possibly originated from
different sources, textual or graphical. This allows components reuse and modularity. On the other
hand most verification tools will only accept a single file input. Linking files together consists mainly
in ensuring a proper correspondence in label references, between the locations where subcomponents
are defined and their invocation in a larger network. Example of this is provided in figure 5, where the
fork description in figure 3 is substituted to its reference inside previous network of figure 4. Tabular
references must be merged, and so usually shifted to avoid conflicts.

FC2LINK requires a -main filename, whose topmost network will be taken to become the global network.
Hierarchical subcomponents are only selected from the set of FC2 files provided as arguments as they
are needed, through dependency analysis. mbiguity results in errors.

5 GGlobal System Generators

The global model construction/expansion is a main part of model-based verification tools. States
in such a model are vectors of component (local) states, and behavioural transitions are obtained
by interleaving or synchronization of local behaviours. Of course this means potential combinatorial
explosion, and methods for either succinct representation or actual reduction of global state spaces
are at the core of all approaches to model-based verification techniques.

FCToOLS offers two alternative implementations of the product construction: fc2glob, classically
based on explicit representation of states and transitions; fc2implicit, a symbolic version based on
Binary Decision Diagrams for implicit representation of (sets of) states.

In symbolic implementation the transitions are only represented under the simpler form of state
transformers, one for each possible synchronization event in the network description. So while the
explicit product construction yields a full automaton (with its pros and cons), the implicit BDD
implementation only produces a symbolic version of the global reachable state space. This means less
space consumption (in addition to the symbolic treatment of states) and more recomputation when,
for instance, searching backwards from behaviours.

5.1 The Explicit Global System Generator FC2GLOB

The construction algorithm is there rather straightforward. Target states are stored when reached
together with the labeled transition reaching them as part of the source state description. Hash tables
allow to maintain the set of already reached states, and new discovered states are given an integer
reference and stored in a list of “states to explore”.

When invoked recursively on a multi-level hierarchical network the explicit implementation can be
alternated with reduction functions at intermediate stages, provided these reduction functions enjoy
the proper “congruence” properties so as to preserve the essence of the results for the desired semantics
(say, strong or weak bisimulation). One recovers then the compositional model reduction approach
popularized through the original AUTO tool.

5.2 The Implicit Global System Generator FC2IGLOB

FC2IGLOB (or fc2implicit -reach) computes the (BDD characteristic formula given a proper boolean
encoding of)) the set of global reachable states of the system. No compositional speed-up method is in
sight yet, so that the network is flattened to a single-level vector of individual automata. The reachable
state space is of course evaluated in a breadth first search strategy, applying event synchronisation
vectors iteratively until fixpoint, staring from initial state.

Fixpoint reachable state computation can be refined to allow for on-line deadlock detection, and fol-
lowed by livelock or divergent states detection on the result (a divergent state may perform infinite
sequences of hidden “tau” actions, a livelock state can exhibit only such behaviour). Symbolic com-
putation of bisimulation classes can also be applied from this BDD description of reachable states,
following results from [1].

The tool only enumerates states if asked to produce the FC2 automaton on file. If bisimulation
computaion was applied, it produces the quotient minimal automaton then.
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6 Bisimulation minimisation and equivalence checking

These functionalities are implemented both with implicit and explicit representation technologies.
Experience showed that explicit methods can run substantially faster when the size of the considered
automaton is still manageable for them. On the other hand symbolic methods are still feasible on
large systems, provided the number of classes remain low (for instance in weak bisimulation when
only a few signals are left visible to distinguish betwen states). Also they have a clear use when only
comparing two distinct networks (the equivalence checking problem).

6.1 The Explicit Algorithm

The Relational Coarsest Partitionning Algorithm of Kanellakis and Smolka [2] is used to refine a
partition of the states, until fixpoint. fc2explicit offers all three kinds of famous bisimulations,
namely strong, weak and branching bisimulation.

The equivalence checking problem is solved by first building the dijoint union of the two state spaces,
and then partitioning them as a whole. The only differnce is that the algorithm posibly aborts
because a class contains no states from one of the automata, before reachig fixpoint. Then a list of
states without match is provided as counterexample.

See section 2.3 for UNIX command syntax.

6.2 The Implicit Algorithm

Symbolic computation of strong, weak or branching bisimulation equivalence classes was described
in [1]. The quotient automaton can be produced in FC2 through symbolic projection functions to
replace any (symbolic) state by a uniquely determined representative, and then providing integer
representations of such representative to use in place of target states.

When checking for equivalence between two distinct networks, the synchronous product is built so that
only couple of states reached in some way through a common path are challenged for bisimulation.
See section 2.3 for UNIX command syntax.

7 The Model Abstraction

Abstract Actions allow us to define the atomicity level at which we want to observe an automaton.
The idea is to consider terminated sequences of concrete behaviours as atomic and and to call such
a set abstract action. Reducing a global system wrt a set of abstract actions results in a system
conceptually simpler where meaningful activities have been isolated.

Abstract actions are gathered in a new alphabet and they compact pathes in the initial global system
under unique transitions. We describe abstract actions as automata in the FC2 format using the
following syntax to represent sequence of concrete actions:

single — action = ID|?ID|#ID|\ID|*

abstract — action = ~ single — action|single — action.abstract — action

* is the “true” action and and represents any concrete action while the “false” action is ~ x. To
match any path that contains the concrete action 7a.#b.!c, we have to provide in the abstract action
automaton a transition labeled by 7a.#b.!c.x.

For instance, in figure8 we use the ATG abstract-action feature to describe an abstract action for the
philosopher example who matches all pathes in the global system where two philosophers have a fork
and eat and the third one can take a fork without any drop have been performed. if such a path exits
it will be replace by a single transition labeled with bad-philo.

The fc2 description below corresponds to the translated form of the figure8.

nets 1
hook"main" > 0O
struct"Autograph Window"
net 0
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Figure 8: philosophers abstract-action

structs 1
:0 "abstract-action"

behavs 6

:0 "eatl"

1 "eat2"

:2 "think1"

:3 "think2"

:4 "think3"

:5 "bad-philo"
struct O

logic "initial">0
hook "abstract_action"
vertice 9
vertex0
edges 1
edge0
behav 2
-> 1
vertexl
edges 1
edge0
behav tau
-> 2
vertex2
edges 1
edge0
behav 0O
-> 3
vertex3
edges 2
edge0
behav 3
-> 4
edgel
behav “tau
-> 3
vertex4
edges 1
edge0
behav tau



-> 5
vertexb
edges 1
edge0
behav 1
-> 6
vertex6
edges 2
edge0
behav 4
-> 7
edgel
behav “tau
-> 6
vertex7
edges 1
edge0
behav tau
-> 8
vertex8
behav 5

7.1 The Explicit Abstractor FC2ABST

To run the explicit abstractor, two FC2 files must be provided:
1. the network description of the system
2. the automaton description of abstract actions

The global product is computed wrt the abstract action and instead of producing the whole global
system, only the abstracted one is built.

7.2 The Implicit Abstractor FC2IABST

From the transition relation of the global automaton and the abstraction criterion, an abstract tran-
sition relation is built. Then, to get the abstract model, we compute the reachable states from the
initial state with the new transition relation. The command fc2iabst is actually a restricted use
of the tool command fc2implicit. One has in fact to give two FC2 files as input to the command,
the first being the network description and the second the abstract criterion. Result output option is
automatically set. See section 2.3 for UNIX command syntax.

8 Verification by Observers and Comparisons

A great deal of practical verification is usually conducted by compiling an automaton-like structure
from the property to establish, with possibly additional annotations on states and transitions of various
sorts (success, failure or recur states, don’t care transitions,...). Verification then starts by constructing
a synchronised product of the (usually large) network state space with the (usually smaller) state space
of the observer stucture. One can attempt to introduce the actual verification algorithms in the middle
of this construction, to get potential negative results as early as possible (known as “on the fly” or
“local” techniques).

Here again the distinction between implementations based on explicit and implicit state representation
are relevant, and here symbolic techniques are usually a clear winner, the more so if no representation
of subsets of transitions are required, and only forward search across states is needed (since backward
search may exit the reachable state space and needs to be controled).

The combined construction poses little problem. For counterexample facility one has to recover
symbolically these states from the network which can be couple (in the synchronous product) to
particular states of the observers (these showing success or failure...). Results are then analysed,
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which in case of undesirable reachable states leads usually to a counterexample path in the product.
Source recovery functions are then needed to uplift this diagnostic back to the original multifile network
description.
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9 Top-Level Interface: fc2tcl

To rend easy the use of the different tools and their related commands, we have encapsulated them in
a single environment within a TCL top-level interpretor. New TCL commands have been added to call
properly the tools’ functionnalities. Its related UNIX command is called fc2tcl and need no option.
When called, the tool displays a prompt and waits for commands.

All predefined TcL commands are accepted, see [4]. We have defined a set of new TCL commands
related to the FC2 tools functionnalities. Commands are designed in an object-oriented style: objects
are those defined in FC2 desriptions (automata and networks), and methods are the functions that
can be applied on them. As one can imagine, ojects have to be created first and this is done by the
reading and the parsing of FC2 files.

Object creation: the interface provides two commands for object creation, one for each kind of
representation, i.e. explicit or implicit, called estage and istage respectively. They both return an
object of type corresponding to type of the the main net declared in the read file. Both commands
need two arguments exactly: first the name of the variable in which the object has to be stored
followed by the name of the FC2 file defining the object. If varcmd is the name of the variable in the
command line, then a new new TCL command with the same name is also created. This command
serves for the manipulation of the created object.

Automata manipulation: when the object defined in a file is just an automaton, the object creation
commands stores it in the given variable, say varcmd. Then the automaton can be manipulated
through the command varcmd in the following way:

varcmd options -fc2 file.fc2

With options, one specifies which operation one wants to operate on the automaton represented by
varcmd. The —-fc2 option saves the result in an FC2 file whose name follows. Options are:

mini bisimulation :

to perform a bisimulation minimization. The kind of bisimulation is specified just after with one
of the keywords strong, weak or branching or their abbreviation s, w, b. If option -fc2 is
set, then the quotient automaton is saved in the specified file.

abstract file.fc2 :

to abstract the automaton w.r.t. an abstract criterion given in the Fc2 file file.fc2. If option
—-fc2 is set, then the abstract automaton is saved in the specified file.

Network manipulation: when the object is a hierarchical network, varcmd contains it and the
command is used for the manipulation of the network. The general command line is similar to the
one of automata, but options are different. We give them in details:

reach type :

to compute the global reachable states of the network. The specifier type can be one of dead,
live or dive: if added, it computes the set of deadlock states, livelock states and divergent
state respectively. If option -fc2 is set and no specifier is given, then the global automaton is
saved in the given FC2 file, else, an example path leading to a selected state belonging to the
computed set is extracted and saved in the given rc2 file.

mini bisimulation :
same as automata. The minimization is here performed on the global automaton attached to
the network, that has to be firstly evaluated.

abstract file.fc2 :

same as automata.

compare {-seq | -weq} file.fc2 :

to compare the global automaton with the specification given in the FC2 file with the help of
strong (resp. weak) bisimulation if -seq (resp. -weq) specifier is given. The command outputs
true or false.



The current version works only with implicit techniques when dealing with networks. Future versions
shall use also explicit tools included in the package. Also, we shall improve the toplevel environment by
saving results in reusable variables instead of saving them in files. We plan to add graphical facilities to
represent each object in the environment: specific menus shall provide the set of operations appliable
on each objects.
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