Model Checking Embedded Fault Tolerant Systems*

Cinzia Bernardeschi!, Alessandro Fantechi 2, Stefania Gnesi?

! Dipartimento di Ingegneria della Informazione, Univ. di Pisa
Via Diotisalvi 2, 56126, Pisa, Italy, phone:4+39-50-568511 cinzia@iet.unipi.it
2 Dip. di Sistemi e Informatica, Univ. di Firenze
Via S. Marta 3, 50139, Firenze, Italy, phone:+39-55-4796265 fantechi@dsi.unifi.it
3 Istituto di Elaborazione dell’Informazione, IEI-CNR
Via G. Moruzzi 1, 56124 Pisa, Italy, phone:+39-50-3152918 gnesi@iei.pi.cnr.it

Keywords: formal methods, fault tolerance, model checking, verification.

Abstract

In this paper we show how embedded fault tolerant systems can be anal-
ysed by model checking formal verification technique. We first review how
formal methods have so far been applied in the development of fault tolerant
systems, then we discuss the critical points for the success of the introduction
of model checking technique in such a field, finally we present a modelling ap-
proach suitable for model checking fault tolerant systems under different fault
scenarios. The approach is included in a general development framework that
has been proved to be usable for the verification of a railway interlocking
system and fault tolerant mechanisms.

1 Introduction

In the development of embedded computer-controlled systems, a combination of the
methods of fault prevention, fault tolerance, fault removal and fault forecasting are
used in order to achieve high dependability. In particular, it is commonly agreed
that a viable means to reduce the failure rate of a program is the use of fault
avoidance in the form of formal methods in conjunction with other techniques [1].

The application of formal methods in the rigorous definition and analysis of the
functionality and the behaviour of a system, promises the ability of showing that
the system is correct.

Given such a promise, that is already out since several years, it is astonishing to
see how little formal methods are actually used in the safety critical system indus-
try, though the use of formal methods is increasingly required by the international
standards and guidelines for the development of safety critical computer-controlled
systems.

Industrial acceptance of formal methods is strictly related to the investment
needed to introduce them, to the maturity of tool support available, and to the
easiness of use of formal methods and tools.

Nowadays, the industrial trend is directed to the adoption of formal verification
techniques to validate the design, integrating them within the existing development

*This work was partly supported by Progetto Coordinato CNR “Strumenti Automatici per la
Verifica Formale nel Progetto di Sistemi Software ”.

process. Industries are more keen to accept formal verification techniques assessing
the quality attributes of their products, obtained by a traditional life cycle, rather
than a fully formal life cycle development, due to the lower training and innovation
costs of the former.

Several approaches to the application of formal methods in the development
process have been proposed, differing for the degree of involvement of the method
within it. Starting from rigorous specifications, formal methods can be used for the
derivation of test cases, or as a validation technique aimed to prove that the spec-
ification satisfies the requirements, or as an auxiliary technique in the automated
generation of code.

Formal verification methods based on model checking work on a finite state
representation of the behaviour of the system. Verification is usually carried out by
checking the satisfiability of some desired properties formalized as logical formulae
over the model of the system by model checking algorithms. As an example, safety
requirements may be expressed as temporal logic formulae and may be checked on
the model of the system. This provides a direct automatic verification method of
system properties; unfortunately, this approach suffers of the so called ”State Space
Explosion” problem: systems composed of several subsystems can be associated to
a finite state model with a number of states which is exponential in the number of
the component subsystems. Moreover, systems which are highly dependent on data
values share the same problem, producing a number of states exponential in the
number of data variables. Hence, traditional model checking techniques [2], have
shown themselves not to be powerful enough to cope with many ”real” systems,
when their models are larger than 100000 states.

However, recent advances in model checking techniques, have managed to deal
with very large state spaces by the use of symbolic manipulation algorithms inside
model checkers: the most notable example is the SMV model checker [3]. In SMV
the transition relations are represented implicitly by means of Boolean formulae and
are implemented by means of Binary Decision Diagrams (BDDs, [4]). This usually
results in a much smaller representation for the systems’ transition relations, thus
allowing the maximum size of the systems that can be dealt with to be significantly
enlarged.

Embedded computer-controlled systems often include fault tolerance techniques.
Fault tolerance is the property of a system to provide, by redundancy, a service
complying with the specification in spite of faults occurred or occurring [5]. A
failure of a system occurs when the behaviour of the system first deviates from
that required by the specification. The formalization of fault tolerance includes
modelling faults and failures, as well as fault tolerance schemes.

In this paper we present an approach suitable for formally studying the be-
haviour of a fault tolerant system under different fault scenarios. The verification
of fault tolerance properties is based on model checking. We discuss model checking
and its application to fault tolerant systems, and we show how particular charac-
teristics of this class of systems allow the state explosion problem to be tackled.

The paper is organized as follows. Section 2 reviews model checking application
to computer-controlled systems. In section 3 we present our technique for modelling
embedded fault tolerant systems. Section 4 review fault tolerant systems properties,
their formalisation and verification. Section 5 deals with the characteristics that
make model checking techniques applicable in this field. Section 6 reports two case
studies of fault tolerant systems and their properties. In the final Section 7 we give
some concluding remarks about future research.

2 Model Checking

Model checking is a formal verification technique that, literally, means “Checking
(properties on, correctness of) a Model” of a system [2]. Actually, we can find two
interpretations of the term Model Checking:

e The first, canonical, interpretation, widely adopted in the formal verification
community, denotes as model checking any algorithmic and exhaustive verifi-
cation on the model of a system: this includes temporal logic model checking
as well as reachability analysis, equivalence or preorder checking and so on:
in any case, the whole state space is taken into account. If some optimization
which does not actually visit every state is used, it is because some formal
reasoning can be applied to show that what is proved on the reached states
guarantees the result of the verification on the whole state space.

e The second interpretation is more relaxed, and includes a non erhaustive ver-
ification techniques such as simulation/animation of the model, in which only
some possible executions of the system are analyzed. Some commercial tools,
such as the ones working on SDL[6], offer advanced simulation techniques
that approximate exhaustive search and provide, together with provisions to
cut the state space in depth or width, some techniques to calculate a struc-
tural coverage measure of the performed verification with respect to the whole
model. These are very similar to the coverage measures used in software test-
ing. As for testing, a 100% coverage measure does not automatically mean
that the verification made is exhaustive; nevertheless the sophisticated tech-
niques used for the generation of the state space (which have been mostly
inherited by the research on model checking) may allow exhaustiveness to be
reached in many cases.

Some of these tools are currently used extensively in the telecommunication
industry, and are gaining acceptance also in the safety critical systems field.

We advocate however the use of the first interpretation that distinguishes “com-
plete” formal verification (that algorithmically gives an yes/no result) from “partial”
verification: a complete verification is what is primarily expected by an embedded
fault tolerant system validation technique.

Using model checking, we can study whether a property formalised as a logic
formula holds for a system model. Interesting properties of fault tolerant systems
are:

1. Correctness. The system delivers a correct service.
2. Fault tolerance. Despite of faults, the system delivers a correct service.

3. Fail-silence. The system failures can only be omission failures, that is, failures
to temporarily provide the service to the user of the system.

4. Fail-stop. In case of faults, the system terminates the delivery of its service.

5. Fail-safe. The system failure is a transition to a state in which no catastrophic
event can occur.

The properties 2,3,4 and 5 will have to be studied with respect to specific classes
of faults and in presence of given fault occurrences, that is, under well-defined fault
assumptions. All the system properties above can be formally specified as logic
formulae in a temporal logic, whose operators permit explicit quantification over all
possible futures.

3 Modelling Fault tolerant Systems

In this section we present how fault tolerant systems can specified in such a way
that the specification can be analysed by model checking technique.
We use the following concepts and terminology.

Definition 1 (system) System denotes the specification of the system in absence
of faults.

Definition 2 (failure mode) Failure mode denotes the specification of the be-
haviour of system after the occurrence of a fault.

Definition 3 (failing system) Failing system denotes the complete specification
of the system considering the possible occurrence of faults. After the occurrence of
a fault, the failure mode is exhibited.

Definition 4 (fault tolerant system) Fault tolerant system denotes the speci-
fication of the behaviour of the system after the application of a fault tolerance
technique.

Definition 5 (fault assumption) Fault assumption denotes the assumptions made
on the effectively possible occurrence of faults in the system.

Our approach to the formalization of fault tolerant system is based on the fol-
lowing points:

e a system is modelled as set of processes which communicate each other and
interact with the environment by executing actions.

e faults are modelled directly by actions of the processes themselves. For each
fault action, the relative failure mode is also specified. We assume faults to be
random events. For example, a crash fault in a state extends the behaviour
of the system by allowing a crash to occur in that state.

e assumptions on the occurrence of faults are included in the specification by
defining ad hoc fault assumption processes. This allows the behaviour of the
fault tolerant system to be studied under different fault scenarios.

3.1 Specifying a system

Two different formalisms are interchangeably used in our approach to specify a
system: the CCS/Meije process algebra or an equivalent graphical notation.
CCS/Meije. The syntax of CCS/Meije [7] permits a two-layered specification
of concurrent systems, as process terms. The first layer is related to sequential
processes, the second one to networks of parallel sub-processes, supporting commu-
nication and action renaming or restriction.
The syntax relies on the following assumptions:

1. Act, ranged over by « is a set of action names. Such names represent emitted
signals if they are prefixed by ”!” or received ones if they are prefixed by ”77;

2. 7 denotes a special action not belonging to Act. Action 7 represents an internal
action;

3. Act, = Act U {7}, ranged over by a, b, denotes the full set of actions that a
process can perform;

4. X, ranged over by X, is the set of term variables.

The following grammar generates all regular terms, ranged over by R, and all
network terms, ranged over by P:

R == stop|X|a:R|R+R|letrec{X =R[and X = R|}in X

P R|P||P|P\a]|Pla/b]

where [- -] denotes an optional and repeatable part of the syntax.

Informally,
e an inactive process is specified by the stop operator;
e the action prefix operator (a : R) specifies the execution of actions in sequence;

e the nondeterministic choice operator (R + R) indicates that a process can
choose between the behaviour of several processes;

e Parallel composition of two processes (P || P) corresponds to the interleaved
execution of the two processes;

e The restriction operator (P\ a) indicates that an action can only occur within
a synchronization. This operator is used to specify processes which communi-
cate (synchronise on actions). The restriction operator transforms the couple
of actions executed together into the internal action 7;

e The relabeling operator (P[a/b]) transforms an action into another action.

The semantics of CCS/Meije terms is given operationally over Labelled Transi-
tion Systems (LTSs):

Definition 6 An LTS is a 4-tuple A = (X,x°, Act,;,—), where: X is a finite
set of states; x° is the initial state; Act is a finite set of observable actions; —C
X x Act, x X is the transition relation. In particular, © — x' denotes the transition
from the state x to the state ' by executing action a.

For the complete operational description, we refer the reader to [7].

Ezample — Figure 1 reports the CCS/Meije specification of a simple system that
mantains the position of a level crossing gate (gate_contr_p in the following). The
system is a recursive process with three different states: UNDEFINED P, ON_P and
OFF_P. The initial state of the process is UNDEFINED_P and, in each state, the pro-
cess is able to send a signal indicating its current state (on_p! in the state ON_P,
similarly for the state OFF_P and UNDEFINED P). It can change state by receiving a
signal s_on_p! (set state on) or s_off_p (set state off). Moreover, the initial state
UNDEFINED_P is not reachable by the other states.

The specification of the gate_contr_p system together with the operations of
opening and closure of the level crossing (open_op and close_op, respectively) is
reported in figure 2. In this case the parallel composition operator is used. The
specification is named net.

While the open_op and clos_op processes are independent each other, these
processes must synchronise with the gate_contr_p when checking the level crossing
position or sending a signal to change the level crossing state (actions: on_p, off_p,
undefined p, s_off_p and s_on_p). O

Graphical notation. The graphical notation we use, defined for the ATG tool
[8], expresses a sequential process by drawing the LTS representing its behaviour

gate_contr_p =

let rec {
ON_P = on_p! : ON_P +
s_on_p? : ON_P +
s_off_p? : OFF_P
and
OFF_P = off_p! : OFF_P +
s_off_p? : OFF_P +
s_on_p? : ON_P
and
UNDEFINED_P = wundefined_p! : UNDEFINED_P +

s_off_p? : OFF_P +
s_on_p? : ON_P
} in UNDEFINED_P;

Figure 1: The gate_contr_p specification

parse net =
((open_op || clos_op) Il
gate_contr_P)\s_on_p\s_off_p\on_p\off_p\undefined_p;

Figure 2: The system net specification

and expresses communicating processes by drawing a network of LTSs. In the first
case, circles and edges are used to represent states and transitions, respectively. The
initial state of the LTS is represented by a double circle and labels can be associated
both to edges and to vertices. Communicating processes are represented by boxes
with ports at the border. The ports are the process places of interconnection with
the environment. If two boxes are drawn at the same level, they can synchronize
via the actions they execute by linking the corresponding ports.

The graphical formalism allows the synchronisations between processes to be
observed by setting a label on the edge connecting the corresponding ports. More-
over, a multiway synchronisation operator is also available. In this case we can
model the situation in which more than two processes must synchronise on a given
action.

Ezample — Figures 3 and 4 report the graphical specification of the the gate_contr_p
and the net systems, respectively.

lundefined_p

@ UNDEFINED_P
?s off_p

Figure 3: A sequential process

By setting the label OFF_COMMAND on the edge linking ports !s_off _p and ?s_off p

open_op
Istart_open_op
Is_on_p lend_open

2undefined_p

ON_COMMAND

?s_on_p
contr_gate_p
lon_p
loff_p

lundefined_p clos_op

?0n_p Istart_clos_op
20ff_p lend_clos

?undefined_p

?s_off_p

QFF_COMMAND
= Is_off_p

Figure 4: A network of processes

in figure, each time processes synchronise by executing !s_off_p and ?s_off_p, we
observe OFF_COMMAND. Similarly for the edge linking the ports !s_on_p and 7s_on_p.
O

3.2 Specifying the failing system

Each kind of fault is modelled explicitly as an action. The execution of the action
corresponds to the occurrence of the fault. Let F be the set of actions modelling
faults in the system. The specification of the failing system is obtained by intro-
ducing occurrences of possible faults as transitions of the LTSs of the system. If
the action f € F is executed in a state of a subsystem, then the failure mode of the
subsystem is exhibited, otherwise, the subsystem goes on with its behaviour.

We can assume for generality that the failure mode of the process depends on
the point at which a fault occurs during the execution of the system. In most
cases, such high granularity of associating a fault action with a different failure
mode to every state of the system is not necessary. Knowledge of the actual failure
points and failure modes may produce a coarser granularity. Some example in this
direction are:

1. confining faults to specific subsystems;

2. choose specific points in the execution of the subsystems at which a fault may
occur, realizing some form of guided fault injection;

3. associating faults to communications between subsystems;

4. assuming that every subsystem exhibits always the same failure mode in every
state. For example it stops.

Ezample — Figure 5 models the failing system gate_contr_p, when two kind of faults
are considered: a permanent fault, modelled by the f_p action, and a temporary
fault, modelled by the f_t action. The faults can occur at every non-faulty state.
The permanent fault leads the system to a special state named FAULTY_P in
which the system shows forever the value undefined to the environment (the ac-
tion !'undefined p). The state FAULTY_P is a sink state. The temporary fault causes
the system to loose the current correct state, by showing the value undefined until
the reception of a signal setting the position of the level crossing. We assume the
general condition that a fault may occur at any time. An output edge labelled by

undefined_p! f_t?

N\

(O)«. UNDEFINED_P

f_p?
-+ undefined_p!

s on_p?
-onp s off_p?

Figure 5: The failing system contr_ gate_p

?7f_p and an output edge labelled 7f_t exists starting from each state of the entity
except the FAULTY_P one. O

3.3 Introducing fault tolerance

The formalization of a fault tolerance technique requires the use of the parallel
composition, restriction and relabelling operators of CCS/Meije (or graphical com-
position) in order to conveniently express composition of redundant replicas and
additional components.

If fault masking is applied, a fault tolerance technique uses replicas of the sys-
tem. Formally, each replica is an instantiation of the failing system with an ad
hoc renaming of actions and different names for the fault actions (to distinguish
between occurrences of the same kind of fault in different replicas). Replicas may
be composed together with some extra standard components added by the fault
tolerance technique (for example, a Voter) for hiding the effects of the occurrence
of faults by fault detection or correction.

Error processing is generally achieved through error detection and recovery tech-
niques. In this case, the error detection module can be specified as a further process
which interacts with the failing system, checking states of the computation; the re-
covery algorithm can be included in the specification of the failing system.

If n is the number of replicas used by the fault tolerance technique, F7 denote
the set of faults of the j-th replica, j = 1,---,n. The set of faults of the fault
tolerant system is therefore 7 = (Ji_, F/. Let M = {M;,1 < i < k} be the set of
extra components added by the fault tolerance technique.

The application of a fault tolerance technique leads to a network of replicated
processes which includes the replicas and the added components synchronizing in
the specific way dictated by the fault tolerance technique (the parallel operator is
left associative):

@l A &n T My [[--- | Mi) \ar, -+, \as

where aq, - - -, as are the synchronisation actions, a; € F, and processes are used
with appropriate renaming of the actions.

We note that M may be empty and that often the fault masking techniques
(for example a Triple Modular Redundancy - TMR) could be expressed as a con-
text which takes only one argument, the failing system, and generates the required
number of instances of the argument with appropriate renaming of the actions. The

distinction among the arguments is more general, since it allows us to specify in the
same way also fault tolerance techniques based on design diversity, in which instead
of replicas, variants are used, each of which corresponds to a particular specification
of the system.

Finally, if error detection is applied, different actions can be used to distinguish
various classes of errors, and the error recovery algorithm followed can be modelled
in the specification in a similar way.

3.4 Modelling fault assumptions

Assumptions on how faults are supposed to occur in the system can be specified by
a further process, the fault assumption process, that is added to the specification by
the parallel composition operator with synchronisation on the actions corresponding
to faults. The fault assumption generally limits the number of fault occurrences.
Similarly to the fault assumption process, a process named recovery assumption pro-
cess can be included in the specification to express constraints on the recovery.

Example — Figure 6 reports the specification of the duplicated version with com-
parison of the system contr_gate p under the fault assumption that at most one
permanent fault may occur in one of the replicas. a

2 p_1

?f_p

?f_t

lon_p

loff_p

lundefined_p
?s_off_p

?s_on_p

contr_gate_P

?on_p_1
2off_p_1

2undefined_p_1

comparator

2t 1

lon_p

1off p Q O
lundefined_p

lundefined_p

contr_gate_P

?on_p_2
?0ff_p_2

2undefined_p_2

2% 12
?f,p,z‘l" FP2

Figure 6: Fault tolerant system

3.5 Generation of the global system model

As we will see in the next section the automatic verification of properties of the
fault tolerant system requires the generation of the state machine representing its
overall behaviour (global LTS). This generation can be automatically performed by
means of tools based on the standard operational semantics rules of process alge-
bras [9]. In particular, we refer here to the tools available inside the JACK [10]
environment. Every state of the global LTS represents the combined current states
of the subsystems components. It is at this stage that the so called state explosion
problem, which we will discuss later, occurs.

Ezample — A part of the global LTS for the fault tolerant system in figure 6 is
reported in figure 7, where INITIAL is the initial state and states with a double cir-

cle (except INITIAL) represent unexplored states. The global LTS has 100 states. O

1S off_ p

tau

s’on p “Epy

\FPl \@
o

Figure 7: A part of the global LTS of the system in figure 6

4 Properties for embedded fault tolerant systems

Temporal logic can be used to express properties of a system [11]. We use a temporal
logic in agreement with the selected specification formalism to formalise system’s
properties.

4.1 The logic

The particular temporal logic we use is called ACTL (Action-based Computation
Tree Logic) [12], which is an action-based version of the branching time temporal
logic CTL [2]. ACTL has the advantage that, since it is based on actions rather than
states, it is naturally interpreted over LTSs. Moreover, this logic is more expressive
than other action-based logics, like Hennessy-Milner logic [13].

The formulae of ACTL are action formulae, state formulae and path formu-
lae. An action formula permits expressing constraints on the actions that can be
observed. A state formula gives a characterization about the possible ways an exe-
cution can proceed after a state has been reached. A path formula states properties
of an execution. The truth or falsity of a formula refers to a satisfiability relation
over LTSs, denoted |=.

The informal semantics of the used ACTL operators is shown in Table 1 (the
formal one is given in [12]). In the table, a is an action belonging to the set Act
of actions executable by the system, ~ is the negation operator, E and A are the
existential and universal path quantifiers, while U is the until operators.

4.2 Formalising properties

System safety properties are usually invariant, so the formulae we want to check are
of the form AG¢, which means that ¢ should hold in every state. We can formalize
the typical properties we wish to prove of a fault tolerant system along the following
schemes:

e Correctness

AG FCorr, where FCorr expresses a correctness condition

10

Action formulae

X = true any observable action
@ the observable action «
~ X any observable action different from y
x| X either x or '
State formulae
¢ = true any behaviour is possible
~ ¢ ¢ is impossible
¢ & ¢ ¢ and ¢'
E~ there exists an execution in which ~
A~y for every execution y
<a>o there exists a next state reachable with «, in which ¢
[a]¢ for all next states reachable with «, ¢ holds
Path formulae
vy iu=Go at any time ¢
Fo there is a time in which ¢
[{x}U{x'}¢'] at any time x is performed and also ¢,

until ' is performed and then ¢’

Table 1: Syntax and informal semantics of the used ACTL operators.

e Fault tolerance

AG [fault] FCorr
o Fail-stop
AG [fault] FTerm, where FTerm expresses the termination of the system
o Fail-silence
AG [fault] FCorrOmiss, where FCorrOmiss expresses the correctness,
apart from omission failures
o Fail-safe

AG [fault] ~“FUnsafe, where FUnsafe expresses an unsafe behaviour

Clearly, the formulae Fcorr, Fterm, FcorrOmiss and Funsafe are strictly de-
pendent on the functionality of the system.

We have then to note that, although safety properties are of main concerns, the
logic offers the possibility of checking other desirable properties as well. These can
be in general expressed as AF or EF formulae.

Example — Correctness property. The contr_gate_p system whose model is shown
in figure 3 always shows a state equal to the last received set state to signal. For
the 7s_on_p signal, this is expressed by the ACTL formula:

AG[?s_on_plA['on_p {true} U {?s_off_p} truel
The formula states that the system, after being in the state on cannot be into

the state off until a set to off signal has been received.

Fuil-safe property. The failing contr_gate_p system whose model is shown in figure
5 satisfies the property that a state equal to the last received set state to signal or
the state undefined is shown. For the ?s_on_p signal, this is expressed by the ACTL
formula:

11

AG[?s_on_p]A[~'!off_p {true} U {?s_off_p} truel

Fault tolerance property. The fault tolerant configuration in figure 6 whose model is
shown in figure 7 tolerates one faulty replica. The fault assumption process in the
same figure limits the occurrence of faults to at most one permanent fault in one
of the replicas. The property can be written as: after a fault, the system always
shows a state equal to the last received set state to signal. For the ?s_on_p signal,
this is expressed by the ACTL formula:

AG[FP1]AG[?s_on_p]A[lon_p {true} U {7?s_off_p} true] &
AG[FP2]AG[?s_on_p]A[!on_p {true} U {?s_off_p} truel

4.3 Properties verification

The model checker accepts a finite state machine (LTS) and an ACTL formula [14].
If the model checker determines the formula is true, then the property holds in the
LTS and also in the system specification.

The time complexity of traditional model checking algorithms, which are used
in the model checker of the JACK environment, is linear in the size of the global
LTS and in the size of the ACTL formula (the number of different subformulae that
can be syntactically recognized in it) to be checked.

The model checker provides also the counterexample facility. If we check that
our specification has a certain property, using this facility we can discover the paths
that make such a property true or false on the model.

Example — Consider the failing contr_gate_p system and the property stating that
every execution shows the value on at least once:

AF<!on_p> true

The formula is obviously false on the LTS in figure 5, for every path which does
not include the ?s_on_p action.
We obtain the following trace from the counterexample facility:

|= AF <!on_p> true

The formula is FALSE in state 3:
|= why

(<!"on_p"> true)

is false in state 3

UNDEFINED - 7f_p - FAULTY (stop)
END

5 Dealing with state space explosion problem

The main difficulty in using in practice formal verification methods is due to the
limits imposed by the size problem, that even challenges more advanced model
checking tools. The use of techniques such as decomposition and abstraction, to
overcome the state space explosion problem at the specification level, are only par-
tially successful, and require a great deal of expertise which industries often do not
have. Thus current techniques have failed to arrive at the level of usability required
by the industrial applications.

12

A solution could be the development of domain-specific optimization of model
checking algorithms. In particular, some specific features of safety critical systems
may be searched that can be used to optimize the verification algorithms. As
an example of possible domain specific optimizations, Eisner [15] has shown how
the safety critical characteristics of robustness and locality can be used to avoid
difficult fixed-point calculations in symbolic model checking when applied to railway
interlocking.

We show here that some characteristics of embedded fault tolerant systems, such
as redundancy and static configuration parameters provide opportunities to limit
a priori the state explosion problem, even if adopting traditional model checking
algorithms.

5.1 Redundancy

5.1.1 Phased structure of fault tolerant systems and algorithms

The formal modelling of a fault tolerant system can be often structured as a net-
work of replicas, each divided in phases of useful work; at the end of each phase the
replicas synchronize to maintain consistency through exchange of messages.
Indeed, a system employing redundancy is composed by a number of identical mod-
ules which compute the same results. At the architecture level such modules are
often, in today’s embedded systems, independent processors. These modules have
to synchronize periodically in order to maintain their consistency, and the synchro-
nizations are usually combined with some comparison or voting operation, aimed to
detect or mask errors. A redundant system is therefore a distributed system that
uses specialized interaction protocols. Usually such protocols have to ensure some
notion of consistency even in presence of faults, and trigger appropriate corrective
actions. The formal verification of such protocols is therefore an important step
in the establishment of the overall correctness and safety of the system even in
presence of faults.

A common structure of such a system can be represented (in the case of du-
plication redundancy) as shown in Figure 8, as a network of automata; each LTS
synchronizes with the other ones at the end of each phase. In general, more than
a single synchronization action is involved at the end of a phase. Here we abstract
such a complex synchronization protocol with only a single action, without affecting
the validity of the following discussion.

The behaviour of the overall system is obtained by the parallel composition of
the replicas. Due to the synchronization at the end of each phase, the obtained
global LTS appears to be structured in phases as well; each phase of the overall
system is actually generated by the interleaving of the corresponding phases of
the different replicas, while each phase is terminated by the synchronization of the
replicas, leading to a single global state from which the next phase begins (see Figure
9, where Phase i||Phase i represents the LTS built by interleaving two replicas of
Phase).

If we call S the size of the state space of a replica, the cardinality of the state
space of the interleaving of n replicas has normally an upper bound of S™. Due to
the phased structure, if we denote by S; the size of the state space of the i-th phase,
the upper bound for S is determined by the size of the interleaving of each phase,
that is: S1™ 4+ S2™ + ... + S, which is significantly lower.

5.1.2 System replication

The regular structure of a redundant system may be exploited to contain state ex-
plosion with the help of established techniques, such as symmetries and reduction

13

endphasel! endphasel!

endphasel!

endphase2 ! endphase2 !

endphase2! . endphase2!

endphasem! endphasem!

endphasem! endphasem! endphasem! endphasem!

Figure 8: The phased structure

preorders. Using symmetries, as proposed by Emerson e. g. in [16], the number of
states is reduced by identifying those states which coincide up to a permutation of
the system components. Reduction preorders [17] employ the independency of the
property to be checked from the order in which interleaved processes are actually
executed, to select just one order and hence only a subset of the state space to check
its validity.

In the case of redundancy, replicas can be considered as largely independent one
from another. We can therefore avoid to generate the complete interleaving of the
replicas in the generation of the model. We can select only those particular execu-
tions in which all the transition contributed to the global LTS by the first replica
are executed first, then the second replica starts, and so on.

The selection has however to take into account the interactions between the replicas.
In the case of reduction preorder applied to phase structured systems, for exam-
ple, the corresponding phases of the replicas are completely independent, since the
replicas interact only at the synchronization points. Hence, the global state space
of a phase ¢ of the global LTS can be reduced to be of the order of n x S;, and
therefore the global state space of the overall algorithm can be reduced to n * S.

5.1.3 Fault and failure modelling

Modelling a fault tolerant system means also to include in the model a description
of the behaviour of the system in case faults occur, in order to be able to prove
fault tolerance properties.

The modelling of fault occurrences and of relative corrective actions is a major
source of complexity; moreover, they tend to break independency and similarity of
replicas.

However, it is important to notice that it is often not interesting to prove the safety
critical properties in any general fault scenario, but it is enough to consider only
some restricted fault scenarios. Typically, in a redundant system, assumptions are
made on the maximum number of admitted faulty replicas. An accurate definition

14

Phasel||Phase1

Phasem || Phasem

endphasem! & endphasem!

T

Figure 9: The phased structure

of the fault assumptions, which is usually an important part of the validation of
safety critical systems, helps in the containment of state space explosion.

Consider for example a case in which a replica is modelled by a sequence of
phases, and in each of these pahses, say the i—th, we can recognize N; states reach-
able in absence of faults and F; states which are reached within a failure mode (in
reference to previous notations, we have therefore that S —i = N —i+ F —i). If
only a single fault is allowed to occur, say at the j—th phase, the total number of
states is bound by the sum: Ni™ + ...+ N;_1" + F; * N;" 7'+ F, « N," ', if we
are not using reduction preorder.

The combined use of all the techniques we have shown can reduce dramatically
the expected state explosion of a redundant system.

5.2 Static configuration parameters

Generally, the original semi-formal specification of an embedded system takes into
account some attributes that can be considered as static configuration parameters
and describe the particular type entity that is controlled. As an example, a typical
attribute for a level crossing entity says whether it is on the mainline or on a
parking area. The semi-formal specification considers these attributes as if they
were variables. This would contribute unnecessarily to the growth of the number
of states of the model. Therefore, in the development of the formal specification we
can take the configurations each at a time. A safety property is satisfied if the the
property is verified in all possible configurations.

5.3 Testing signal values

The following technique can be applied for the case in which an entity sequentially
tests several signals in order to execute an operation with success. The failure of
any of these tests leads to the failure of the operation itself. If the safety properties
do not involve actions related to the tested signals, the actions corresponding to a

15

not_ver_signal1?
ver_signal1?

not_ver_signal2? not_ver_signals?

ver_signal2? ver_signals?

ver_signal3? not_ver_signal3?

@ (b)

Figure 10: (a) A fragment of a general operation. (b) The fragment after the
reduction of the sequence of tests.

sequence of tests can be modelled as a non deterministic choice between the success
and the failure of the tests.

Let us consider, for example, the case in which a system executes sequentially a
test on three different signals represented by the LTS in figure 10 (a). The failure
of any test leads to state C, while the success of all the tests leads to state B. We
can rewrite the specification as shown in figure 10 (b), in which the sequential tests
are substituted by a simple abstract test which may fail, leading to state C; or it
may be executed with success leading to state B.

6 Case studies

We have used our analysis technique to specify and verify two fault tolerant system
designs. The first study is the specification and verification of the safety require-
ments of a Railway Interlocking System developed by Ansaldo Trasporti [18]. The
second one is the specification and verification of fault tolerant mechanisms de-
fined inside the project GUARDS (Generic Upgradable Architecture for Real-Time
Dependable Systems) [19]. Both studies show that:

e the application of model checking formal verification methodology is feasible
and well accepted in the industrial context of embedded fault tolerant systems;

e the formalization process strictly depends on the application tipology. Some
standard rules for the passage from the semi-formal description of the system
to its formal specification can be successfully applied in the field of embedded
fault tolerant systems. This passage is generally recognized one of the critical
points of the introduction of formal methods in the software development
cycle;

e the reduction in the state space due to the phased structure of redundant sys-
tems makes the model checking approach viable in this domain of application;

e the use finite state machine as specification language has the advantage of
ensuring the adherence of the produced formal specification to the original
semi-formal one.

6.1 Railway Interlocking System

The first case study is a part of a railway signaling interlocking control system de-
veloped by Ansaldo Trasporti. The system operates within a complex environment,
interacting with a number of different actuators and sensors, and human operators.

16

Sensors convey data concerning the physical status of the environment, actuators al-
low for the control of the operations and the status of the external environment. An
operator may interact with the system sending commands and selecting operation
modes. The central Safety-nucleus is based on a TMR, configuration of computers
implementing a two out of three voting scheme, with automatic exclusion of the
unit in disagreement with the other two.

The scope of this control system is that of permitting a safe passage of trains
by adjusting the setting of signals on the railway line. The control system is rep-
resented by a set communicating processes, modelling logical and physical entities.
The control of the entities is realised by operations which act on variables. Of-
ten variables represents signals whose domain of values is very limited or a limited
number of values are of interest. The specification and verification of the system is
reported in [18].

The translation from the semi-formal to the formal specification was straight-
forward as shown in figure 11 and figure 12.

Each operation in the Ansaldo semi-formal specification can be described in
three main parts: some conditions on variables must be satisfied before continuing
the operation (“VERIFY THAT” part). The operation is performed by modifying
the value of some common variables (“ASSIGN” part). An “EXCEPTIONS” part
specifies what should be done if a “VERIFY THAT” condition is not satisfied.

Automatic closure request
I. VERIFY THAT
a. the command_state variable has the value "automatic";
b. the lcc_state variable has a value not equal to
"request to close".

IT. ASSIGN
- the value "manual" to the command_state variable
EXCEPTIONS

lal Ibl command is lost; no recovery actioms.

Figure 11: Semi-formal specification

let rec {
S = start_op?: VERIF_A
and
VERIF_A = automatic? : VERIF_B +
manual? : EXC
and
VERIF_B = closure_req? : EXC +
open_req? : ASSIGN
and
ASSIGN = s_manual! : F
and EXC = tau : F
and F = end! : S
} in S;

Figure 12: Formal specification

17

6.1.1 Reduction of the number of states

Using the techniques presented above for testing signal values and combining the
replicas of the TMR configuration, we have obtained a model of the bahaviour of
the system composed by one replica of one million of states. The static parameters
allowed a reduction in the number of states of this global LTS from about one
million states to 77294 states.

6.1.2 Safety requirements verification

A typical safety requirement for an interlocking system is that if a train is entering
a track containing a level crossing, if the proceed signal is sent to the train at the
beginning of the track then the position of the level crossing is closed. This property
can be expressed more precisely as a proposition on the model of the behaviour of
the system as follows: in any state of the model if the position of the level crossing
is not equal to closed, then there is not an execution in which the proceed signal is
sent until the position of the level crossing is equal to closed.

This expression can be formalised as a formula in the ACTL logic as follows. Let
raise_shunt_sign be the action corresponding to the proceed signal and let on_pos,
off pos and undefined pos be the different positions that the level crossing can
assume:

AG ([“!off_pos]
("Eltrue {~ 7s_off_pos} U (<!raise_shunt_sign> true)]))

6.2 Inter-consistency mechanism

The GUARDS project has produced a generic architecture for safety critical systems
[19] designed to be instantiated to support different critical applications. Model
checking techniques have been used in the project to validate the Inter-Consistency
mechanism which is the basis of the ad hoc defined fault tolerant mechanisms.

Interactive consistency focuses on the problem of reaching agreement among
multiple processors in presence of faults (also known as the ”Byzantine Generals
problem” [20]). The principal difficulty to be overcome in achieving interactive
consistency is the possibility of conflicting values sent by faulty processors.

The Inter-consistency mechanism uses the ZA Byzantine Agreement algorithm
described in [21]. According to the GUARDS architecture, the Inter-Consistency
mechanism must guarantee consistency among three or four processors. The al-
gorithm is synchronous and uses several rounds of authenticated encoded message
exchange during which processor P tells processor Q what value it has received from
processor R and so on. Each node has at the end a voted knowledge on each value
hold by every other node. The assumption of message authentication requires that
faulty processors do not make undetectable modifications to messages as they are
relayed from one processor to another. The mechanism is a composition of trans-
mitter and receiver protocols: for example, in the four nodes case P, Q, R and S, each
node includes one transmitter protocol and three receiver protocols. The pseudo-
code for the transmitter node P is given in Table 2, where vp is the private value of
the node P.

The algorithm is modelled as a network of four communicating processes, each
modelling one of the four nodes. Moreover, the algorithm has a phased structure:
each of the previous processes is described by a network communicating processes
modelling the different phases of the algorithm and the local variables. We refer
the reader to [22] for the complete specification and verification work.

The translation from the speudo-code to the formal specification is straightfor-
ward. For example, assuming two different values 0 and 1, the process modelling
the phase 2 of node P is expressed by the following CCS/Meije term:

18

phase 1: phase4:
vp:p := p_encode(vp); p2 := p_decode(msg2);

p-broadcast (vp:p); msg3 := q_receive();

phase2: phaseb:

msgl := s_receive(); p3 := p-decode(msg3);
vp(p) := vote(pl, p2, p3);

phase3:

pl := p_decode(msgl);

msg2 := r_receive();

Table 2: The ZA algorithm of transmitter node P

Table 3: Number of states for the GUARDS Byzantine Agreement.

Model of: states
A single non faulty node 428
Network of 4 non faulty nodes 3479

Network with an arbitrarily faulty node and a symmetric faulty node 109613
Network with an arbitrarily faulty node, and authentication violation 122767

phase2P = {

RECEIVE = ssendp_encp_07 : s_mlp_encp_0! : END +
ssendp_encp_17 : s_mlp_encp_1! : END +
ssendp_omission? : s_mlp_omission! : END

and

END = startphase3! : stop
} in RECEIVE;

The node upon receiving a message from S (or detecting an omission fault),
saves the message into the variable named mip. Then it is ready to execute phase
3 of protocol, and signals this by the startphase3! action, on which all the other
nodes have to synchronize.

6.2.1 Reduction of the number of states

Table 3 presents the size of the state space of the single node, and that of the network
composed of four nodes under different fault assumptions. The fault assumptions
have been modelled by means of specific processes which constraint the occurrences
of faults.

The table clearly shows:

e the fact that the size of the state space is largely below the fourth power of
the size of the state space of a single node;

e the increase of the state space with the generality of the fault assumptions.

6.2.2 Agreement and Validity properties verification

The classical Agreement and Validity properties must be satisfied to reach consis-
tency:

Agreement: if a pair of receivers are non faulty, then they agree on the value
ascribed to the transmitter.

19

Validity: if the receiver P is non faulty, then the value ascribed to the transmit-
ter by P is the value actually sent if the transmitter is non faulty or
symmetric faulty; or the distinguished value error, if the transmitter
is manifest faulty.

The formalisation of these properties as ACTL formulae is:
Agreement:
for any execution of the processes, the nodes eventually agree on the value 1
(actions !vp_ofp_eqto_1, !'vp_ofq_eqto-1, !vp_ofr_eqto_1, !vp_ofs_eqto_1) or
the nodes eventually agree on the value 0 (actions !vp_ofp_eqto_0, !vp_ofq-eqto.0,
lvpofr_eqto 0, !'vp_ofs_eqto_1).
Validity:
if in any state of the model, it is true that the internal value of the node P is equal
to 1 (action !'psend_vp_1) or 0 (action !psend_vp_0) , then for any execution of the
processes, starting from such a state, the nodes eventually agree on such a value.

Assume S faulty. The combination of the Agreement and Validity properties in
the case of value 1, is expressed by the following ACTL formula:

AG[!'psend_vp_1] (A[true{true}U{!vp_ofp_eqto_1}truel &
Altrue{true}U{!vp_ofq_eqto_1} true] & Al[true{true}U{!vp_ofr_eqto_1} truel)

We applied the model checker tool to prove the invariance of required properties
under given fault assumptions. As expected, we found that in the case of a violation
of the assumption on authentication, even a single faulty node is not tolerated.

7 Discussion and conclusion

In the literature on the formalisation of fault tolerant systems, several works are
based on process algebras and equivalence relations or preorders to verify fault tol-
erant system designs. The major advantage of such approaches is related to the
existence of automatic verification tools. A short survey of such approaches can be
found in [23].

The application of model checking in the field of fault tolerant systems is quite
new. Model checking of properties expressed in modal p-calculus is applied in
[24] to analyse fault-handling mechanisms. The mechanisms are usually modelled
using special-purpose process operators; temporal properties which hold for fault
tolerant mechanisms applied to simple processes are shown to hold as well when the
mechanisms are applied to more complex processes. A fault extends the behaviour
of a system by allowing the fault to occur in any state.

In our model checking approach we have preferred to stick to traditional process
algebras, in order to be able to exploit the powerful verification capabilities offered
by existing verification environments.

We believe that model checking can play a major role in the validation of em-
bedded fault tolerant systems.

Model checkers are ready to be introduced in the industrial development pro-
cess, aside traditional development techniques. Still state explosion represents the
main problem for handling large industrial systems in many fields, but the current
research efforts in search of powerful algorithms are promising. In particular, we
have shown in this paper how the analysis of typical characteristics of fault tolerant
systems can be exploited to tackle state explosion problems.

These results are not depending on the particular formalism chosen to model
fault tolerant systems and can be applied also if diverse redundancy is employed.

20

The ability of using specific techniques to deal with state explosion problem, like
the ones we have shown for redundant systems, provides the opportunity of defining
a specific formal verification process for a given application field, thus decreasing
the need of general verification expertise in industries.

A key-point in the industrial acceptance of model checking is that it relies on
models which are essentially (some variants of) finite-state machines, which are
commonly used in many industrial activities, especially in the safety critical systems
area.

We can observe that railway industries have assessed the introduction of formal
verification by model checking in their development processes before other safety
critical industries, and with a greater success. We can refer to [18, 25, 26] for some
notable examples, but there have been many other published and unpublished work
in this direction.

In railway signalling industry, the safety critical part of a control system is the
so called interlocking logic, whose main aim is to guarantee, through the typical use
of a transition to a safe state (that is, by stopping the trains), that the system does
not enter a critical state. Interlocking logic is usually amenable to be formalized
through the use of state machines, or of first-order logic predicates, and this does
not usually require a large investment in people. Moreover, safety properties to be
proved on the system depend on the combination of values of discrete variables, and
this makes state explosion problems easier to be attacked.

In medical systems, as well as automotive, avionic or space systems, on the other
hand, the safety characteristics of the system are often controlled by sophisticated,
numerical algorithms; therefore, the safety properties depend on the combination
of values of continuous variables with often more stringent real time requirements.
Though specific model checking technologies have been developed to cope with such
systems (such as timed and hybrid model checking), continuous variables and time
add such a complexity to the state space, that current model checking technologies
appear not mature enough for an heavy industrial usage. This difference in the
nature of the controlled process is the responsible for the slower acceptance of
formal verification techniques in these industries. The same delay has been observed,
within the railway industries itself, about the application of model checking to the
verification of on-board equipments, since they introduce dependency from real
quantities (speed, time, etc...) and hence increasing the complexity and the size of
the state space [27].

References

[1] Bowen J, Stavridou V. Safety-critical systems, formal methods and standards.
PRG-TR-5-92, Oxford University Computing Laboratory, 1992.

[2] Clarke EM, Emerson EA, Sistla AP. Automatic verification of finite state
concurrent systems using temporal logic specifications. ACM Transaction on
Programming Languages and Systems, 1986; 8(2): 244-263.

[3] Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ. Symbolic model
checking: 10%° states and beyond. Information and Computation, 1992; 98(2):
142-170.

[4] Bryant RE. Graph based algorithms for boolean function manipulation. IEEFE
Transaction on Computers, 1986; C-35(8).

21

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Laprie JC (Ed.). Dependability: basic concepts and terminology. Dependable
Computing and Fault-Tolerant Systems, vol. 5, Springer-Verlag, 1992.

7100: Specification and description language SDL. ITU-T, June 1994.

Austry D, Boudol G. Algebre de processus at synchronisation. Theoretical
Computer Science, 1984; 1(30).

Roy V, De Simone R. AUTO and Autograph. Proceedings of the Workshop on
Computer Aided Verification, Lecture Notes in Computer Science 531, 1990,
65-75.

Milner R. Communication and concurrency. Prentice-Hall International, En-
glewood Cliffs, 1989.

Bouali A, Gnesi S, Larosa S. The integration project for the JACK environ-
ment. Bulletin of the EATCS, 1994; 54: 207-223.

Manna Z, Pnueli A. The temporal logic of reactive and concurrent systems -
specification. Springer-Verlag, 1992.

De Nicola R, Vaandrager FW. Actions versus state based logics for transi-
tion systems. Proceedings Fcole de Printemps on Semantics of Concurrency,
Lecture Notes in Computer Science 469, Springer, Berlin, 1990, 407-419.

Hennessy M, Milner R. Algebraic laws for nondeterminism and concurrency.
ACM, 1985; 32(1): 137-161.

Fantechi A, Gnesi S, Pugliese R, Tronci E. A symbolic model checker for ACTL.
Proceedings FM-Trends’98: International Workshop on Current Trends in Ap-
plied Formal Methods, Lecture Notes in Computer Science 1641, Germany,
1998.

Eisner C. Using symbolic model checking to verify the railway stations of
Hoorn-Kersenboogerd and Heerhugowaard. Proceedings 10th IFIP WG 10.5
Advanced Research Working Conference, CHARME ‘99, Germany, 1999.

Emerson EA, Sistla AP. Symmetry and model checking. Proceedings Com-
puter Aided Verification’93, Lecture Notes in Computer Science 697, Springer,
Berlin, 1993.

Holzmann GJ, Peled D. An improvement in formal verification. Proceedings
FORTE 1994 Conference, Bern, Switzerland, 1994.

Bernardeschi C, Fantechi A, Gnesi S, Larosa S, Mongardi G, Romano D. A
formal verification environment for railway signaling system design. Formal
Methods in System Design, 1998; 12: 139-161.

Powell D, Arlat J, Beus-Dukic L, Bondavalli A, Coppola P, Fantechi A, Jenn
E, Rabjac C, Wellings A, GUARDS: a generic upgradable architecture for
real-time dependable systems. IEEE Transactions on Parallel and Distributed
Systems, 1999; 10(6), 580-599.

Lamport L, Shostak R, Pease M. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 1982; 4(3): 382-401.

Gong L, Lincoln P, Rushby J. Byzantine agreement with authentication: ob-
servations and applications in tolerating hybrid and link faults. Proceedings
5th Conference on Dependable Computing for Critical Applications, (DCCA-
5), Urbana-Champaign, USA, 1995.

22

[22] Bernardeschi C, Fantechi A, Gnesi S. Formal validation of fault tolerance
mechanisms inside GUARDS. Proceedings SAFECOMP’99, Toulouse, Lecture
Notes in Computer Science 1698, 1999.

[23] Bernardeschi C, Fantechi A, Simoncini L. Formally verifying fault tolerant
system designs. The Computer Journal, 43(3), 2000.

[24] Bruns G, Sutherland I. Model checking and fault tolerance. Proceedings 6-th
International Conference on Algebraic Methodology and Software Technology,
Lecture Notes in Computer Science 1349, Sydney, Australia, 1997, 45-59.

[25] Cimatti A, Giunchiglia F, Mongardi G, Romano D, Torielli F, Traverso R. For-
mal verification of a railway interlocking system using model checking. Formal
Aspects of Computing, 1998; 10(4).

[26] Fokkink WJ, Hollingshead PR. Verification of interlockings: from control tables
to ladder logic diagrams. J.F. Groote, S.P. Luttik and J.J. van Wamel, eds.
Proceedings 3rd Workshop on Formal Methods for Industrial Critical Systems,
FMICS’98, Amsterdam, Stichting Mathematisch Centrum, 1998, 171-185.

[27] Damm W, Klose J. Verification of a radio-based signaling system using the
STATEMATE verification environment. Formal Methods in System Design,
2001; 19(2).

23

