
Bisimulation and Monotonicity for Fault Tolerance

April 16, 2019

Abstract

The basic concept in fault tolerant system modelling is that anticipated
faults being outside of our control may or may not occur. According to the
standard process algebras semantics anticipated faults must occurr when the
system is not able to follow the standard behaviour. The result is that one
fault may conpensate for the effects of another fault. A typical example is the
loose and the creation of messages in a communcation channel. This make
bisimulation not monotonic.

1 Introduction

Process algebras are a standard model for specifying concurrent systems. In order to
specify a process and to prove its correctness, it is useful to decide which properties
of the model are relevant and which can be ignored. Following [?], the semantics of
processes is given in terms of labelled transition systems, which allow to describe
their behaviour in details, including particulars of their internal computations. It is
common to define equivalences over labelled trasition systems to define properties
which consider a particular subset of the detals of the specification. We can indentify
a process with its equivalent class, according to the defined equivalence relation.

Since for a fault tolerant system it is not its internal structure which is of interest
but its effects on the environment and its reactions to stimuli from the environment,
observational equivalence can be applied to check the correctness of a fault tolerant
system design.

A fault tolerant system is generally specified as a set of fault tolerant processes
which may employ various techniques to detect, confine and recover from erroneous
states. The behaviour of a system can be divided into normal (or correct) be-
haviour, the behaviour of the system when no fault occurs, and failing behaviour,
the behaviour of the system in presence of faults. The failing behaviour may be
different for different kind of faults and we refer to the set of failing behaviours as
failure mode. Important in fault tolerant system design is the fault hypothesis which
gives the constraint on how faults are supposed to occur in the system. Given a
set of anticipated faults, under a particular failure mode, a system is designed to
tolerate the occurrence of faults as stated by the fault hypothesis if and only if
the occurrence of such faults in the system does not inhibit the system’s ability to
correctly satisfy its specification.

Since for a fault tolerant system it is not its internal structure which is of interest
but its effects on the environment and its reactions to stimuli from the environment,
weak bisimulation equivalence (named also observational equivalence) can be applied
to check the correctness of a fault tolerant system design. Observational equiva-
lence, first introduced in [?], ignore properties which cannot be observed in the
finite interval of time and is based in fact on the idea that the behaviour of the
system is determined by the way it interacts with the environment: two systems
are observational equivalent whenever no observation can distinguish them.

1

As stated in [], the problem of using bisimulation equivalence for fault tolerance
is that proving fault tolerance towards a given set of faults does not imply fault tol-
erance towards a subset of those faults. A typical example Is that of compensating
faults as the loose and the creation of messages in a communcation channel. Ac-
cording to the standard process algebras semantics anticipated faults must occurr
when the system is not able to follow the standard behaviour. The result is that
one fault may conpensate for the effects of another fault.

This paper presents a modelling approach of fault tolerance which makes bisim-
ulation monotonic. The basic idea is that of modelling anticipated faults as events
which may or may not occur. We reduce the proof of fault-tolerance to correctness
with respect to the specification in the presence of all faults. We prove that this
corresponds to prove correctness without taking faults into account as well as to
prove correctness under any given subset of faults.

2 Background

Given a set of observable actions A, we define A = A ∪ {τ}, where τ is internal
and represents the outcome of a joint activity (interaction) between two processes.
The set A is partitioned beteen actions a and their complements ā. We assume
¯̄a = a. Let L ⊆ A, α ∈ A and f : A→ A where f(ā) = ¯f(a). The language of finite
processes, ranged over by P , is defined by the following grammar:

P ::= 0 | α · P | P + P ′ | P ‖ P ′ | P \ L | P [f]

Informally, 0 is the process which is incapable of any action. α ·P is the process
that executes action α and then behaves like P . P + P ′ is the nondeterministic
choice between the process P and the process P ′. P ‖ P ′ is the parallel composi-
tion of process P and process P ′ where P and P ′ can proceed independently but
also synchronise on complementary actions, performing the action τ . P \ L is the
restriction of P to a process like P apart from actions in L and teir complements
that cannot be executed. Finally, P [f] behaves like P apart from all actions a
renamed into f(a).

The syntax permits a two layered design of process terms. The first level is
related to sequential regular terms, the second one to general terms of sub-processes
supporting communication and action renaming or restriction. Sequential terms are
generated by · and + operators. The specification of general terms requires the ‖
operator.

Table 1 shows the structural operational semantics of the language in terms of
labelled transition systems [?] which describe the behaviour of a process in term
of states and transition between states.

Definition 2.1 A labelled transition system is a 4-tuple Q = (Q, q0, A ∪ {τ},→),
where: Q is a finite set of states; q0 is the initial state; A is a finite set of observable
actions and τ is the internal action; →⊆ Q×A∪{τ}×Q is the transition relation.

We write q
a→ q′ to denote the move from the state q to the state q′ by executing

the action a. In particular, q
τ→ q′ denotes an internal move from q to q′.

Equivalence relations over labelled transition systems relate states according to
performable actions [?]. Weak bisimulation equivalence (bisimulation equivalence
in the following) abstract unobservable moves during observation. We shall use the
transition relation defined as follows:

∀a ∈ A, a
=⇒ def

= (
τ−→)?

a−→ (
τ−→)?

2

Operator Operational rules

a · P
α · P α−→ P

P +Q
P

α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

P ‖ Q
P

a−→ P ′

P ‖ Q a−→ P ′ ‖ Q

Q
a−→ Q′

P ‖ Q a−→ P ‖ Q′

P
a−→ P ′, Q

ā−→ Q′

P ‖ Q τ−→ P ′ ‖ Q′

P \ L
P

a−→ P ′

P \ L a−→ P ′ \ L
a, ā 6∈ L

P [f]
P

a−→ P ′

P [f]
f(a)
−→ P ′ \ L

Table 1: Operational semantics

where ? means zero or any number of times.

Bisimulation is then defined upon the
a

=⇒.

Definition 2.2 (bisimulation) Bisimulation is the maximal fixed point of the func-
tional U on the set of binary relations B on P , (P1, P2) ∈ U(B) iff:

whenever P1
a−→ P ′

1 then ∃P ′
2, P2

a
=⇒ P ′

2 and (P ′
1, P

′
2) ∈ B (1)

whenever P2
a−→ P ′

2 then ∃P ′
1, P1

a
=⇒ P ′

1 and (P ′
1, P

′
2) ∈ B (2)

We write P1 ≈ P2.

3 Modelling

Faults are formalized by explicit observable actions. Let Φ includes an action for
every kind of fault. The alphabet of observable actions of processes is A ∪ Φ. The
execution of an action ϕ in the process corresponds to the occurrence of a fault in
the modelled system. The effect of the occurrence of a fault in the system is that
of transforming the normal behaviour of the system in the failing one.

The failure mode and possible recover is added to the process. Assumption:
we assume at most one fault at a time, so no other fault can occur in this phase.
Moreover we assume unrelated faults. IMPORTANTE!!!

Given a process P , we use the following notation:

• FP denotes the process P after the introduction of the faults and the corre-
sponding failure mode

• ∀I ⊆ Φ, HI is a process modelling the occurrence of faults belonging to I

• ∀I ⊆ Φ, FPI is the process FP under the assumption that only faults be-
longing to I may occur.

Definition 3.1 (well-formed) Given a set Φ of faults, a process FP = (Q, q0, A∪
Φ ∪ {τ},→) is well-formed iff:

3

∀q ∈ Q such that ∃q′ ∈ Q,∃ϕ ∈ Φ such that q
ϕ−→ q′, P satisfies the following

conditions
1) ∃q′′ ∈ Q such that q

τ−→ q′′

2) ∀a ∈ A, 6 ∃q′′ ∈ Q such that q
a−→ q′′

Informally, FP is well-formed if every state q allowing a transition labelled by
a fault action, does not contains transitions labelled by actions belonging to A.

Given a faulty free process P , we insert faults into sequential terms and we
follows the following lines, see figure 1:

∀q ∈ Q, we insert a state q′ and set rightarrow as follows:
there is a transition labelled τ from q to q′;

for every transition q
a−→ q1, we add the transition q′

a−→ q1;

for every fault ϕ in the state q, we add the transition q
ϕ−→ q̄, where q̄ is the

state reached after the occurrence of the fault.
We add the states and the transitions for specifying the faliure mode (q̄ may
be a state in Q or a new state)

Figure 1: Adding faults

We specify a fault hypothesis as a process allowing certain faults, see figure 2:

HI = ({q0}, q0, I,→), where → is defined as follows: ∀ϕ ∈ I, q0
ϕ−→ q0

Figure 2: Fault hypothesis I = {f1, f2}

Definition 3.2 Given P , FP and Φ, FP is monotonic for P if

- P ≈ FPΦ implies
∀I ⊆ Φ, P ≈ FPI
where
FPI = (FP ‖ HI) \ Φ

We specify processes under a certain assumption about faults FPI by parallel
composition and restriction operator.

Definition 3.3 (|= relation) Given P1 and P2, P1 |= P2 iff
for every state in P2 there is a state in P1 having the same observable transitions
up to τ .

Lemma 3.1 FP \ Φ ≈ P .
Proof. We distinguish two cases.
P is a sequential term. The proof follows directly by the transition relation of the
two transition systems. Classe equivalenza stati (q, q′).
P is a general term. Assume P = P1 ‖ P2.
We have FP = FP1 ‖ FP2. By the point above, FP1 ≈ P1 And FP2 ≈ P2. The
proof follows by compositionality of bisimulation relation. Similarly for restriction
and relabelling.
NOTA: P is a transition system.
Classi di quivalenza degli stati. Per ogni stato di P abbiamo:
1) nello stato q era ammesso un guasto: ci sono due stati in FP equivalenti a q e

4

sono lo stato q stesso lo stato q′ raggiungibile con τ .
2) nello stato q non erano ammessi guasti, c’lo stato q in FP equivalente a q in P .
P = P1 + P2 come sopra per P1 e P2 singolarmente
P = P1 ‖ P2. Applicando la regola del ‖ della semantica operazionale e per in-
duzione sulla lunghezza della computatione.
Passo 1

P1
a−→ P ′

1

P1 ‖ P2
a−→ P ′

1 ‖ P2

P2
a−→ P ′

2

P1 ‖ P2
a−→ P1 ‖ P ′

2

P1
a−→ P ′

1, P2
ā−→ P ′

2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2

P1
a−→ P ′

1

FP1
τ−→ a−→ FP ′

1

Passo n vero. Dimostriamo passo n+1

Theorem 3.1 Given P , FP and Φ. If FP is well-formed and P ≈ FP \ Φ then
FP is monotonic for P .
Proof. The proof is given by showing that, given I ⊆ Φ, for every state in FPI
there is a state in FP having the same observable transitions up to τ transitions,
we write FP |= FPI .

4 Pezzi

Various notions of systems equivalence based on the reactions of systems to stimuli
from the outside world have been defined. Generally, these notions allow abstraction
from unwanted details in models of the systems.

Assumptions

• system S as a parallel composition of synchronising processes

• every kind f of fault modelled by a special action f .

• failure mode ⊆ observable actions

• methodology proposed in CJ for studying the behaviour of fault tolerant sys-
tems under a fault assumptions using constraint processes

Definition 4.1 (well-formed) Given a process P = (Q, q0, A ∪ {τ},→), and Φ,
FP = (S, s0, A∪Φ∪{τ},→s) is well-formed if every state s is the non deterministic
choice between internal action seguita dall’azione fault seguita da possibili azioni
osservabili del processo and internal action followed by the standard behaviour of
the system.

∀q ∈ Q, we insert a state q′ and set rightarrow as follows:
there is a transition labelled τ from q to q′;

for every transition q
a−→ q1, we add the transition q′

a−→ q1;

for every fault ϕ in the state q, we add the transition q
ϕ−→ q̄, where q̄ is the

state reached after the occurrence of the fault.
We add the states and the transitions for specifying the faliure mode (q̄ may
be a state in Q or a new state)

5

