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Abstract

This paper shows how fault tolerant systems can be analysed by model
checking formal verification technique. A modelling approach suitable for
model checking fault tolerant systems under different fault scenarios is pre-
sented. The approach is included in a general development framework that
has been proved to be usable for the verification of a railway interlocking
system and fault tolerant mechanisms.

1 Introduction

The large deployment of computer—controlled systems has raised many concerns
are raised about safety issues when human activities and lifes depend on them. A
combination of fault prevention, fault tolerance, fault removal and fault forecast-
ing techniques are commonly used in order to achieve high degree of dependability.
There not exists, however, a common agreement about a standard method to or-
derly combine these different techniques. Industries, also basing on their different
backgrounds and application fields, adopt different development trajectories, and
the various techniques aimed at enhancing dependability are normally separately
used. Indeed, the combination and integration of so different techniques is still an
open research area.

In this paper, we address the combination of the provision, in the development
of a system, of fault tolerance mechanisms and the use of formal methods, and in
particular formal verification tools. While fault tolerance is achieved through a set
of well-established and commonly adopted techniques, which often exploit hardware
redundancy, formal methods have not gained a wide acceptance as a viable means to
reduce the failure rate of programs, though several success stories have been reported
[5], and international standards and guidelines (e.g. the CENELEC EN50128 guide-
lines for software development in the railway industry [13]) recommend the use of
formal methods in the development of fault tolerant computer—controlled systems.

Nowadays, the industrial trend is directed to the adoption of formal verification
techniques to validate the design, integrating them within the existing development
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Verifica Formale nel Progetto di Sistemi Software ”.



process. Industries are more keen to accept formal verification techniques assessing
the quality attributes of their products, obtained by a traditional life cycle, rather
than a fully formal life cycle development, due to the lower training and innovation
costs of the former.

Following this trend, we propose in this paper the use of a formal verification
technique, namely model checking, to verify the conformance of a design with re-
spect to given fault-tolerance properties, regarding its ability to tolerate faults, such
as:

1. Correctness. The system delivers a correct service (in absence of faults).
2. Fault tolerance. Despite faults, the system delivers a correct service.

3. Fuil-silence. The system failures can only be omission failures, that is, failures
to temporarily provide the service to the user of the system.

4. Fail-stop. In case of faults, the system terminates the delivery of its service.

5. Fail-safe. The system failure is a transition to a state in which no catastrophic
event can occur.

The properties 2,3,4 and 5 will be studied with respect to specific classes of
faults and in presence of given fault occurrences, that is, under well-defined fault
assumptions. The properties informally expressed above can be formally specified
using of some logic formalism; temporal logic, whose operators permit explicit quan-
tification over all possible futures, is a possible candidate. If a formal model of the
system under analysis is done, typically by means of state machines or transition
systems, model checking algorithms can be used to prove that the model of the
system satisfies the properties expressed in a temporal logic [15].

In this paper an approach in the application of model checking to the study
of fault tolerance properties is presented, showing also an experience in the use of
verification tools on case studies concerining real systems, and in addressing the
”State Space Explosion” problem that can arise when a system is composed of
several subsystems. In this case a finite state model with a number of states which
is exponential in the number of the component subsystems can be generated. At a
first sight the presence of redundancy, which is often introduced by fault tolerance
mechanisms, seems to raise the state space explosion problem since it increases,
often duplicating or triplicating, the number of subsystems. In this paper it is
argued that this is not in general true, and that instead some typical redundant
structures can help to contain the state space, and the most suitable techniques to
adopt in order to address this problem are indicated.

The paper is organized as follows. Section 2 reviews related work. Section 3
presents a technique adopted for formally specifying fault tolerant systems. Sec-
tion 4 reviews fault tolerant systems properties, their formalisation and verification.
Section 5 deals with the characteristics that make model checking techniques appli-
cable in this field. Section 6 reports on the application of the proposed formalization
techniques and verification tools to two case studies of fault tolerant systems and
their properties. Section 7 concludes the work.

2 Related work

In the literature on the formalisation of fault tolerant systems, the earlier works
([16, 46]) do not model explicitly the occurrence of faults, but only the failure
behaviour.



Several later works are based on the use of standard process algebras to spec-
ify the behaviour of the system also under fault occurrences; equivalence relations
or preorders are employed to verify fault tolerant system designs. CCS process
algebra and observational equivalence has been first used in [43]. In [23], CCS pro-
cess algebra is used in verifying a distributed control for railway block signalling
system. In [45] and [39] CSP and trace theory is applied. In [41], CSP and asser-
tional techniques are combined to design fault tolerant systems based on dynamic
redundancy. Refinement steps and proof obligations are applied. The major advan-
tage of process-algebra based approaches is related to the existence of automatic
verification tools.

Other works in the literature use instead specialised process algebras: in [32], a
CCS-like calculus for replicated systems is presented. In [18], new process algebra
operators to model faults and failure modes are defined. In [30, 29] a new semantics
for CCS is defined, which is parameterised on the fault assumptions.

Verification of system fault tolerance properties has been addressed both with
model checking and theorem proving techniques.

The theorem proving technique has been applied to study fault tolerance in [25].
The specification language is strongly typed high-order logic, and a theorem prover
allows to generate semi-automatic proofs.

In [34], a calculus for fault tolerance analysis based on TLA, the Temporal Logic
of Actions, is defined. Theorems asserted in the specification are proved using the
method of structured proofs. Simple proofs can be checked mechanically through
the TLP verification system.

In [26] the micro-CRL and a modal logic for this language are used for modelling
a railway interlocking system and their safety properties. Properties are then veri-
fied by transforming the specification in propositional logic and by using a theorem
prover.

Model checking of properties expressed in modal p-calculus on CCS specifi-
cations is first applied in [11] to the verification of fault properties of a railway
interlocking system. In [10] fault-handling mechanisms are modelled using special-
purpose process operators; temporal properties which hold for fault tolerant mech-
anisms applied to simple processes are shown to hold as well when the mechanisms
are applied to more complex processes. The use of modal transition systems is
exploited in [8], where a modal process logic that captures the intention behind
failures is defined. Finally, [9] is a book on the use of CCS for distributed systems
analysis.

The approach presented in this paper applies model-checking to fault tolerant
systems defined using a standard process algebra. Faults are modeled as observable
actions: the observability of fault is not related to the possibility of detection of
faults (fault detection mechanisms usually detect the consequences, rather than
the fault occurrence itself), but rather they enable to clearly distinguish faults
from other internal actions, and to control fault events, so that fault assumptions
modeling is possible. The use of standard process algebras allows already developed
verification tools to be used.

3 Modelling Fault tolerant Systems

This section presents an approach to specify fault tolerant systems so that the
specification can be analysed by model checking technique. The following concepts
and terminology are used:

Definition 1 (system) System denotes the specification of the system in absence
of faults.



Definition 2 (failure mode) Failure mode, denotes the way the system fails, in
terms of the behaviour of the system after the occurrence of a fault.

Definition 3 (failing system) Failing system denotes the complete specification
of the system, including all possible occurrence of faults, and the corresponding
failure modes.

Definition 4 (fault tolerant system) Fault tolerant system denotes the specifi-
cation of the addition of some fault tolerance technique to a failing system.

Definition 5 (fault assumption) Fault assumption denotes the assumptions made
on the effectively possible occurrence of faults in the system.

The approach presented is based on the following points:

e 3 system is modelled as set of processes which communicate each other and
interact with the environment by executing actions.

e faults are modelled directly by actions of the processes themselves. For each
fault action, the relative failure mode is also specified. Faults are modeled as
random events. For example, a crash fault in a state extends the behaviour
of the system by allowing a crash to occur in that state.

e assumptions on the occurrence of faults are included in the specification by
defining ad hoc fault assumption processes. This allows the behaviour of the
fault tolerant system to be studied under different fault scenarios.

3.1 Specifying a system

Two different formalisms are interchangeably used to specify a system: the CCS/Meije
process algebra and an (almost) equivalent graphical notation. The choice of these
formalisms, mainly due to the availability of verification tools, has proven valuable
for their ability of modeling fault assumptions and fault tolerance mechanisms.

CCS/Meije is the subset of Meije process algebra, defined in [1], that corresponds
to the CCS process algebra, following R. Milner [38].

The syntax of CCS/Meije permits a two-layered specification of concurrent sys-
tems, as process terms. The first layer is related to sequential processes, the second
one to networks of parallel sub-processes, supporting communication and action
renaming or restriction.

The CCS/Meije syntax uses a set of labels Act as atomic actions names ranged
over by a, 3, ---; such names represent emitted signals if they are prefixed by the
”I” character, or received ones if they are prefixed by ”?7”. Actions !a and ?a are
called co-actions. 7 denotes a special action not belonging to Act, the unobservable
action used to model internal process actions: Act, = Act U {7}, ranged over by
a,b,- -, denotes the full set of actions that a process can perform.

The syntax of the language is the following:

R == stop | X | a:R | R+R |
let rec {X =R[and X =R] }in X

N
Il

R | P||P | P\a | Pla/f] |
let {X=Pland X =R]} in X

where

e where R is the syntactic category of sequential processes and P is the syntactic
category of networks of parallel processes



[...] denotes an optional and repeatable part of the syntax
e stop is the process without behavior

e a : R is the action prefix operator: the action a is executed and then the
process behaves like R

e X = R bounds the process variable X to the process R

e R+ R is the non deterministic choice operator: a process can choose between
the behaviour of several processes

e The let rec construct allows recursive definitions of process variables

e || is the parallel operator. This operator is used to specify the interleaved
execution of processes and their possible synchronisation when co-actions are
executed.

e P\« is the action restriction operator, meaning that « can only be performed
within a communication. This operator is used to specify processes which
must synchronise on actions !a and ?a. The restriction operator transforms
the couple of co-actions executed together into the internal action 7;

e P[a/f] is the substitution operator, renaming 3 into .

The semantics of CCS/Meije is given operationally over LTSs. An LTS counsists
of a set of states and transitions between states, where a transition corresponds to
the execution of an action of the system. In particular, only finite state LTSs are
considered here, since the two layered syntax of CCS/Meije allows only finite state
processes to be defined?.

Definition 6 An LTS is a 4-tuple A = (Q,q°, Act,,—), where: Q is a set of states;
q° is the initial state; Act is a finite set of observable actions; =C Q x Act; x Q is
the transition relation; an element (r,a,q) €— is called a transition and is written
as v = q. It denotes the transition from the state r to the state q by executing
action a.

Paths over the LTS A are introduced. A sequence 7 = (qo, a0, q1) (¢1,01,¢2) - - -
with (gi,a;,qi+1) €— is called a path from ¢o. The empty path consists of a
single state ¢ € @ and is denoted by ¢. A path that cannot be extended ( i.e., is
infinite or ends in a state without outgoing transitions) is called a full path. The
starting state go of the sequence is denoted by first(w) and the last state of the
sequence, if the sequence is finite, is denoted by last(w). If 7 is an empty path (i.e.
m = q), first(r) = last(m) = q. Concatenation of paths is denoted by juxtaposition:
m = pB; it is only defined if p is a finite path and last(p) = first(f). Let = = pé.
In this case 0 is a suffiz of m and 6 is a proper suffix if p # q.

The Figure 1 shows the structural operational semantics of some CCS/Meije
operators previously described, in terms of LTSs 2.

As an example, consider the specification of a simple system that controls the
position of a level crossing gate p, allowing an operator to start the procedures for
the opening and the closure of the gate. The system is composed of three processes,
the process gate_contr_p (the gate), the process open_p (the opening procedure)

lthe restriction to finite state systems in our opinion does not limit the applicability of the
approach to fault tolerant control systems, since they are usually required to exhibit a finite-state
behaviour even in presence of faults

2CCS/Meije inherits the operational rules of the parallel operator from CCS , whereas the
Meije parallel operator, instead, has an additional rule allowing product of actions that are not
necessarily co-actions.



Operator Operational rules
a:P _—
a:P—P
PSP Q—Q
P+Q " o T
P+Q—P P+Q—=Q
Plg P-4 p Q-5 Q' P pPQ-%
PlQ—=P|Q PlQ—=P|Q PlQ—P|Q

Figure 1: Operational semantics of some CCS/Meije operators

and the process close_p (the closure procedure). The process gate_contr_p has
three states: undefined (initial state), on (gate open) and off (gate closed). The
gate changes its state upon receiving a command from the other processes. The
open operation checks the state of the gate. If the state is different from on, it
sends to the gate the s_on_p signal. Similarly, the closure operation checks the
state of the gate. If the state is different from off, it sends to the gate the s_off_p
signal.

Act contains the following actions: on_p, off p and undefined p, executed by
the gate_contr_p to signal its current state; start_close_op and end_close_op,
executed by the process close_op when this operation begins/ends; start_open_op
and end_open_op, executed by the process open_op when this operation begins/ends;
s_on_p, sent by the process open_p to the process gate_contr_p for setting the state
of the gate to on; s_off_p, sent by the process close_p to the process gate_contr_p
for setting the state of the gate to off. These last two actions are synchronisation
actions.

Figure 2 reports the CCS/Meije specification of gate_contr_p. Its states are
called UNDEFINED P, ON_P and OFF_P. For example, when the gate is in the state
ON_P, the gate can either execute the action !on_p indicating the current state of
the process or receive a signal !'s_off_p (set state off) and changing its state.

gate_contr_p =

let rec {
ON_P = lon_p : ON_P +
?s_on_p : ON_P +
?s_off_p : OFF_P
and
OFF_P = !off_p : OFF_P +
?s_off_p : OFF_P +
?s_on_p : ON_P
and
UNDEFINED_P = !undefined_p : UNDEFINED_P +

?s_off_p : OFF_P +
?s_on_p : ON_P
} in UNDEFINED_P;

Figure 2: The gate_contr_p specification

For brevity the specifications of the open_op and close_op processes (which
would require more information on how the external environment commands the
operations) are omitted here. The specification of the whole system (net) is given



by the parallel composition of the three processes (see Figure 3). The open_op
and close_op processes are independent from each other, but both must synchro-
nise with the process gate_contr_p when checking the level crossing position or
when commanding the change of the level crossing state (actions: on_p, off_p,
undefined p, s_off_p and s_on_p).

net =
((open_op| |close_op) ||
gate_contr_P)\s_on_p\s_off_p\on_p\off_p\undefined_p;

Figure 3: The net specification

The graphical notation, defined for the ATG tool [44], can be used. This nota-
tion expresses a sequential process by drawing the LTS representing its behaviour
and expresses communicating processes by drawing a network of LTSs. In the first
case, circles and edges are used to represent states and transitions, respectively. The
initial state of the LTS is represented by a double circle and labels can be associated
both to edges and to vertices. Communicating processes are represented by boxes
with ports at the border. The ports are the process places of interconnection with
the environment. If two boxes are drawn at the same level, they can synchronize
via the actions they execute by linking the corresponding ports.

Figures 4 report the graphical specification of the the gate_contr_p and the net
systems, respectively. Note that the synchronisation on the action s_on_p between
the processes open_op and gate_contr_p is modeled by linking the !s_on_p of the
open_p labeled box to the port ?s_on_p of the gate_contr_p labeled box.

lundefined_p

@ UNDEFINED_P
?s off_p

Figure 4: The gate_contr_p graphical specification.

The graphical formalism allows two additional features with respect to CCS/Meije:

e Observing synchronisation actions. According to the CCS/Meije parallel op-
erator, synchronisations become the invisible 7 action. To observe synchroni-
sation actions, a label must be put on the edge linking the ports. In this way
each time a synchronisation occurs, a transition with the name of the label
is shown. An example is shown in Figure 6. By setting the label L on the
edge linking ports !'b and ?b, each time processes synchronise by executing
'b and 7b, L is observed.

e Synchronisation among three or more subsystems. This is carried out by
the ”web” operator. The ports corresponding to the actions which must be
executed all together are linked to the web by edges. As an example, Figure



open_op
Istart_open_op
Is_on_p lend_open

?s_on_p )
2undefined_p

gate_contr_p
lon_p

loff_p
lundefined_p clos_op
?s_off_p ?on_p Istart_clos_op
— 20ff_p lend_clos

?undefined_p

Is_off_p

Figure 5: A network of processes

6 shows a multi-way synchronisation among processes P, Q and R. A web is
used in Figure 6 to synchronise the three subsystems on the action f.

Figure 6: Two-way and multi-way synchronisation

Given a network of LTSs or a process algebras term, the generation of the LTS
representing its overall behaviour is automatically performed by means of tools
based on the operational semantics rules [6].

3.2 Specifying the failing system

Each kind of fault is modelled explicitly as an action. The execution of the action
corresponds to the occurrence of the fault. Let F be the set of actions modelling
faults in the system. The specification of the failure of the system is obtained by
introducing occurrences of possible faults as transitions of the LTSs of the system.
If the action f € F is executed in a state of a system, then the failure mode of the
system is exhibited, otherwise, the system goes on with its behaviour.

Figure 7 models the failing system gate_contr_p, when two kind of faults are
considered: a permanent fault, modelled by the f_p action, and a temporary fault,
modelled by the f£_t action.

The permanent fault leads the system to a special state named FAULTY_P in
which the system shows forever the value undefined to the environment (the action
lundefined p). The state FAULTY P is a sink state. The temporary fault causes the
system to lose the current correct state, by showing the value undefined until the
reception of a signal setting the position of the level crossing. Under the assumption
that a fault may occur at any time, an output edge labelled by 7f_p and an output
edge labelled 7f_t exists starting from each state of the entity.

The failure mode of the process may depend on the point at which a fault occurs
during the execution of the system. In most cases, associating a fault action with



lundefined_p At

Figure 7: The failing system gate_contr_p

a different failure mode to every state of the system, is not necessary. Knowledge
of the actual failure points and failure modes can e used to produce a simpler
sepcification. Some examples in this direction are:

1. confining faults to specific subsystems;

2. choose specific points in the execution of the subsystems at which a fault may
occur, realizing some form of guided fault injection;

3. associating faults to communications between subsystems;

4. assuming that every subsystem exhibits always the same failure mode in every
state. For example it stops.

The occurrence of faults at any point of the computation can be modelled as
follows. Every state must be extended with the possibility of the occurrence of
the fault. After the fault, the system stops. The fault starts another process that
models the failure mode of the original system. A number of failure processes equal
to the faults allowed by the fault assumption process must be composed in parallel
to the original system.

Some process algebras, like LOTOS, includes the disabling operator. The term
P[> (fault; Q) means that the process P can be interrupted at any point by the
action fault. In this case the execution proceeds as (). This operator allows the
possibility of a fault occurring in every state to be expressed more concisely. How-
ever, this operator does not allow to model faults that can occur only in some states
and not in other states.

The modelling of faults that cause all subprocesses within a system to fail syn-
chronously can be obtained by using the multiway synchronisation. The port cor-
responding to a given fault in each replica is linked to the web operator. Let f
be an action corresponding to the occurrence of a given fault. Figure 6 model the
synchronous failure of the three subsystems.



Since the formalisms used in our approach see actions as atomic, the actions
of the specification are atomic w.r.t. faults. In the case of modeling faults that
can occur during the occurrence of a functional action, a different model of the
behaviour of the system should be produced, where functional actions are divided
in more sub-actions. A choice between a sub-action and a fault action is performed
at each of them. The model of the functional behaviour of the system should be
designed with a granularity that fits the sought granularity of fault occurrences.

3.3 Introducing fault tolerance

The formal modeling of a fault tolerant system can be often structured as the parallel
composition of replicas that synchronise to produce useful work. The formalization
of a fault tolerance technique requires the use of the parallel composition, restric-
tion and relabelling operators of CCS/Meije (or graphical composition) in order to
conveniently express composition of redundant replicas and additional components.

If fault masking is applied, a fault tolerance technique uses replicas of the system.
Replicas are generally composed together with some extra standard components
added by the fault tolerance technique (for example, a majority voter) for masking
the effects of the occurrence of faults. Formally, each replica is an instantiation
of the failing system with an ad hoc renaming of actions and different names for
the fault actions (to distinguish between occurrences of the same kind of fault in
different replicas).

For example Figure 8 shows that some actions must have the same name in
all the replicas, while other actions must be renamed. The ”set” signal must be
sent synchronously to all replicas. The action s_on_p needs not to be renamed
in the replicas, since this action is actually a synchronisation among the replicas.
The actions f_p must be renamed instead in all replicas, since this fault event is
asynchronous for all of them.

Let n denote the number of replicas used by the fault tolerance technique and
F7 denote the set of faults of the j-th replica, j = 1,---,n. The set of faults of the
fault tolerant system is therefore 7 = |J;_, F7. Let M = {M;,1 < i < k} be the
set of extra components added by the fault tolerance technique (M may be empty).

The application of a fault tolerance technique leads to a network of replicated
processes which includes the replicas and the added components synchronizing in
the specific way dictated by the fault tolerance technique (the parallel operator is
left associative):

@l A &n T My [[--- | Mi) \ar, -+, \as

where a1,---,as are the synchronisation actions, a; ¢ F, and &; is the i-th
replica. We assume processes corresponding to replica use appropriate renaming of
the actions.

Each replica is a distinct process. This allows the specification of fault tolerance
techniques based on design diversity. In this case instead of replicas, variants are
used, each of which corresponds to a particular specification of the system.

Figure 8 shows the specification of a classical duplication and comparison ar-
chitecture applied to the gate example, duplicating the gate_contr_p process and
adding a comparator process.

Error processing is generally achieved through error detection and recovery tech-
niques. In this case, the error detection module can be specified as a further process
which interacts with the failing system, checking states of the computation; the re-
covery algorithm can be included in the specification of the failing system. Different
actions can be used to distinguish various classes of errors, and the error recovery
algorithm followed can be modelled in the specification in a similar way.

10
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Figure 8: Fault tolerant system

3.4 Modelling fault assumptions

Assumptions on how faults are supposed to occur in the system can be specified by
a further process, the fault assumption process, that is added to the specification by
the parallel composition operator with synchronisation on the actions corresponding
to faults. The fault assumption generally limits the number of fault occurrences.
The most general fault assumption models any possible occurrence of faults. In the
case of two faults, for example f_p and f_t above, this fault assumption is shown in

Figure 9.
!fJDC@Q 1f t

Figure 9: A fault assumption

The fault assumption in Figure 8 does not allow the occurrence of temporary
faults and at most one permanent fault in one of the replicas can occur. Consider
the FH process. In the initial state, either the !f_p_1 action is executed or the action
If_p_2 action is executed. Then the process stops.

4 Properties of fault tolerant systems

A temporal logic in agreement with the selected specification formalism is used to
formalise system’s properties.

4.1 The logic ACTL

ACTL (Action-based Computation Tree Logic) [19] is an action-based version of
the branching time temporal logic CTL [15]. ACTL has the advantage that, since
it is based on actions rather than states, it is naturally interpreted over LTSs.
Moreover, this logic is more expressive than other action-based logics, like Hennessy-
Milner logic [27], without resorting to the full use of fixed point operators, such as
the p-calculus logic [31]. p-calculus is more expressive than ACTL, but still most
interesting properties can be expressed in the latter.

11



The formulae of ACTL are built over the syntactic categories of action formulae,
state formulae and path formulae. An action formula permits expressing constraints
on the actions that can be observed. A state formula gives a characterization about
the possible ways an execution can proceed after a state has been reached. A path
formula states properties of an execution. The truth or falsity of a formula refers
to a satisfiability relation over LTSs, denoted .

Given a set of observable actions Act, the action formulae on Act are defined as
follows (« ranges over Act):

xu=true | a | 7x | xVx

An action formula permits expressing constraints on the actions that can be
observed. The satisfaction relation |= for action formulae is defined as follows:

a | true always;
alEp iff a=pg;
afE-x i alEx
aExVvx iff aEyxoralEyx.

From now on, we let false abbreviate the action formula —true and x A x’
abbreviate the action formula =(=y V =x’').
The syntax of state formulae and path formulae is given by the grammar below:

¢ o= true | ~p | ¢&¢' | Ey | Ay [ <x>¢ | [x]o
v Fo | Go | o{x}Ui{x'}¢

where y, x' range over action formulae, E and A are path quantifiers, F' is the
eventually operator, G is the always operator and U is the until operator.

Satisfaction of a state formula ¢ (path formula ) by a state g (path p), notation
q |= ¢ (or just p =), is given inductively by:

q |= true always

qE -9 iff qE9

qEo & iff qF ¢ and q = ¢'

ql=Ey iff there exists a full path 6 from ¢ such that 6 = v

qE Ay iff for all full path 6 from ¢, 6 =~

PE<SX>¢ iff there exists «, ¢’ such that (¢, a,q¢") €=, ¢ = ¢ and a |= x
p E x| iff for all ¢' such that (q,,¢') €=, ¢ E ¢ and a | x
pEFP iff there exists a state g in p such that ¢ |= ¢

pEGP iff for all states ¢ in p, ¢ |= ¢

p E o Ju{x'}¢'  iff there exists 8 = (g, «, ¢')6' suffix of p, such that

g E¢,aEX, q=¢and for all n = (r,b,r" )1,
suffixes of p, of which 6 is a proper suffix,
we have r E ¢ and (b xorb=r1)

The modality < x > ¢ means that there exists a next state of the path, reached
with an action satisfying x in which the formula ¢ holds; while [x]¢ says that for
all next states of the path, reached with an action satisfying , the formula ¢ holds.
These modalities correspond to the diamond and box modalities of Hennessy-Milner
logic . The meaning of the indexed until modality ¢{x}U{x'}¢’ is that any state
of the path is reached with an action in xy U{7} and the state satisfies the formula ¢
until a state is reached with an action in x’ and the state satisfies the formula ¢'. Fi-
nally, note that G¢ can be derived as ~F—¢ and [x]¢ can be derived as = < x > —¢.

3in [19], the modalities < x > ¢ and [x]¢ are actually defined instead to be the weak version
of the diamond and box operators

12



Some properties for the gate_contr_p system in Figure 4 and their formalisation
in ACTL are:

e The system, after having received the action 7s_on_p, cannot execute the
action !'undefined
¢1 = AG[?s_on_p|-EF[lundefined_p|true

e The system eventually executes the action !'on_p
¢2 = AF < lon_p > true

4.2 Properties verification

The model checker accepts a finite state machine (LTS) and an ACTL formula [22].
If the model checker determines the formula is true, then the property holds in the
LTS and also in the system specification.

The time complexity of traditional model checking algorithms, which are used
in the model checker of the JACK environment, is linear in the size of the global
LTS and in the size of the ACTL formula (the number of different subformulae that
can be syntactically recognized in it) to be checked.

The model checker provides also the counterexample facility. If we check that
our specification has a certain property, using this facility we can discover the paths
that make such a property true or false on the model.

Consider the failing contr_gate_p system and the properties ¢; and ¢o in Sec-
tion 4.1. ¢ is satisfied by the LTS in figure 4. ¢- is obviously false for every path
which does not include the ?s_on_p action. We obtain the following trace from the
counterexample facility of the model checker:

|= AF <!on_p> true

The formula is FALSE in state 3:

|= why

(<!"on_p"> true)

is false in state 3

UNDEFINED - !undefined_p - UNDEFINED

4.3 Formalising fault tolerance properties

The ACTL expression of the general classes of properties reported in Section 1 are:

e Fault tolerance

AG¢COTT
where dcorr expresses a correctness condition on a state (an invariant)

e Fail-stop

AG[fault]ldrerm
where ¢rerm expresses the termination of the system

e Fuail-silence

AG[fGUZt]¢CorrOmiss
where ¢corromiss €xpresses the correctness, apart from omission failures

o Fail-safe
AG[fa’U'lt]_'QsUnsafe
where ¢unsare expresses all possible unsafe behaviours

The actual formulae to be checked strictly depends on the functionality of the
system, as we will see in the next Section. However, the general expressions given
above mostly use the form AG[fault]$, which predicate over what should be valid
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forever in the life of the system after the occurrence of a fault. These kind of
properties have often been called safety properties and are often satisfied by a “null”
system.

Safety properties are distinguished from the liveness properties. Liveness properies
are expressed by the forms AF¢, EF ¢, AGAF¢®, and so on, and state that some-
thing should be eventually (or infinitely often) done by the system.

Depending on the nature of the system, safety and/or liveness properties are
needed to express fault-tolerance properties.

Example of properties (and their formalisation in ACTL) of the gate_contr_p
system, whose LTS is shown in Figure 7, are:

o Fuail-safe property.
The system, after having received a set on signal ?s_on_p, cannot execute the
action !off p until a set off signal has been received.
Similarly, after having received a set off signal 7?s_off_p, the system cannot
execute the action !on_p until a set on signal has been received.
AG[?s_on_p|Aftrue{—loff,}U{7s_off_p}true]
AG[?s_off_p|Aftrue{—lon_p}U{?s_on_p}true]

o Fault tolerance property.
The system, after having received a set on signal ?s_on_p, executes the action
lon_p until a set off signal has been received.
Similarly, after having received a set off signal ?s_off_p, the system executes
the action !'off_p until a set on signal has been received.
AG[?s_on_p|A[true{lon_p}U{?s_off_p}true]
AG[?s_off _p|Aftrue{loff _p}U{?s_on_p}true]

e Liveness property.
The system, after having executed the action !off _p, eventually executes the
action 'on_p.
[loff_p|AF[lon_pltrue

Fail-safe property guarantees that if the gate is open, then the state is on or
undefined. Similarly when the gate is closed, then the state is off or undefined.
This holds also in presence of faults.

Fault tolerant property states that if the gate is open, then the state is on, while
if the state is closed the state is off. This holds also in presence of faults.

The liveness property guarantess that a closed gate eventually is open, this would
be useful for the actual users of the level-crossing.

The system in Figure 7, satisfies fail-safety property, while it is not fault tolerant.
Also the liveness property is not satisfied by the system.

The fault tolerant system design in Figure 8 instead tolerates one faulty replica.
The fault assumption process in the same figure limits the occurrence of faults to
at most one permanent fault in one of the replicas. This system satisfies the fault
tolerance property. Assume the FH process in Figure 8 is replaced by the FH process
in Figure 9. Since faults are not limited, in this case the fault tolerant property
above is not satisfied.

5 State space explosion problem
The main difficulty in using in practice model checking formal verification methods
is due to the limits imposed by the size problem, that even challenges more advanced

model checking tools. Systems composed of several subsystems can be associated
to a finite state model with a number of states which is exponential in the number
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of the component subsystems. Moreover, systems which are highly dependent on
data values share the same problem, producing a number of states exponential in
the number of data variables.

In the following it is shown an estimate of the maximal state-space size based
on structural knowledge about the system. The phased structure of fault tolerant
systems and algorithms limits a priori the state explosion problem, even if adopting
traditional model checking algorithms. A system employing redundancy is com-
posed of a number of identical modules which compute the same results. At the
architecture level such modules are often independent processors. These modules
have to synchronize periodically in order to maintain their consistency, and the
synchronizations are usually combined with some comparison or voting operation,
aimed to detect or mask errors.

A common structure of such a system can be represented (in the case of du-
plication redundancy) as shown in Figure 10, as a network of automata; each LTS
synchronizes with the other ones at the end of each phase.

( e O
!endphasel !endphasel
!endphasel
( ) e O
!endphase2| !endphase2
!endphase2
 S—
!endphasem !endphasem
endphasem !endphasem endphasem !endphasem

Figure 10: The phased structure

The behaviour of the overall system is obtained by the parallel composition of
the replicas. Due to the synchronization at the end of each phase, the obtained
global LTS appears to be structured in phases as well; each phase of the overall
system is actually generated by the interleaving of the corresponding phases of
the different replicas, while each phase is terminated by the synchronization of the
replicas, from which the next phase begins (see Figure 11, where Phase i||Phase i
represents the LTS built by interleaving two replicas of Phase 7).

If we call S the size of the state space of a replica, the cardinality of the state
space of the interleaving of n replicas has normally an upper bound of S™. Due to
the phased structure, if we denote by S; the size of the state space of the i-th phase,
the upper bound for S is determined by the size of the interleaving of each phase,
that is: S1™"+ S + ...+ S,

Moreover, the regular structure of a redundant system may be exploited to
contain state explosion with the help of existing established techniques, such as
symmetries and reduction preorders. Using symmetries, as proposed by Emerson
n [21], the number of states is reduced by identifying those states which coincide
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Figure 11: The phased structure

up to a permutation of the system components. Reduction preorders [28] employ
the independency of the property to be checked from the order in which interleaved
processes are actually executed, to select just one order and hence only a subset
of the state space to check its validity. In the case of redundancy, the complete
interleaving of the replicas can be avoided in the generation of the model. For
example, the selected executions could satisfy the constraint that all the transition
contributed to the global LTS by the first replica precedes the transitions of the
second replica and so on. The selection has however to take into account the
interactions between the replicas. The global state space of a phase ¢ of the global
LTS for a system of n replicas is estimated to be of the order of n*S;, and therefore
the global state space of the overall algorithm is estimated to n * S.

Finally, the use of techniques such as decomposition and abstraction, can be
applied to overcome the state space explosion problem at the specification level.

In particular, the following technique can be applied:

1. identification of the system’s static configuration parameters. The modelling
of these attributes as if they were variables, would contribute unnecessarily
to the growth of the number of states of the model. In the development of
the formal specification, the configurations can be taken each at a time and
a property is satisfied by the system if and only if it is verified in all possible
configurations.

2. the relabelling of multiple actions into one action reduction well-known tech-
nique. Assume 1) an entity sequentially tests several signals in order to exe-
cute an operation with success; 2) the failure of any of these tests leads to the
failure of the operation itself; 3) the properties do not involve actions related
to the tested signals. In this case the actions corresponding to a sequence of
tests can be modelled as a non deterministic choice between the success and
the failure of the tests. Consider the LTS in figure 12 (a). The failure of any
test leads to state C, while the success of all the tests leads to state B. The
sequential tests can be substituted by a simple abstract test which may fail,



not_ver_signall
ver_signall

“Mot_ver_signal2 mot_ver_signals

ver_signal2 Ver_signals

“not_ver_signal3

ver_signal3

@ (b)

Figure 12: (a) A LTS. (b) The LTS after the reduction.

leading to state C; or it may be executed with success leading to state (Figure
12 (b)).

3. the fault assumption process helps in the containment of state space explosion.
Consider for example a case in which a replica is modelled by a sequence of
phases, and in each of these phases, say the i—th, we can recognize N; states
reachable in absence of faults and Fj states which are reached within a failure
mode (in reference to previous notations, we have therefore that S; = N; + F;).
If only a single fault is allowed to occur, say at the j—th phase, the total number
of states is bound by the sum: Ny" +...+ N; 1"+ F} * Njnfl.... +F,«N," 1,
if we are not using reduction preorder. REFEREE 2; cite general work on
partial order methods for model checking

In addition to the above techniques, domain-specific optimization of model
checking algorithms have been studied in the literature. In particular, some specific
features of safety critical systems may be searched that can be used to optimize the
verification algorithms. As an example of possible domain specific optimizations,
Eisner [20] has shown how the safety critical characteristics of robustness and local-
ity can be used to avoid difficult fixed-point calculations in symbolic model checking
when applied to railway interlocking.

6 Case studies

The approach proposed in the paper has been applied for specifying and verifying
two fault tolerant system designs. The first study is the specification and verification
of the safety requirements of a Railway Interlocking System developed by Ansaldo
Trasporti [2]. The second one is the specification and verification of fault tolerant
mechanisms defined inside the project GUARDS (Generic Upgradable Architecture
for Real-Time Dependable Systems) [42]. Both studies show that:

e Some standard rules for the passage from the semi-formal description of the
system to its formal specification can be successfully applied in the field of
fault tolerant systems. This passage is generally recognized one of the critical
points of the introduction of formal methods in the software development
cycle;

e the reduction in the state space due to the phased structure of redundant sys-
tems makes the model checking approach viable in this domain of application.
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6.1 Railway Interlocking System

The first case study is a part of a railway signaling interlocking control system
developed by Ansaldo Segnalamento Ferroviario. The system operates within a
complex environment, interacting with a number of different actuators and sensors,
and human operators. Sensors convey data concerning the physical status of the
environment, actuators allow for the control of the operations and the status of the
external environment. An operator may interact with the system sending commands
and selecting operation modes. The central Safety-nucleus is based on a TMR
(Triple Modular Redundancy) configuration of computers implementing a two out
of three voting scheme, with automatic exclusion of the unit in disagreement with
the other two.

The scope of this control system is that of permitting a safe passage of trains
by adjusting the setting of signals on the railway line. The control system is rep-
resented by a set communicating processes, modelling logical and physical entities.
The control of the entities is realised by operations which act on variables. Of-
ten variables represents signals whose domain of values is very limited or a limited
number of values are of interest. The specification and verification of the system is
reported in [2].

The translation from the semi-formal to the formal specification was straight-
forward as shown in figure 13 and figure 14.

Each operation in the Ansaldo semi-formal specification can be described in
three main parts:

pre-conditions on variables that must be satisfied before continuing the operation
(“VERIFY THAT” part) are defined. The operation is performed by modifying
the value of some common variables (“ASSIGN” part). An “EXCEPTIONS” part
specifies what should be done if a “VERIFY THAT” condition is not satisfied.

Automatic closure request
I. VERIFY THAT
a. the command_state variable has the value "automatic";
b. the lcc_state variable has a value not equal to
"request to close".

II. ASSIGN
- the value "manual" to the command_state variable
EXCEPTIONS

lal Ibl command is lost; no recovery actioms.

Figure 13: Semi-formal specification

6.1.1 Reduction of the number of states

The use of the abstraction techniques presented above for testing signal values,
before combining the replicas of the TMR configuration by means of the tools of the
Jack environment, have produced a model of the behaviour of the system composed
by one replica of about one million of states. The use of static parameters allowed
a reduction in the number of states of this global LTS from about one million states
to 77294 states.

6.1.2 Safety requirements verification

A typical safety requirement for an interlocking system is that if a train is entering
a track containing a level crossing, if the proceed signal is sent to the train at the
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let rec {
S = ?start_op: VERIF_A

and

VERIF_A = 7automatic : VERIF_B +
?manual : EXC

and

VERIF_B = ?closure_req : EXC +
?open_req : ASSIGN
and
ASSIGN = !s_manual : F
and EXC = tau : F
and F = !end : S
} in S;

Figure 14: Formal specification

beginning of the track then the position of the level crossing is closed. This property
can be expressed more precisely as a proposition on the model of the behaviour of
the system as follows: in any state of the model if the position of the level crossing
is not equal to closed, then there is not an execution in which the proceed signal is
sent until the position of the level crossing is equal to closed. Hence, this property
can be classified as a fail-safe property.

This expression can be formalised as a formula in the ACTL logic as follows. Let
raise_shunt_sign be the action corresponding to the proceed signal and let on_pos,
off_pos and undefined pos be the different positions that the level crossing can
assume:

AG([-loff _pos|(—E[true{—7?s_off_pos}U{!raise_shunt_sign}irue)]))

6.2 Inter-consistency mechanism

The GUARDS project has produced a generic architecture for safety critical systems
[42] designed to be instantiated to support different critical applications. Model
checking techniques have been used in the project to validate the Inter-Consistency
mechanism which is the basis of the ad hoc defined fault tolerant mechanisms.

Interactive consistency focuses on the problem of reaching agreement among
multiple processors in presence of faults (also known as the ”Byzantine Generals
problem” [33]). The principal difficulty to be overcome in achieving interactive
consistency is the possibility of conflicting values sent by faulty processors.

The Inter-consistency mechanism uses the ZA Byzantine Agreement algorithm
described in [25]. According to the GUARDS architecture, the Inter-Consistency
mechanism must guarantee consistency among three or four processors. The al-
gorithm is synchronous and uses several rounds of authenticated encoded message
exchange during which processor P tells processor Q what value it has received from
processor R and so on. Each node has at the end a voted knowledge on each value
hold by every other node. The assumption of message authentication requires that
faulty processors do not make undetectable modifications to messages as they are
relayed from one processor to another. The mechanism is a composition of trans-
mitter and receiver protocols: for example, in the four nodes case P, Q, R and S, each
node includes one transmitter protocol and three receiver protocols. The pseudo-
code for the transmitter node P is given in Table 1, where vp is the private value of
the node P.

The algorithm is modelled as a network of four communicating processes, each
modelling one of the four nodes. Moreover, the algorithm has a phased structure:
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phase 1: phase4:
vp:p := p_encode(vp); p2 := p_decode(msg2);

p-broadcast (vp:p); msg3 := q_receive();

phase2: phaseb:

msgl := s_receive(); p3 := p-decode(msg3);
vp(p) := vote(pl, p2, p3);

phase3:

pl := p_decode(msgl);

msg2 := r_receive();

Table 1: The ZA algorithm of transmitter node P

Table 2: Number of states for the GUARDS Byzantine Agreement.

Model of: states
A single non faulty node 428
Network of 4 non faulty nodes 3479

Network with an arbitrarily faulty node and a symmetric faulty node 109613
Network with an arbitrarily faulty node, and authentication violation 122767

each of the previous processes is described by a network communicating processes
modelling the different phases of the algorithm and the local variables. We refer
the reader to [3] for the complete specification and verification work.

The translation from the speudo-code to the formal specification is straightfor-
ward. For example, assuming two different values 0 and 1, the process modelling
the phase 2 of node P is expressed by the following CCS/Meije term:

phase2P = {

RECEIVE = 7ssendp_encp_0O : !s_mlp_encp_0O : END +
?ssendp_encp_1 : !s_mlp_encp_1 : END +
?ssendp_omission : !s_mlp_omission : END

and

END = !startphase3 : stop

} in RECEIVE;

The node upon receiving a message from S (or detecting an omission fault),
saves the message into the variable named mip. Then it is ready to execute phase
3 of protocol, and signals this by the !startphase3 action, on which all the other
nodes have to synchronize.

6.2.1 Reduction of the number of states

Table 2 presents the size of the state space of the single node, and that of the network
composed of four nodes under different fault assumptions. The fault assumptions
have been modelled by means of specific processes which constraint the occurrences
of faults.

The table clearly shows:

e the fact that the size of the state space is largely below the fourth power of
the size of the state space of a single node confirms the observations we have
enunciated previously;
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e the increase of the state space with the generality of the fault assumptions,
evident in the last two rows.

6.2.2 Agreement and Validity properties verification

The classical Agreement and Validity properties must be satisfied to reach consis-
tency:

Agreement: if a pair of receivers are non faulty, then they agree on the value
ascribed to the transmitter.

Validity: if the receiver P is non faulty, then the value ascribed to the transmit-
ter by P is the value actually sent if the transmitter is non faulty or
symmetric faulty; or the distinguished value error, if the transmitter
is manifest faulty.

The formalisation of these properties as ACTL formulae is:
Agreement:
for any execution of the processes,

the nodes eventually agree on the value 1 (actions !'vp_ofp_eqto_1, !vp_ofg-eqto_1,
lvpofr_eqto_1, !vp_ofs_eqto_1) or the nodes eventually agree on the value 0 (ac-
tions !'vp_ofp_eqto 0, !vp_ofg-eqto 0, !vpofr_eqto 0, !vp_ofs_eqto.l).
Validity:
if in any state of the model, it is true that the internal value of the node P is equal
to 1 (action !'psend_vp_1) or 0 (action !'psend_vp_0) , then for any execution of the
processes, starting from such a state, the nodes eventually agree on such a value.

Assume S faulty. The combination of the Agreement and Validity properties in
the case of value 1, is expressed by the following ACTL formula:

AG['psend_vp_1](Aftrue{true}U{!vp-ofp_eqto_1}true]&
Altrue{true}U{lvp_ofq_eqto_1}truel& Altrue{true}U{lvp_ofr_eqto_1}true])

We applied the model checker tool to prove the invariance of required properties
under given fault assumptions. As expected, we found that in the case of a violation
of the assumption on authentication, even a single faulty node is not tolerated.

7 Conclusions

This paper shows the application of the model checking technique for the specifi-
cation and verification of fault tolerant systems. The results on the application of
the approach to two case studies are reported. The studies show the feasibility of
model checking to case studies from industries and confirm that key-point in the
industrial acceptance of model checking are

e the using of a specification formalism which is essentially some variants of
finite-state machines (commonly used in many industrial activities, especially
in the safety critical systems area).

e the existence of automatic verification tools.

State explosion represents the main problem to the application of model checking
for handling large industrial systems in many fields. However, recent advances
in model checking techniques, have managed to deal with very large state spaces
by the use of symbolic manipulation algorithms inside model checkers. The most
notable example is the SMV model checker [12]. In SMV the transition relations are
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represented implicitly by means of Boolean formulae and are implemented by means
of Binary Decision Diagrams (BDDs, [7]). This usually results in a much smaller
representation for the systems’ transition relations, thus allowing the maximum size
of the systems that can be dealt with to be significantly enlarged.
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