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Abstract

In this paper we show how embedded fault tolerant systems can be anal�

ysed by model checking formal veri�cation technique� We �rst review how

formal methods have so far been applied in the development of fault tolerant

systems� then we discuss the critical points for the success of the introduction

of model checking technique in such a �eld� �nally we present a modelling ap�

proach suitable for model checking fault tolerant systems under di�erent fault

scenarios� The approach is included in a general development framework that

has been proved to be usable for the veri�cation of a railway interlocking

system and fault tolerant mechanisms�

� Introduction

In the development of embedded computer
controlled systems� a combination of the
methods of fault prevention� fault tolerance� fault removal and fault forecasting are
used in order to achieve high dependability� In particular� it is commonly agreed
that a viable means to reduce the failure rate of a program is the use of fault
avoidance in the form of formal methods in conjunction with other techniques ����
The application of formal methods in the rigorous de�nition and analysis of the

functionality and the behaviour of a system� promises the ability of showing that
the system is correct�
Given such a promise� that is already out since several years� it is astonishing to

see how little formal methods are actually used in the safety critical system indus

try� though the use of formal methods is increasingly required by the international
standards and guidelines for the development of safety critical computer
controlled
systems�
Industrial acceptance of formal methods is strictly related to the investment

needed to introduce them� to the maturity of tool support available� and to the
easiness of use of formal methods and tools�
Nowadays� the industrial trend is directed to the adoption of formal veri�cation

techniques to validate the design� integrating them within the existing development
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process� Industries are more keen to accept formal veri�cation techniques assessing
the quality attributes of their products� obtained by a traditional life cycle� rather
than a fully formal life cycle development� due to the lower training and innovation
costs of the former�
Several approaches to the application of formal methods in the development

process have been proposed� di�ering for the degree of involvement of the method
within it� Starting from rigorous speci�cations� formal methods can be used for the
derivation of test cases� or as a validation technique aimed to prove that the spec

i�cation satis�es the requirements� or as an auxiliary technique in the automated
generation of code�
Formal veri�cation methods based on model checking work on a �nite state

representation of the behaviour of the system� Veri�cation is usually carried out by
checking the satis�ability of some desired properties formalized as logical formulae
over the model of the system by model checking algorithms� As an example� safety
requirements may be expressed as temporal logic formulae and may be checked on
the model of the system� This provides a direct automatic veri�cation method of
system properties� unfortunately� this approach su�ers of the so called �State Space
Explosion� problem� systems composed of several subsystems can be associated to
a �nite state model with a number of states which is exponential in the number of
the component subsystems� Moreover� systems which are highly dependent on data
values share the same problem� producing a number of states exponential in the
number of data variables� Hence� traditional model checking techniques ���� have
shown themselves not to be powerful enough to cope with many �real� systems�
when their models are larger than ������ states�
However� recent advances in model checking techniques� have managed to deal

with very large state spaces by the use of symbolic manipulation algorithms inside
model checkers� the most notable example is the SMV model checker ���� In SMV
the transition relations are represented implicitly by means of Boolean formulae and
are implemented by means of Binary Decision Diagrams �BDDs� �
��� This usually
results in a much smaller representation for the systems� transition relations� thus
allowing the maximum size of the systems that can be dealt with to be signi�cantly
enlarged�
Embedded computer
controlled systems often include fault tolerance techniques�

Fault tolerance is the property of a system to provide� by redundancy� a service
complying with the speci�cation in spite of faults occurred or occurring ���� A
failure of a system occurs when the behaviour of the system �rst deviates from
that required by the speci�cation� The formalization of fault tolerance includes
modelling faults and failures� as well as fault tolerance schemes�
In this paper we present an approach suitable for formally studying the be


haviour of a fault tolerant system under di�erent fault scenarios� The veri�cation
of fault tolerance properties is based on model checking� We discuss model checking
and its application to fault tolerant systems� and we show how particular charac

teristics of this class of systems allow the state explosion problem to be tackled�
The paper is organized as follows� Section � reviews model checking application

to computer
controlled systems� In section � we present our technique for modelling
embedded fault tolerant systems� Section 
 review fault tolerant systems properties�
their formalisation and veri�cation� Section � deals with the characteristics that
make model checking techniques applicable in this �eld� Section � reports two case
studies of fault tolerant systems and their properties� In the �nal Section � we give
some concluding remarks about future research�
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� Model Checking

Model checking is a formal veri�cation technique that� literally� means �Checking
�properties on� correctness of� a Model� of a system ���� Actually� we can �nd two
interpretations of the term Model Checking�

� The �rst� canonical� interpretation� widely adopted in the formal veri�cation
community� denotes as model checking any algorithmic and exhaustive veri�

cation on the model of a system� this includes temporal logic model checking
as well as reachability analysis� equivalence or preorder checking and so on�
in any case� the whole state space is taken into account� If some optimization
which does not actually visit every state is used� it is because some formal
reasoning can be applied to show that what is proved on the reached states
guarantees the result of the veri�cation on the whole state space�

� The second interpretation is more relaxed� and includes a non exhaustive ver

i�cation techniques such as simulation�animation of the model� in which only
some possible executions of the system are analyzed� Some commercial tools�
such as the ones working on SDL���� o�er advanced simulation techniques
that approximate exhaustive search and provide� together with provisions to
cut the state space in depth or width� some techniques to calculate a struc

tural coverage measure of the performed veri�cation with respect to the whole
model� These are very similar to the coverage measures used in software test

ing� As for testing� a ���� coverage measure does not automatically mean
that the veri�cation made is exhaustive� nevertheless the sophisticated tech

niques used for the generation of the state space �which have been mostly
inherited by the research on model checking� may allow exhaustiveness to be
reached in many cases�

Some of these tools are currently used extensively in the telecommunication
industry� and are gaining acceptance also in the safety critical systems �eld�

We advocate however the use of the �rst interpretation that distinguishes �com

plete� formal veri�cation �that algorithmically gives an yes�no result� from �partial�
veri�cation� a complete veri�cation is what is primarily expected by an embedded
fault tolerant system validation technique�
Using model checking� we can study whether a property formalised as a logic

formula holds for a system model� Interesting properties of fault tolerant systems
are�

�� Correctness� The system delivers a correct service�

�� Fault tolerance� Despite of faults� the system delivers a correct service�

�� Fail�silence� The system failures can only be omission failures� that is� failures
to temporarily provide the service to the user of the system�


� Fail�stop� In case of faults� the system terminates the delivery of its service�

�� Fail�safe� The system failure is a transition to a state in which no catastrophic
event can occur�

The properties ����
 and � will have to be studied with respect to speci�c classes
of faults and in presence of given fault occurrences� that is� under well
de�ned fault
assumptions� All the system properties above can be formally speci�ed as logic
formulae in a temporal logic� whose operators permit explicit quanti�cation over all
possible futures�
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� Modelling Fault tolerant Systems

In this section we present how fault tolerant systems can speci�ed in such a way
that the speci�cation can be analysed by model checking technique�
We use the following concepts and terminology�

De�nition � �system� System denotes the speci�cation of the system in absence
of faults�

De�nition � �failure mode� Failure mode denotes the speci�cation of the be�
haviour of system after the occurrence of a fault�

De�nition � �failing system� Failing system denotes the complete speci�cation
of the system considering the possible occurrence of faults� After the occurrence of
a fault� the failure mode is exhibited�

De�nition � �fault tolerant system� Fault tolerant system denotes the speci�
�cation of the behaviour of the system after the application of a fault tolerance
technique�

De�nition � �fault assumption� Fault assumption denotes the assumptions made
on the e�ectively possible occurrence of faults in the system�

Our approach to the formalization of fault tolerant system is based on the fol

lowing points�

� a system is modelled as set of processes which communicate each other and
interact with the environment by executing actions�

� faults are modelled directly by actions of the processes themselves� For each
fault action� the relative failure mode is also speci�ed� We assume faults to be
random events� For example� a crash fault in a state extends the behaviour
of the system by allowing a crash to occur in that state�

� assumptions on the occurrence of faults are included in the speci�cation by
de�ning ad hoc fault assumption processes� This allows the behaviour of the
fault tolerant system to be studied under di�erent fault scenarios�

��� Specifying a system

Two di�erent formalisms are interchangeably used in our approach to specify a
system� the CCS�Meije process algebra or an equivalent graphical notation�

CCS�Meije� The syntax of CCS�Meije ��� permits a two
layered speci�cation
of concurrent systems� as process terms� The �rst layer is related to sequential
processes� the second one to networks of parallel sub
processes� supporting commu

nication and action renaming or restriction�
The syntax relies on the following assumptions�

�� Act� ranged over by � is a set of action names� Such names represent emitted
signals if they are pre�xed by ��� or received ones if they are pre�xed by ����

�� � denotes a special action not belonging toAct� Action � represents an internal
action�

�� Act� � Act � f�g� ranged over by a� b� denotes the full set of actions that a
process can perform�


� X � ranged over by X� is the set of term variables�






The following grammar generates all regular terms� ranged over by R� and all
network terms� ranged over by P �

R ��� stop j X j a � R j R�R j let rec fX � R �and X � R�g in X

P ��� R j P jj P j P n a j P �a�b�

where �� � �� denotes an optional and repeatable part of the syntax�

Informally�

� an inactive process is speci�ed by the stop operator�

� the action pre�x operator �a � R� speci�es the execution of actions in sequence�

� the nondeterministic choice operator �R � R� indicates that a process can
choose between the behaviour of several processes�

� Parallel composition of two processes �P jj P � corresponds to the interleaved
execution of the two processes�

� The restriction operator �P na� indicates that an action can only occur within
a synchronization� This operator is used to specify processes which communi

cate �synchronise on actions�� The restriction operator transforms the couple
of actions executed together into the internal action � �

� The relabeling operator �P �a�b�� transforms an action into another action�

The semantics of CCS�Meije terms is given operationally over Labelled Transi

tion Systems �LTSs��

De�nition � An LTS is a ��tuple A � �X� x�� Act� ���� where� X is a �nite
set of states	 x� is the initial state	 Act is a �nite set of observable actions	 ��
X�Act� �X is the transition relation� In particular� x

a
� x� denotes the transition

from the state x to the state x� by executing action a�

For the complete operational description� we refer the reader to ����

Example � Figure � reports the CCS�Meije speci�cation of a simple system that
mantains the position of a level crossing gate �gate contr p in the following�� The
system is a recursive process with three di�erent states� UNDEFINED P� ON P and
OFF P� The initial state of the process is UNDEFINED P and� in each state� the pro

cess is able to send a signal indicating its current state �on p� in the state ON P�
similarly for the state OFF P and UNDEFINED P�� It can change state by receiving a
signal s on p� �set state on� or s off p �set state o��� Moreover� the initial state
UNDEFINED P is not reachable by the other states�
The speci�cation of the gate contr p system together with the operations of

opening and closure of the level crossing �open op and close op� respectively� is
reported in �gure �� In this case the parallel composition operator is used� The
speci�cation is named net�
While the open op and clos op processes are independent each other� these

processes must synchronise with the gate contr p when checking the level crossing
position or sending a signal to change the level crossing state �actions� on p� off p�
undefined p� s off p and s on p�� �

Graphical notation� The graphical notation we use� de�ned for the ATG tool
���� expresses a sequential process by drawing the LTS representing its behaviour
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gate�contr�p �

let rec �

ON�P � on�p� � ON�P �

s�on�p� � ON�P �

s�off�p� � OFF�P

and

OFF�P � off�p� � OFF�P �

s�off�p� � OFF�P �

s�on�p� � ON�P

and

UNDEFINED�P � undefined�p� � UNDEFINED�P �

s�off�p� � OFF�P �

s�on�p� � ON�P

� in UNDEFINED�P�

Figure �� The gate contr p speci�cation

parse net �

		open�op 

 clos�op� 



gate�contr�P��s�on�p�s�off�p�on�p�off�p�undefined�p�

Figure �� The system net speci�cation

and expresses communicating processes by drawing a network of LTSs� In the �rst
case� circles and edges are used to represent states and transitions� respectively� The
initial state of the LTS is represented by a double circle and labels can be associated
both to edges and to vertices� Communicating processes are represented by boxes
with ports at the border� The ports are the process places of interconnection with
the environment� If two boxes are drawn at the same level� they can synchronize
via the actions they execute by linking the corresponding ports�
The graphical formalism allows the synchronisations between processes to be

observed by setting a label on the edge connecting the corresponding ports� More

over� a multiway synchronisation operator is also available� In this case we can
model the situation in which more than two processes must synchronise on a given
action�

Example � Figures � and 
 report the graphical speci�cation of the the gate contr p

and the net systems� respectively�
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Figure �� A sequential process

By setting the label OFF COMMAND on the edge linking ports �s off p and �s off p
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Figure 
� A network of processes

in �gure� each time processes synchronise by executing �s off p and �s off p� we
observe OFF COMMAND� Similarly for the edge linking the ports �s on p and �s on p�
�

��� Specifying the failing system

Each kind of fault is modelled explicitly as an action� The execution of the action
corresponds to the occurrence of the fault� Let F be the set of actions modelling
faults in the system� The speci�cation of the failing system is obtained by intro

ducing occurrences of possible faults as transitions of the LTSs of the system� If
the action f � F is executed in a state of a subsystem� then the failure mode of the
subsystem is exhibited� otherwise� the subsystem goes on with its behaviour�
We can assume for generality that the failure mode of the process depends on

the point at which a fault occurs during the execution of the system� In most
cases� such high granularity of associating a fault action with a di�erent failure
mode to every state of the system is not necessary� Knowledge of the actual failure
points and failure modes may produce a coarser granularity� Some example in this
direction are�

�� con�ning faults to speci�c subsystems�

�� choose speci�c points in the execution of the subsystems at which a fault may
occur� realizing some form of guided fault injection�

�� associating faults to communications between subsystems�


� assuming that every subsystem exhibits always the same failure mode in every
state� For example it stops�

Example � Figure � models the failing system gate contr p� when two kind of faults
are considered� a permanent fault� modelled by the f p action� and a temporary
fault� modelled by the f t action� The faults can occur at every non
faulty state�
The permanent fault leads the system to a special state named FAULTY P in

which the system shows forever the value undefined to the environment �the ac

tion �undefined p�� The state FAULTY P is a sink state� The temporary fault causes
the system to loose the current correct state� by showing the value undefined until
the reception of a signal setting the position of the level crossing� We assume the
general condition that a fault may occur at any time� An output edge labelled by
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Figure �� The failing system contr gate p

�f p and an output edge labelled �f t exists starting from each state of the entity
except the FAULTY P one� �

��� Introducing fault tolerance

The formalization of a fault tolerance technique requires the use of the parallel
composition� restriction and relabelling operators of CCS�Meije �or graphical com

position� in order to conveniently express composition of redundant replicas and
additional components�
If fault masking is applied� a fault tolerance technique uses replicas of the sys


tem� Formally� each replica is an instantiation of the failing system with an ad
hoc renaming of actions and di�erent names for the fault actions �to distinguish
between occurrences of the same kind of fault in di�erent replicas�� Replicas may
be composed together with some extra standard components added by the fault
tolerance technique �for example� a Voter� for hiding the e�ects of the occurrence
of faults by fault detection or correction�
Error processing is generally achieved through error detection and recovery tech


niques� In this case� the error detection module can be speci�ed as a further process
which interacts with the failing system� checking states of the computation� the re

covery algorithm can be included in the speci�cation of the failing system�
If n is the number of replicas used by the fault tolerance technique� Fj denote

the set of faults of the j
th replica� j � �� � � � � n� The set of faults of the fault
tolerant system is therefore F �

Sn

j�� F
j � Let M � fMi� � � i � kg be the set of

extra components added by the fault tolerance technique�
The application of a fault tolerance technique leads to a network of replicated

processes which includes the replicas and the added components synchronizing in
the speci�c way dictated by the fault tolerance technique �the parallel operator is
left associative��
��� k � � � k �n kM� k � � � kMk� n a�� � � � � nas
where a�� � � � � as are the synchronisation actions� ai �� F � and processes are used

with appropriate renaming of the actions�
We note that M may be empty and that often the fault masking techniques

�for example a Triple Modular Redundancy 
 TMR� could be expressed as a con

text which takes only one argument� the failing system� and generates the required
number of instances of the argument with appropriate renaming of the actions� The

�



distinction among the arguments is more general� since it allows us to specify in the
same way also fault tolerance techniques based on design diversity� in which instead
of replicas� variants are used� each of which corresponds to a particular speci�cation
of the system�
Finally� if error detection is applied� di�erent actions can be used to distinguish

various classes of errors� and the error recovery algorithm followed can be modelled
in the speci�cation in a similar way�

��� Modelling fault assumptions

Assumptions on how faults are supposed to occur in the system can be speci�ed by
a further process� the fault assumption process� that is added to the speci�cation by
the parallel composition operator with synchronisation on the actions corresponding
to faults� The fault assumption generally limits the number of fault occurrences�
Similarly to the fault assumption process� a process named recovery assumption pro�
cess can be included in the speci�cation to express constraints on the recovery�

Example � Figure � reports the speci�cation of the duplicated version with com

parison of the system contr gate p under the fault assumption that at most one
permanent fault may occur in one of the replicas� �
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Figure �� Fault tolerant system

��� Generation of the global system model

As we will see in the next section the automatic veri�cation of properties of the
fault tolerant system requires the generation of the state machine representing its
overall behaviour �global LTS�� This generation can be automatically performed by
means of tools based on the standard operational semantics rules of process alge

bras �	�� In particular� we refer here to the tools available inside the JACK ����
environment� Every state of the global LTS represents the combined current states
of the subsystems components� It is at this stage that the so called state explosion
problem� which we will discuss later� occurs�

Example � A part of the global LTS for the fault tolerant system in �gure � is
reported in �gure �� where INITIAL is the initial state and states with a double cir


	



cle �except INITIAL� represent unexplored states� The global LTS has ��� states� �
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Figure �� A part of the global LTS of the system in �gure �

� Properties for embedded fault tolerant systems

Temporal logic can be used to express properties of a system ����� We use a temporal
logic in agreement with the selected speci�cation formalism to formalise system�s
properties�

��� The logic

The particular temporal logic we use is called ACTL �Action
based Computation
Tree Logic� ����� which is an action
based version of the branching time temporal
logic CTL ���� ACTL has the advantage that� since it is based on actions rather than
states� it is naturally interpreted over LTSs� Moreover� this logic is more expressive
than other action
based logics� like Hennessy
Milner logic �����
The formulae of ACTL are action formulae� state formulae and path formu�

lae� An action formula permits expressing constraints on the actions that can be
observed� A state formula gives a characterization about the possible ways an exe

cution can proceed after a state has been reached� A path formula states properties
of an execution� The truth or falsity of a formula refers to a satis�ability relation
over LTSs� denoted j��
The informal semantics of the used ACTL operators is shown in Table � �the

formal one is given in ������ In the table� � is an action belonging to the set Act
of actions executable by the system� 	 is the negation operator� E and A are the
existential and universal path quanti�ers� while U is the until operators�

��� Formalising properties

System safety properties are usually invariant� so the formulae we want to check are
of the form AG�� which means that � should hold in every state� We can formalize
the typical properties we wish to prove of a fault tolerant system along the following
schemes�

� Correctness

AG FCorr
 where FCorr expresses a correctness condition

��



Action formulae
� ��� true any observable action

� the observable action �
	 � any observable action di�erent from �
� j �� either � or ��

State formulae
� ��� true any behaviour is possible

	 � � is impossible
� � �� � and ��

E� there exists an execution in which �
A� for every execution �
� � 	 � there exists a next state reachable with �� in which �
���� for all next states reachable with �� � holds

Path formulae
� ��� G� at any time �

F� there is a time in which �
��f�gUf��g��� at any time � is performed and also ��

until �� is performed and then ��

Table �� Syntax and informal semantics of the used ACTL operators�

� Fault tolerance

AG �fault� FCorr

� Fail�stop

AG �fault� FTerm
 where FTerm expresses the termination of the system

� Fail�silence

AG �fault� FCorrOmiss
 where FCorrOmiss expresses the correctness


apart from omission failures

� Fail�safe

AG �fault� �FUnsafe
 where FUnsafe expresses an unsafe behaviour

Clearly� the formulae Fcorr� Fterm� FcorrOmiss and Funsafe are strictly de

pendent on the functionality of the system�
We have then to note that� although safety properties are of main concerns� the

logic o�ers the possibility of checking other desirable properties as well� These can
be in general expressed as AF or EF formulae�

Example � Correctness property� The contr gate p system whose model is shown
in �gure � always shows a state equal to the last received set state to signal� For
the �s on p signal� this is expressed by the ACTL formula�

AG��s�on�p�A��on�p �true� U ��s�off�p� true�

The formula states that the system� after being in the state on cannot be into
the state off until a set to o� signal has been received�

Fail�safe property� The failing contr gate p system whose model is shown in �gure
� satis�es the property that a state equal to the last received set state to signal or
the state unde�ned is shown� For the �s on p signal� this is expressed by the ACTL
formula�

��



AG��s�on�p�A���off�p �true� U ��s�off�p� true�

Fault tolerance property� The fault tolerant con�guration in �gure � whose model is
shown in �gure � tolerates one faulty replica� The fault assumption process in the
same �gure limits the occurrence of faults to at most one permanent fault in one
of the replicas� The property can be written as� after a fault� the system always
shows a state equal to the last received set state to signal� For the �s on p signal�
this is expressed by the ACTL formula�

AG�FP��AG��s�on�p�A��on�p �true� U ��s�off�p� true� �

AG�FP��AG��s�on�p�A��on�p �true� U ��s�off�p� true�

�

��� Properties veri�cation

The model checker accepts a �nite state machine �LTS� and an ACTL formula ��
��
If the model checker determines the formula is true� then the property holds in the
LTS and also in the system speci�cation�
The time complexity of traditional model checking algorithms� which are used

in the model checker of the JACK environment� is linear in the size of the global
LTS and in the size of the ACTL formula �the number of di�erent subformulae that
can be syntactically recognized in it� to be checked�
The model checker provides also the counterexample facility� If we check that

our speci�cation has a certain property� using this facility we can discover the paths
that make such a property true or false on the model�

Example � Consider the failing contr gate p system and the property stating that
every execution shows the value on at least once�

AF��on�p� true

The formula is obviously false on the LTS in �gure �� for every path which does
not include the �s on p action�
We obtain the following trace from the counterexample facility�


� AF ��on�p� true

The formula is FALSE in state ��


� why

	���on�p�� true�

is false in state �

UNDEFINED � �f�p � FAULTY 	stop�

END

�

� Dealing with state space explosion problem

The main di culty in using in practice formal veri�cation methods is due to the
limits imposed by the size problem� that even challenges more advanced model
checking tools� The use of techniques such as decomposition and abstraction� to
overcome the state space explosion problem at the speci�cation level� are only par

tially successful� and require a great deal of expertise which industries often do not
have� Thus current techniques have failed to arrive at the level of usability required
by the industrial applications�
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A solution could be the development of domain
speci�c optimization of model
checking algorithms� In particular� some speci�c features of safety critical systems
may be searched that can be used to optimize the veri�cation algorithms� As
an example of possible domain speci�c optimizations� Eisner ���� has shown how
the safety critical characteristics of robustness and locality can be used to avoid
di cult �xed
point calculations in symbolic model checking when applied to railway
interlocking�
We show here that some characteristics of embedded fault tolerant systems� such

as redundancy and static con�guration parameters provide opportunities to limit
a priori the state explosion problem� even if adopting traditional model checking
algorithms�

��� Redundancy

�	�	� Phased structure of fault tolerant systems and algorithms

The formal modelling of a fault tolerant system can be often structured as a net

work of replicas� each divided in phases of useful work� at the end of each phase the
replicas synchronize to maintain consistency through exchange of messages�
Indeed� a system employing redundancy is composed by a number of identical mod

ules which compute the same results� At the architecture level such modules are
often� in today�s embedded systems� independent processors� These modules have
to synchronize periodically in order to maintain their consistency� and the synchro

nizations are usually combined with some comparison or voting operation� aimed to
detect or mask errors� A redundant system is therefore a distributed system that
uses specialized interaction protocols� Usually such protocols have to ensure some
notion of consistency even in presence of faults� and trigger appropriate corrective
actions� The formal veri�cation of such protocols is therefore an important step
in the establishment of the overall correctness and safety of the system even in
presence of faults�
A common structure of such a system can be represented �in the case of du


plication redundancy� as shown in Figure �� as a network of automata� each LTS
synchronizes with the other ones at the end of each phase� In general� more than
a single synchronization action is involved at the end of a phase� Here we abstract
such a complex synchronization protocol with only a single action� without a�ecting
the validity of the following discussion�
The behaviour of the overall system is obtained by the parallel composition of

the replicas� Due to the synchronization at the end of each phase� the obtained
global LTS appears to be structured in phases as well� each phase of the overall
system is actually generated by the interleaving of the corresponding phases of
the di�erent replicas� while each phase is terminated by the synchronization of the
replicas� leading to a single global state from which the next phase begins �see Figure
	� where Phase ijjPhase i represents the LTS built by interleaving two replicas of
Phase i��
If we call S the size of the state space of a replica� the cardinality of the state

space of the interleaving of n replicas has normally an upper bound of Sn� Due to
the phased structure� if we denote by Si the size of the state space of the i
th phase�
the upper bound for S is determined by the size of the interleaving of each phase�
that is� S�

n � S�
n � 



� Sm

n� which is signi�cantly lower�

�	�	� System replication

The regular structure of a redundant system may be exploited to contain state ex

plosion with the help of established techniques� such as symmetries and reduction
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Figure �� The phased structure

preorders� Using symmetries� as proposed by Emerson e� g� in ����� the number of
states is reduced by identifying those states which coincide up to a permutation of
the system components� Reduction preorders ���� employ the independency of the
property to be checked from the order in which interleaved processes are actually
executed� to select just one order and hence only a subset of the state space to check
its validity�
In the case of redundancy� replicas can be considered as largely independent one
from another� We can therefore avoid to generate the complete interleaving of the
replicas in the generation of the model� We can select only those particular execu

tions in which all the transition contributed to the global LTS by the �rst replica
are executed �rst� then the second replica starts� and so on�
The selection has however to take into account the interactions between the replicas�
In the case of reduction preorder applied to phase structured systems� for exam

ple� the corresponding phases of the replicas are completely independent� since the
replicas interact only at the synchronization points� Hence� the global state space
of a phase i of the global LTS can be reduced to be of the order of n 
 Si� and
therefore the global state space of the overall algorithm can be reduced to n 
 S�

�	�	� Fault and failure modelling

Modelling a fault tolerant system means also to include in the model a description
of the behaviour of the system in case faults occur� in order to be able to prove
fault tolerance properties�
The modelling of fault occurrences and of relative corrective actions is a major
source of complexity� moreover� they tend to break independency and similarity of
replicas�
However� it is important to notice that it is often not interesting to prove the safety
critical properties in any general fault scenario� but it is enough to consider only
some restricted fault scenarios� Typically� in a redundant system� assumptions are
made on the maximum number of admitted faulty replicas� An accurate de�nition
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of the fault assumptions� which is usually an important part of the validation of
safety critical systems� helps in the containment of state space explosion�
Consider for example a case in which a replica is modelled by a sequence of

phases� and in each of these pahses� say the i�th� we can recognize Ni states reach

able in absence of faults and Fi states which are reached within a failure mode �in
reference to previous notations� we have therefore that S � i � N � i � F � i�� If
only a single fault is allowed to occur� say at the j�th phase� the total number of
states is bound by the sum� N�

n � 


�Nj��
n � Fj 
Nj

n��



� Fn 
Nn
n��� if we

are not using reduction preorder�

The combined use of all the techniques we have shown can reduce dramatically
the expected state explosion of a redundant system�

��� Static con�guration parameters

Generally� the original semi
formal speci�cation of an embedded system takes into
account some attributes that can be considered as static con�guration parameters
and describe the particular type entity that is controlled� As an example� a typical
attribute for a level crossing entity says whether it is on the mainline or on a
parking area� The semi
formal speci�cation considers these attributes as if they
were variables� This would contribute unnecessarily to the growth of the number
of states of the model� Therefore� in the development of the formal speci�cation we
can take the con�gurations each at a time� A safety property is satis�ed if the the
property is veri�ed in all possible con�gurations�

��� Testing signal values

The following technique can be applied for the case in which an entity sequentially
tests several signals in order to execute an operation with success� The failure of
any of these tests leads to the failure of the operation itself� If the safety properties
do not involve actions related to the tested signals� the actions corresponding to a
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Figure ��� �a� A fragment of a general operation� �b� The fragment after the
reduction of the sequence of tests�

sequence of tests can be modelled as a non deterministic choice between the success
and the failure of the tests�
Let us consider� for example� the case in which a system executes sequentially a

test on three di�erent signals represented by the LTS in �gure �� �a�� The failure
of any test leads to state C� while the success of all the tests leads to state B� We
can rewrite the speci�cation as shown in �gure �� �b�� in which the sequential tests
are substituted by a simple abstract test which may fail� leading to state C� or it
may be executed with success leading to state B�

� Case studies

We have used our analysis technique to specify and verify two fault tolerant system
designs� The �rst study is the speci�cation and veri�cation of the safety require

ments of a Railway Interlocking System developed by Ansaldo Trasporti ����� The
second one is the speci�cation and veri�cation of fault tolerant mechanisms de

�ned inside the project GUARDS �Generic Upgradable Architecture for Real
Time
Dependable Systems� ��	�� Both studies show that�

� the application of model checking formal veri�cation methodology is feasible
and well accepted in the industrial context of embedded fault tolerant systems�

� the formalization process strictly depends on the application tipology� Some
standard rules for the passage from the semi
formal description of the system
to its formal speci�cation can be successfully applied in the �eld of embedded
fault tolerant systems� This passage is generally recognized one of the critical
points of the introduction of formal methods in the software development
cycle�

� the reduction in the state space due to the phased structure of redundant sys

tems makes the model checking approach viable in this domain of application�

� the use �nite state machine as speci�cation language has the advantage of
ensuring the adherence of the produced formal speci�cation to the original
semi
formal one�

��� Railway Interlocking System

The �rst case study is a part of a railway signaling interlocking control system de

veloped by Ansaldo Trasporti� The system operates within a complex environment�
interacting with a number of di�erent actuators and sensors� and human operators�
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Sensors convey data concerning the physical status of the environment� actuators al

low for the control of the operations and the status of the external environment� An
operator may interact with the system sending commands and selecting operation
modes� The central Safety
nucleus is based on a TMR con�guration of computers
implementing a two out of three voting scheme� with automatic exclusion of the
unit in disagreement with the other two�
The scope of this control system is that of permitting a safe passage of trains

by adjusting the setting of signals on the railway line� The control system is rep

resented by a set communicating processes� modelling logical and physical entities�
The control of the entities is realised by operations which act on variables� Of

ten variables represents signals whose domain of values is very limited or a limited
number of values are of interest� The speci�cation and veri�cation of the system is
reported in �����
The translation from the semi
formal to the formal speci�cation was straight


forward as shown in �gure �� and �gure ���
Each operation in the Ansaldo semi
formal speci�cation can be described in

three main parts� some conditions on variables must be satis�ed before continuing
the operation ��VERIFY THAT� part�� The operation is performed by modifying
the value of some common variables ��ASSIGN� part�� An �EXCEPTIONS� part
speci�es what should be done if a �VERIFY THAT� condition is not satis�ed�

Automatic closure request

I� VERIFY THAT

a� the command�state variable has the value �automatic��

b� the lcc�state variable has a value not equal to

�request to close��

II� ASSIGN

� the value �manual� to the command�state variable

EXCEPTIONS


a
 
b
 command is lost� no recovery actions�

Figure ��� Semi
formal speci�cation

let rec �

S � start�op�� VERIF�A

and

VERIF�A � automatic� � VERIF�B �

manual� � EXC

and

VERIF�B � closure�req� � EXC �

open�req� � ASSIGN

and

ASSIGN � s�manual� � F

and EXC � tau � F

and F � end� � S

� in S�

Figure ��� Formal speci�cation
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�	�	� Reduction of the number of states

Using the techniques presented above for testing signal values and combining the
replicas of the TMR con�guration� we have obtained a model of the bahaviour of
the system composed by one replica of one million of states� The static parameters
allowed a reduction in the number of states of this global LTS from about one
million states to ���	
 states�

�	�	� Safety requirements veri�cation

A typical safety requirement for an interlocking system is that if a train is entering
a track containing a level crossing� if the proceed signal is sent to the train at the
beginning of the track then the position of the level crossing is closed � This property
can be expressed more precisely as a proposition on the model of the behaviour of
the system as follows� in any state of the model if the position of the level crossing
is not equal to closed� then there is not an execution in which the proceed signal is
sent until the position of the level crossing is equal to closed�
This expression can be formalised as a formula in the ACTL logic as follows� Let

raise shunt sign be the action corresponding to the proceed signal and let on pos�
off pos and undefined pos be the di�erent positions that the level crossing can
assume�

AG 	 ���off�pos�

	�E�true �� �s�off�pos� U 	��raise�shunt�sign� true�� � �

��� Inter�consistency mechanism

The GUARDS project has produced a generic architecture for safety critical systems
��	� designed to be instantiated to support di�erent critical applications� Model
checking techniques have been used in the project to validate the Inter
Consistency
mechanism which is the basis of the ad hoc de�ned fault tolerant mechanisms�
Interactive consistency focuses on the problem of reaching agreement among

multiple processors in presence of faults �also known as the �Byzantine Generals
problem� ������ The principal di culty to be overcome in achieving interactive
consistency is the possibility of con!icting values sent by faulty processors�
The Inter
consistency mechanism uses the ZA Byzantine Agreement algorithm

described in ����� According to the GUARDS architecture� the Inter
Consistency
mechanism must guarantee consistency among three or four processors� The al

gorithm is synchronous and uses several rounds of authenticated encoded message
exchange during which processor P tells processor Q what value it has received from
processor R and so on� Each node has at the end a voted knowledge on each value
hold by every other node� The assumption of message authentication requires that
faulty processors do not make undetectable modi�cations to messages as they are
relayed from one processor to another� The mechanism is a composition of trans

mitter and receiver protocols� for example� in the four nodes case P� Q� R and S� each
node includes one transmitter protocol and three receiver protocols� The pseudo

code for the transmitter node P is given in Table �� where vp is the private value of
the node P�
The algorithm is modelled as a network of four communicating processes� each

modelling one of the four nodes� Moreover� the algorithm has a phased structure�
each of the previous processes is described by a network communicating processes
modelling the di�erent phases of the algorithm and the local variables� We refer
the reader to ���� for the complete speci�cation and veri�cation work�
The translation from the speudo
code to the formal speci�cation is straightfor


ward� For example� assuming two di�erent values � and �� the process modelling
the phase � of node P is expressed by the following CCS�Meije term�
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phase �� phase��

vp�p �� p encode	vp�� p� �� p decode	msg���

p broadcast	vp�p�� msg� �� q receive	��

phase�� phase��

msg� �� s receive	�� p� �� p decode	msg���

vp	p� �� vote	p�
 p�
 p���

phase��

p� �� p decode	msg���

msg� �� r receive	��

Table �� The ZA algorithm of transmitter node P

Table �� Number of states for the GUARDS Byzantine Agreement�
Model of� states
A single non faulty node 
��
Network of 
 non faulty nodes �
�	
Network with an arbitrarily faulty node and a symmetric faulty node ��	���
Network with an arbitrarily faulty node� and authentication violation ������

phase�P � �

RECEIVE � ssendp�encp��� � s�m�p�encp��� � END 	

ssendp�encp��� � s�m�p�encp��� � END 	

ssendp�omission� � s�m�p�omission� � END

and

END � startphase
� � stop

� in RECEIVE�

The node upon receiving a message from S �or detecting an omission fault��
saves the message into the variable named m�p� Then it is ready to execute phase

 of protocol� and signals this by the startphase
� action� on which all the other
nodes have to synchronize�

�	�	� Reduction of the number of states

Table � presents the size of the state space of the single node� and that of the network
composed of four nodes under di�erent fault assumptions� The fault assumptions
have been modelled by means of speci�c processes which constraint the occurrences
of faults�
The table clearly shows�

� the fact that the size of the state space is largely below the fourth power of
the size of the state space of a single node�

� the increase of the state space with the generality of the fault assumptions�

�	�	� Agreement and Validity properties veri�cation

The classical Agreement and Validity properties must be satis�ed to reach consis

tency�

Agreement� if a pair of receivers are non faulty� then they agree on the value
ascribed to the transmitter�
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Validity� if the receiver P is non faulty� then the value ascribed to the transmit

ter by P is the value actually sent if the transmitter is non faulty or
symmetric faulty� or the distinguished value error� if the transmitter
is manifest faulty�

The formalisation of these properties as ACTL formulae is�
Agreement�
for any execution of the processes� the nodes eventually agree on the value �

�actions �vp ofp eqto �
 �vp ofq eqto �
 �vp ofr eqto �
 �vp ofs eqto �� or
the nodes eventually agree on the value � �actions �vp ofp eqto �
 �vp ofq eqto �


�vp ofr eqto �
 �vp ofs eqto �� �
V alidity�
if in any state of the model� it is true that the internal value of the node P is equal
to � �action �psend vp �� or � �action �psend vp �� � then for any execution of the
processes� starting from such a state� the nodes eventually agree on such a value�

Assume S faulty� The combination of the Agreement and V alidity properties in
the case of value �� is expressed by the following ACTL formula�

AG��psend�vp���	A�true�true�U��vp�ofp�eqto���true� �

A�true�true�U��vp�ofq�eqto��� true� � A�true�true�U��vp�ofr�eqto��� true��

We applied the model checker tool to prove the invariance of required properties
under given fault assumptions� As expected� we found that in the case of a violation
of the assumption on authentication� even a single faulty node is not tolerated�

� Discussion and conclusion

In the literature on the formalisation of fault tolerant systems� several works are
based on process algebras and equivalence relations or preorders to verify fault tol

erant system designs� The major advantage of such approaches is related to the
existence of automatic veri�cation tools� A short survey of such approaches can be
found in �����

The application of model checking in the �eld of fault tolerant systems is quite
new� Model checking of properties expressed in modal �
calculus is applied in
��
� to analyse fault
handling mechanisms� The mechanisms are usually modelled
using special
purpose process operators� temporal properties which hold for fault
tolerant mechanisms applied to simple processes are shown to hold as well when the
mechanisms are applied to more complex processes� A fault extends the behaviour
of a system by allowing the fault to occur in any state�
In our model checking approach we have preferred to stick to traditional process

algebras� in order to be able to exploit the powerful veri�cation capabilities o�ered
by existing veri�cation environments�
We believe that model checking can play a major role in the validation of em


bedded fault tolerant systems�
Model checkers are ready to be introduced in the industrial development pro


cess� aside traditional development techniques� Still state explosion represents the
main problem for handling large industrial systems in many �elds� but the current
research e�orts in search of powerful algorithms are promising� In particular� we
have shown in this paper how the analysis of typical characteristics of fault tolerant
systems can be exploited to tackle state explosion problems�

These results are not depending on the particular formalism chosen to model
fault tolerant systems and can be applied also if diverse redundancy is employed�
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The ability of using speci�c techniques to deal with state explosion problem� like
the ones we have shown for redundant systems� provides the opportunity of de�ning
a speci�c formal veri�cation process for a given application �eld� thus decreasing
the need of general veri�cation expertise in industries�
A key
point in the industrial acceptance of model checking is that it relies on

models which are essentially �some variants of� �nite
state machines� which are
commonly used in many industrial activities� especially in the safety critical systems
area�
We can observe that railway industries have assessed the introduction of formal

veri�cation by model checking in their development processes before other safety
critical industries� and with a greater success� We can refer to ���� ��� ��� for some
notable examples� but there have been many other published and unpublished work
in this direction�
In railway signalling industry� the safety critical part of a control system is the

so called interlocking logic� whose main aim is to guarantee� through the typical use
of a transition to a safe state �that is� by stopping the trains�� that the system does
not enter a critical state� Interlocking logic is usually amenable to be formalized
through the use of state machines� or of �rst
order logic predicates� and this does
not usually require a large investment in people� Moreover� safety properties to be
proved on the system depend on the combination of values of discrete variables� and
this makes state explosion problems easier to be attacked�
In medical systems� as well as automotive� avionic or space systems� on the other

hand� the safety characteristics of the system are often controlled by sophisticated�
numerical algorithms� therefore� the safety properties depend on the combination
of values of continuous variables with often more stringent real time requirements�
Though speci�c model checking technologies have been developed to cope with such
systems �such as timed and hybrid model checking�� continuous variables and time
add such a complexity to the state space� that current model checking technologies
appear not mature enough for an heavy industrial usage� This di�erence in the
nature of the controlled process is the responsible for the slower acceptance of
formal veri�cation techniques in these industries� The same delay has been observed�
within the railway industries itself� about the application of model checking to the
veri�cation of on
board equipments� since they introduce dependency from real
quantities �speed� time� etc���� and hence increasing the complexity and the size of
the state space �����
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