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Abstract

This paper shows how fault tolerant systems can be analysed by model

checking formal veri�cation technique� A modelling approach suitable for

model checking fault tolerant systems under di�erent fault scenarios is pre�

sented� The approach is included in a general development framework that

has been proved to be usable for the veri�cation of a railway interlocking

system and fault tolerant mechanisms�

� Introduction

The large deployment of computer�controlled systems has raised many concerns
are raised about safety issues when human activities and lifes depend on them� A
combination of fault prevention� fault tolerance� fault removal and fault forecast

ing techniques are commonly used in order to achieve high degree of dependability�
There not exists� however� a common agreement about a standard method to or

derly combine these di�erent techniques� Industries� also basing on their di�erent
backgrounds and application �elds� adopt di�erent development trajectories� and
the various techniques aimed at enhancing dependability are normally separately
used� Indeed� the combination and integration of so di�erent techniques is still an
open research area�

In this paper� we address the combination of the provision� in the development
of a system� of fault tolerance mechanisms and the use of formal methods� and in
particular formal veri�cation tools� While fault tolerance is achieved through a set
of well
established and commonly adopted techniques� which often exploit hardware
redundancy� formal methods have not gained a wide acceptance as a viable means to
reduce the failure rate of programs� though several success stories have been reported
���� and international standards and guidelines �e�g� the CENELEC EN����� guide

lines for software development in the railway industry ����� recommend the use of
formal methods in the development of fault tolerant computer�controlled systems�

Nowadays� the industrial trend is directed to the adoption of formal veri�cation
techniques to validate the design� integrating them within the existing development

�This work was partly supported by Progetto Coordinato CNR �Strumenti Automatici per la
Veri�ca Formale nel Progetto di Sistemi Software ��
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process� Industries are more keen to accept formal veri�cation techniques assessing
the quality attributes of their products� obtained by a traditional life cycle� rather
than a fully formal life cycle development� due to the lower training and innovation
costs of the former�

Following this trend� we propose in this paper the use of a formal veri�cation
technique� namely model checking� to verify the conformance of a design with re

spect to given fault
tolerance properties� regarding its ability to tolerate faults� such
as�

�� Correctness� The system delivers a correct service �in absence of faults��

�� Fault tolerance� Despite faults� the system delivers a correct service�

�� Fail�silence� The system failures can only be omission failures� that is� failures
to temporarily provide the service to the user of the system�


� Fail�stop� In case of faults� the system terminates the delivery of its service�

�� Fail�safe� The system failure is a transition to a state in which no catastrophic
event can occur�

The properties ����
 and � will be studied with respect to speci�c classes of
faults and in presence of given fault occurrences� that is� under well
de�ned fault

assumptions� The properties informally expressed above can be formally speci�ed
using of some logic formalism� temporal logic� whose operators permit explicit quan

ti�cation over all possible futures� is a possible candidate� If a formal model of the
system under analysis is done� typically by means of state machines or transition
systems� model checking algorithms can be used to prove that the model of the
system satis�es the properties expressed in a temporal logic �����

In this paper an approach in the application of model checking to the study
of fault tolerance properties is presented� showing also an experience in the use of
veri�cation tools on case studies concerining real systems� and in addressing the
�State Space Explosion� problem that can arise when a system is composed of
several subsystems� In this case a �nite state model with a number of states which
is exponential in the number of the component subsystems can be generated� At a
�rst sight the presence of redundancy� which is often introduced by fault tolerance
mechanisms� seems to raise the state space explosion problem since it increases�
often duplicating or triplicating� the number of subsystems� In this paper it is
argued that this is not in general true� and that instead some typical redundant
structures can help to contain the state space� and the most suitable techniques to
adopt in order to address this problem are indicated�

The paper is organized as follows� Section � reviews related work� Section �
presents a technique adopted for formally specifying fault tolerant systems� Sec

tion 
 reviews fault tolerant systems properties� their formalisation and veri�cation�
Section � deals with the characteristics that make model checking techniques appli

cable in this �eld� Section � reports on the application of the proposed formalization
techniques and veri�cation tools to two case studies of fault tolerant systems and
their properties� Section � concludes the work�

� Related work

In the literature on the formalisation of fault tolerant systems� the earlier works
����� 
��� do not model explicitly the occurrence of faults� but only the failure
behaviour�
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Several later works are based on the use of standard process algebras to spec

ify the behaviour of the system also under fault occurrences� equivalence relations
or preorders are employed to verify fault tolerant system designs� CCS process
algebra and observational equivalence has been �rst used in �
��� In ����� CCS pro

cess algebra is used in verifying a distributed control for railway block signalling
system� In �
�� and ��	� CSP and trace theory is applied� In �
��� CSP and asser

tional techniques are combined to design fault tolerant systems based on dynamic
redundancy� Re�nement steps and proof obligations are applied� The major advan

tage of process
algebra based approaches is related to the existence of automatic
veri�cation tools�

Other works in the literature use instead specialised process algebras� in ����� a
CCS
like calculus for replicated systems is presented� In ����� new process algebra
operators to model faults and failure modes are de�ned� In ���� �	� a new semantics
for CCS is de�ned� which is parameterised on the fault assumptions�

Veri�cation of system fault tolerance properties has been addressed both with
model checking and theorem proving techniques�

The theorem proving technique has been applied to study fault tolerance in �����
The speci�cation language is strongly typed high
order logic� and a theorem prover
allows to generate semi
automatic proofs�

In ��
�� a calculus for fault tolerance analysis based on TLA� the Temporal Logic
of Actions� is de�ned� Theorems asserted in the speci�cation are proved using the
method of structured proofs� Simple proofs can be checked mechanically through
the TLP veri�cation system�

In ���� the micro
CRL and a modal logic for this language are used for modelling
a railway interlocking system and their safety properties� Properties are then veri

�ed by transforming the speci�cation in propositional logic and by using a theorem
prover�

Model checking of properties expressed in modal �
calculus on CCS speci�

cations is �rst applied in ���� to the veri�cation of fault properties of a railway
interlocking system� In ���� fault
handling mechanisms are modelled using special

purpose process operators� temporal properties which hold for fault tolerant mech

anisms applied to simple processes are shown to hold as well when the mechanisms
are applied to more complex processes� The use of modal transition systems is
exploited in ���� where a modal process logic that captures the intention behind
failures is de�ned� Finally� �	� is a book on the use of CCS for distributed systems
analysis�

The approach presented in this paper applies model
checking to fault tolerant
systems de�ned using a standard process algebra� Faults are modeled as observable
actions� the observability of fault is not related to the possibility of detection of
faults �fault detection mechanisms usually detect the consequences� rather than
the fault occurrence itself�� but rather they enable to clearly distinguish faults
from other internal actions� and to control fault events� so that fault assumptions
modeling is possible� The use of standard process algebras allows already developed
veri�cation tools to be used�

� Modelling Fault tolerant Systems

This section presents an approach to specify fault tolerant systems so that the
speci�cation can be analysed by model checking technique� The following concepts
and terminology are used�

De�nition � �system� System denotes the speci�cation of the system in absence

of faults�

�



De�nition � �failure mode� Failure mode� denotes the way the system fails� in

terms of the behaviour of the system after the occurrence of a fault�

De�nition � �failing system� Failing system denotes the complete speci�cation

of the system� including all possible occurrence of faults� and the corresponding

failure modes�

De�nition � �fault tolerant system� Fault tolerant system denotes the speci��

cation of the addition of some fault tolerance technique to a failing system�

De�nition � �fault assumption� Fault assumption denotes the assumptions made
on the e�ectively possible occurrence of faults in the system�

The approach presented is based on the following points�

� a system is modelled as set of processes which communicate each other and
interact with the environment by executing actions�

� faults are modelled directly by actions of the processes themselves� For each
fault action� the relative failure mode is also speci�ed� Faults are modeled as
random events� For example� a crash fault in a state extends the behaviour
of the system by allowing a crash to occur in that state�

� assumptions on the occurrence of faults are included in the speci�cation by
de�ning ad hoc fault assumption processes� This allows the behaviour of the
fault tolerant system to be studied under di�erent fault scenarios�

��� Specifying a system

Two di�erent formalisms are interchangeably used to specify a system� the CCS�Meije
process algebra and an �almost� equivalent graphical notation� The choice of these
formalisms� mainly due to the availability of veri�cation tools� has proven valuable
for their ability of modeling fault assumptions and fault tolerance mechanisms�

CCS�Meije is the subset of Meije process algebra� de�ned in ���� that corresponds
to the CCS process algebra� following R� Milner �����

The syntax of CCS�Meije permits a two
layered speci�cation of concurrent sys

tems� as process terms� The �rst layer is related to sequential processes� the second
one to networks of parallel sub
processes� supporting communication and action
renaming or restriction�

The CCS�Meije syntax uses a set of labels Act as atomic actions names ranged
over by �� �� � � �� such names represent emitted signals if they are pre�xed by the
��� character� or received ones if they are pre�xed by ���� Actions �� and �� are
called co
actions� � denotes a special action not belonging to Act� the unobservable
action used to model internal process actions� Act� � Act � f�g� ranged over by
a� b� � � �� denotes the full set of actions that a process can perform�

The syntax of the language is the following�

R ��� stop j X j a � R j R �R j
let rec fX � R � and X � R � g in X

P ��� R j P k P j P n � j P ����� j
let fX � P � and X � R � g in X

where

� where R is the syntactic category of sequential processes and P is the syntactic
category of networks of parallel processes






� �� � �� denotes an optional and repeatable part of the syntax

� stop is the process without behavior

� a � R is the action pre�x operator� the action a is executed and then the
process behaves like R

� X � R bounds the process variable X to the process R

� R�R is the non deterministic choice operator� a process can choose between
the behaviour of several processes

� The let rec construct allows recursive de�nitions of process variables

� k is the parallel operator� This operator is used to specify the interleaved
execution of processes and their possible synchronisation when co
actions are
executed�

� P n� is the action restriction operator� meaning that � can only be performed
within a communication� This operator is used to specify processes which
must synchronise on actions �� and ��� The restriction operator transforms
the couple of co
actions executed together into the internal action � �

� P ����� is the substitution operator� renaming � into ��

The semantics of CCS�Meije is given operationally over LTSs� An LTS consists
of a set of states and transitions between states� where a transition corresponds to
the execution of an action of the system� In particular� only �nite state LTSs are
considered here� since the two layered syntax of CCS�Meije allows only �nite state
processes to be de�ned��

De�nition � An LTS is a ��tuple A � �Q� q�� Act� ���� where� Q is a set of states�

q� is the initial state� Act is a �nite set of observable actions� �� Q�Act� �Q is

the transition relation� an element �r� a� q� �� is called a transition and is written

as r
a
� q� It denotes the transition from the state r to the state q by executing

action a�

Paths over the LTS A are introduced� A sequence � � �q�� a�� q�� �q�� a�� q�� � � �
with �qi� ai� qi��� �� is called a path from q�� The empty path consists of a
single state q � Q and is denoted by q� A path that cannot be extended � i�e�� is
in�nite or ends in a state without outgoing transitions� is called a full path� The
starting state q� of the sequence is denoted by first��� and the last state of the
sequence� if the sequence is �nite� is denoted by last���� If � is an empty path �i�e�
� � q�� first��� � last��� � q� Concatenation of paths is denoted by juxtaposition�
� � �	� it is only de�ned if � is a �nite path and last��� � first�	�� Let � � �	�
In this case 	 is a su	x of � and 	 is a proper su	x if � �� q�

The Figure � shows the structural operational semantics of some CCS�Meije
operators previously described� in terms of LTSs ��

As an example� consider the speci�cation of a simple system that controls the
position of a level crossing gate p� allowing an operator to start the procedures for
the opening and the closure of the gate� The system is composed of three processes�
the process gate contr p �the gate�� the process open p �the opening procedure�

�the restriction to �nite state systems in our opinion does not limit the applicability of the
approach to fault tolerant control systems� since they are usually required to exhibit a �nite�state
behaviour even in presence of faults

�CCS	Meije inherits the operational rules of the parallel operator from CCS � whereas the
Meije parallel operator� instead� has an additional rule allowing product of actions that are not
necessarily co�actions�
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Operator Operational rules
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Q
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a
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P
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P k Q
�
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Figure �� Operational semantics of some CCS�Meije operators

and the process close p �the closure procedure�� The process gate contr p has
three states� undefined �initial state�� on �gate open� and off �gate closed�� The
gate changes its state upon receiving a command from the other processes� The
open operation checks the state of the gate� If the state is di�erent from on� it
sends to the gate the s on p signal� Similarly� the closure operation checks the
state of the gate� If the state is di�erent from off� it sends to the gate the s off p

signal�
Act contains the following actions� on p� off p and undefined p� executed by

the gate contr p to signal its current state� start close op and end close op�
executed by the process close op when this operation begins�ends� start open op

and end open op� executed by the process open op when this operation begins�ends�
s on p� sent by the process open p to the process gate contr p for setting the state
of the gate to on� s off p� sent by the process close p to the process gate contr p

for setting the state of the gate to off� These last two actions are synchronisation
actions�

Figure � reports the CCS�Meije speci�cation of gate contr p� Its states are
called UNDEFINED P� ON P and OFF P� For example� when the gate is in the state
ON P� the gate can either execute the action �on p indicating the current state of
the process or receive a signal �s off p �set state o�� and changing its state�

gate�contr�p �

let rec �

ON�P � �on�p � ON�P �

�s�on�p � ON�P �

�s�off�p � OFF�P

and

OFF�P � �off�p � OFF�P �

�s�off�p � OFF�P �

�s�on�p � ON�P

and

UNDEFINED�P � �undefined�p � UNDEFINED�P �

�s�off�p � OFF�P �

�s�on�p � ON�P

� in UNDEFINED�P�

Figure �� The gate contr p speci�cation

For brevity the speci�cations of the open op and close op processes �which
would require more information on how the external environment commands the
operations� are omitted here� The speci�cation of the whole system �net� is given
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by the parallel composition of the three processes �see Figure ��� The open op

and close op processes are independent from each other� but both must synchro

nise with the process gate contr p when checking the level crossing position or
when commanding the change of the level crossing state �actions� on p� off p�
undefined p� s off p and s on p��

net �

		open�op

close�op�



gate�contr�P��s�on�p�s�off�p�on�p�off�p�undefined�p�

Figure �� The net speci�cation

The graphical notation� de�ned for the ATG tool �

�� can be used� This nota

tion expresses a sequential process by drawing the LTS representing its behaviour
and expresses communicating processes by drawing a network of LTSs� In the �rst
case� circles and edges are used to represent states and transitions� respectively� The
initial state of the LTS is represented by a double circle and labels can be associated
both to edges and to vertices� Communicating processes are represented by boxes
with ports at the border� The ports are the process places of interconnection with
the environment� If two boxes are drawn at the same level� they can synchronize
via the actions they execute by linking the corresponding ports�

Figures 
 report the graphical speci�cation of the the gate contr p and the net
systems� respectively� Note that the synchronisation on the action s on p between
the processes open op and gate contr p is modeled by linking the �s on p of the
open p labeled box to the port �s on p of the gate contr p labeled box�
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Figure 
� The gate contr p graphical speci�cation�

The graphical formalism allows two additional features with respect to CCS�Meije�

� Observing synchronisation actions� According to the CCS�Meije parallel op

erator� synchronisations become the invisible � action� To observe synchroni

sation actions� a label must be put on the edge linking the ports� In this way
each time a synchronisation occurs� a transition with the name of the label
is shown� An example is shown in Figure �� By setting the label L on the
edge linking ports �b and �b� each time processes synchronise by executing
�b and �b� L is observed�

� Synchronisation among three or more subsystems� This is carried out by
the �web� operator� The ports corresponding to the actions which must be
executed all together are linked to the web by edges� As an example� Figure
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Figure �� A network of processes

� shows a multi
way synchronisation among processes P� Q and R� A web is
used in Figure � to synchronise the three subsystems on the action f�
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Figure �� Two
way and multi
way synchronisation

Given a network of LTSs or a process algebras term� the generation of the LTS
representing its overall behaviour is automatically performed by means of tools
based on the operational semantics rules ����

��� Specifying the failing system

Each kind of fault is modelled explicitly as an action� The execution of the action
corresponds to the occurrence of the fault� Let F be the set of actions modelling
faults in the system� The speci�cation of the failure of the system is obtained by
introducing occurrences of possible faults as transitions of the LTSs of the system�
If the action f � F is executed in a state of a system� then the failure mode of the
system is exhibited� otherwise� the system goes on with its behaviour�

Figure � models the failing system gate contr p� when two kind of faults are
considered� a permanent fault� modelled by the f p action� and a temporary fault�
modelled by the f t action�

The permanent fault leads the system to a special state named FAULTY P in
which the system shows forever the value undefined to the environment �the action
�undefined p�� The state FAULTY P is a sink state� The temporary fault causes the
system to lose the current correct state� by showing the value undefined until the
reception of a signal setting the position of the level crossing� Under the assumption
that a fault may occur at any time� an output edge labelled by �f p and an output
edge labelled �f t exists starting from each state of the entity�

The failure mode of the process may depend on the point at which a fault occurs
during the execution of the system� In most cases� associating a fault action with

�
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Figure �� The failing system gate contr p

a di�erent failure mode to every state of the system� is not necessary� Knowledge
of the actual failure points and failure modes can e used to produce a simpler
sepci�cation� Some examples in this direction are�

�� con�ning faults to speci�c subsystems�

�� choose speci�c points in the execution of the subsystems at which a fault may
occur� realizing some form of guided fault injection�

�� associating faults to communications between subsystems�


� assuming that every subsystem exhibits always the same failure mode in every
state� For example it stops�

The occurrence of faults at any point of the computation can be modelled as
follows� Every state must be extended with the possibility of the occurrence of
the fault� After the fault� the system stops� The fault starts another process that
models the failure mode of the original system� A number of failure processes equal
to the faults allowed by the fault assumption process must be composed in parallel
to the original system�

Some process algebras� like LOTOS� includes the disabling operator� The term
P �
 �fault�Q� means that the process P can be interrupted at any point by the
action fault� In this case the execution proceeds as Q� This operator allows the
possibility of a fault occurring in every state to be expressed more concisely� How

ever� this operator does not allow to model faults that can occur only in some states
and not in other states�

The modelling of faults that cause all subprocesses within a system to fail syn

chronously can be obtained by using the multiway synchronisation� The port cor

responding to a given fault in each replica is linked to the web operator� Let f

be an action corresponding to the occurrence of a given fault� Figure � model the
synchronous failure of the three subsystems�

	



Since the formalisms used in our approach see actions as atomic� the actions
of the speci�cation are atomic w�r�t� faults� In the case of modeling faults that
can occur during the occurrence of a functional action� a di�erent model of the
behaviour of the system should be produced� where functional actions are divided
in more sub
actions� A choice between a sub
action and a fault action is performed
at each of them� The model of the functional behaviour of the system should be
designed with a granularity that �ts the sought granularity of fault occurrences�

��� Introducing fault tolerance

The formal modeling of a fault tolerant system can be often structured as the parallel
composition of replicas that synchronise to produce useful work� The formalization
of a fault tolerance technique requires the use of the parallel composition� restric

tion and relabelling operators of CCS�Meije �or graphical composition� in order to
conveniently express composition of redundant replicas and additional components�

If fault masking is applied� a fault tolerance technique uses replicas of the system�
Replicas are generally composed together with some extra standard components
added by the fault tolerance technique �for example� a majority voter� for masking
the e�ects of the occurrence of faults� Formally� each replica is an instantiation
of the failing system with an ad hoc renaming of actions and di�erent names for
the fault actions �to distinguish between occurrences of the same kind of fault in
di�erent replicas��

For example Figure � shows that some actions must have the same name in
all the replicas� while other actions must be renamed� The �set� signal must be
sent synchronously to all replicas� The action s on p needs not to be renamed
in the replicas� since this action is actually a synchronisation among the replicas�
The actions f p must be renamed instead in all replicas� since this fault event is
asynchronous for all of them�

Let n denote the number of replicas used by the fault tolerance technique and
Fj denote the set of faults of the j
th replica� j � �� � � � � n� The set of faults of the
fault tolerant system is therefore F �

Sn

j�� F
j � Let M � fMi� � 	 i 	 kg be the

set of extra components added by the fault tolerance technique �M may be empty��
The application of a fault tolerance technique leads to a network of replicated

processes which includes the replicas and the added components synchronizing in
the speci�c way dictated by the fault tolerance technique �the parallel operator is
left associative��

��� k � � � k �n kM� k � � � kMk� n a�� � � � � nas
where a�� � � � � as are the synchronisation actions� ai �� F � and �i is the i
th

replica� We assume processes corresponding to replica use appropriate renaming of
the actions�

Each replica is a distinct process� This allows the speci�cation of fault tolerance
techniques based on design diversity� In this case instead of replicas� variants are
used� each of which corresponds to a particular speci�cation of the system�

Figure � shows the speci�cation of a classical duplication and comparison ar

chitecture applied to the gate example� duplicating the gate contr p process and
adding a comparator process�

Error processing is generally achieved through error detection and recovery tech

niques� In this case� the error detection module can be speci�ed as a further process
which interacts with the failing system� checking states of the computation� the re

covery algorithm can be included in the speci�cation of the failing system� Di�erent
actions can be used to distinguish various classes of errors� and the error recovery
algorithm followed can be modelled in the speci�cation in a similar way�

��
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Figure �� Fault tolerant system

��� Modelling fault assumptions

Assumptions on how faults are supposed to occur in the system can be speci�ed by
a further process� the fault assumption process� that is added to the speci�cation by
the parallel composition operator with synchronisation on the actions corresponding
to faults� The fault assumption generally limits the number of fault occurrences�
The most general fault assumption models any possible occurrence of faults� In the
case of two faults� for example f p and f t above� this fault assumption is shown in
Figure 	�
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Figure 	� A fault assumption

The fault assumption in Figure � does not allow the occurrence of temporary
faults and at most one permanent fault in one of the replicas can occur� Consider
the FH process� In the initial state� either the �f p � action is executed or the action
�f p � action is executed� Then the process stops�

� Properties of fault tolerant systems

A temporal logic in agreement with the selected speci�cation formalism is used to
formalise system�s properties�

��� The logic ACTL

ACTL �Action
based Computation Tree Logic� ��	� is an action
based version of
the branching time temporal logic CTL ����� ACTL has the advantage that� since
it is based on actions rather than states� it is naturally interpreted over LTSs�
Moreover� this logic is more expressive than other action
based logics� like Hennessy

Milner logic ����� without resorting to the full use of �xed point operators� such as
the �
calculus logic ����� �
calculus is more expressive than ACTL� but still most
interesting properties can be expressed in the latter�

��



The formulae of ACTL are built over the syntactic categories of action formulae�
state formulae and path formulae� An action formula permits expressing constraints
on the actions that can be observed� A state formula gives a characterization about
the possible ways an execution can proceed after a state has been reached� A path
formula states properties of an execution� The truth or falsity of a formula refers
to a satis�ability relation over LTSs� denoted j��

Given a set of observable actions Act� the action formulae on Act are de�ned as
follows �� ranges over Act��

� ��� true j � j 
� j � � �

An action formula permits expressing constraints on the actions that can be
observed� The satisfaction relation j� for action formulae is de�ned as follows�

� j� true always�
� j� � i� � � ��
� j� 
� i� � �j� ��
� j� � � �� i� � j� � or � j� ���

From now on� we let false abbreviate the action formula 
true and � � ��

abbreviate the action formula 
�
� � 
����
The syntax of state formulae and path formulae is given by the grammar below�


 �� � true j 

 j 
�
� j E� j A� j � � 
 
 j ���

� �� � F
 j G
 j 
f�gUf��g
�

where �� �� range over action formulae� E and A are path quanti�ers� F is the
eventually operator� G is the always operator and U is the until operator�

Satisfaction of a state formula 
 �path formula �� by a state q �path ��� notation
q j� 
 �or just � j� ��� is given inductively by�

q j� true always
q j� 

 iff q �j� 

q j� 
 � 
� iff q j� 
 and q j� 
�

q j� E� iff there exists a full path 	 from q such that 	 j� �
q j� A� iff for all full path 	 from q� 	 j� �
� j�� � 
 
 iff there exists �� q� such that �q� �� q�� ��� q� j� 
 and � j� �
� j� ���
 iff for all q� such that �q� �� q�� ��� q� j� 
 and � j� �
� j� F
 iff there exists a state q in � such that q j� 

� j� G
 iff for all states q in �� q j� 

� j� 
f�gUf��g
� iff there exists 	 � �q� �� q��	� su�x of �� such that

q� j� 
�� � j� ��� q j� 
 and for all � � �r� b� r�����
su�xes of �� of which 	 is a proper su�x�
we have r j� 
 and �b j� � or b � ��

The modality � � 
 
 means that there exists a next state of the path� reached
with an action satisfying � in which the formula 
 holds� while ���
 says that for
all next states of the path� reached with an action satisfying �� the formula 
 holds�
These modalities correspond to the diamond and box modalities of Hennessy
Milner
logic �� The meaning of the indexed until modality 
f�gUf��g
� is that any state
of the path is reached with an action in ��f�g and the state satis�es the formula 

until a state is reached with an action in �� and the state satis�es the formula 
�� Fi

nally� note that G
 can be derived as 
F

 and ���
 can be derived as 
 � � 
 

�

�in 
���� the modalities � � � � and 
��� are actually de�ned instead to be the weak version
of the diamond and box operators

��



Some properties for the gate contr p system in Figure 
 and their formalisation
in ACTL are�

� The system� after having received the action �s on p� cannot execute the
action �undefined


� � AG��s on p�
EF ��undefined p�true

� The system eventually executes the action �on p


� � AF � �on p 
 true

��� Properties veri�cation

The model checker accepts a �nite state machine �LTS� and an ACTL formula �����
If the model checker determines the formula is true� then the property holds in the
LTS and also in the system speci�cation�

The time complexity of traditional model checking algorithms� which are used
in the model checker of the JACK environment� is linear in the size of the global
LTS and in the size of the ACTL formula �the number of di�erent subformulae that
can be syntactically recognized in it� to be checked�

The model checker provides also the counterexample facility� If we check that
our speci�cation has a certain property� using this facility we can discover the paths
that make such a property true or false on the model�

Consider the failing contr gate p system and the properties 
� and 
� in Sec

tion 
��� 
� is satis�ed by the LTS in �gure 
� 
� is obviously false for every path
which does not include the �s on p action� We obtain the following trace from the
counterexample facility of the model checker�


� AF 
�on�p� true

The formula is FALSE in state ��


� why

	
��on�p�� true�

is false in state �

UNDEFINED � �undefined�p � UNDEFINED

��� Formalising fault tolerance properties

The ACTL expression of the general classes of properties reported in Section � are�

� Fault tolerance

AG
Corr
where 
Corr expresses a correctness condition on a state �an invariant�

� Fail�stop

AG�fault�
Term
where 
Term expresses the termination of the system

� Fail�silence

AG�fault�
CorrOmiss

where 
CorrOmiss expresses the correctness� apart from omission failures

� Fail�safe

AG�fault�

Unsafe
where 
Unsafe expresses all possible unsafe behaviours

The actual formulae to be checked strictly depends on the functionality of the
system� as we will see in the next Section� However� the general expressions given
above mostly use the form AG�fault�
� which predicate over what should be valid
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forever in the life of the system after the occurrence of a fault� These kind of
properties have often been called safety properties and are often satis�ed by a �null�
system�

Safety properties are distinguished from the liveness properties� Liveness properies
are expressed by the forms AF
� EF
� AGAF
� and so on� and state that some

thing should be eventually �or in�nitely often� done by the system�

Depending on the nature of the system� safety and�or liveness properties are
needed to express fault
tolerance properties�

Example of properties �and their formalisation in ACTL� of the gate contr p

system� whose LTS is shown in Figure �� are�

� Fail�safe property�
The system� after having received a set on signal �s on p� cannot execute the
action �off p until a set o� signal has been received�
Similarly� after having received a set o� signal �s off p� the system cannot
execute the action �on p until a set on signal has been received�
AG��s on p�A�truef
�offpgUf�s off pgtrue�
AG��s off p�A�truef
�on pgUf�s on pgtrue�

� Fault tolerance property�
The system� after having received a set on signal �s on p� executes the action
�on p until a set o� signal has been received�
Similarly� after having received a set o� signal �s off p� the system executes
the action �off p until a set on signal has been received�
AG��s on p�A�truef�on pgUf�s off pgtrue�
AG��s off p�A�truef�off pgUf�s on pgtrue�

� Liveness property�
The system� after having executed the action �off p� eventually executes the
action �on p�
��off p�AF ��on p�true

Fail
safe property guarantees that if the gate is open� then the state is on or
unde�ned� Similarly when the gate is closed� then the state is o� or unde�ned�
This holds also in presence of faults�

Fault tolerant property states that if the gate is open� then the state is on� while
if the state is closed the state is o�� This holds also in presence of faults�

The liveness property guarantess that a closed gate eventually is open� this would
be useful for the actual users of the level
crossing�

The system in Figure �� satis�es fail
safety property� while it is not fault tolerant�
Also the liveness property is not satis�ed by the system�

The fault tolerant system design in Figure � instead tolerates one faulty replica�
The fault assumption process in the same �gure limits the occurrence of faults to
at most one permanent fault in one of the replicas� This system satis�es the fault
tolerance property� Assume the FH process in Figure � is replaced by the FH process
in Figure 	� Since faults are not limited� in this case the fault tolerant property
above is not satis�ed�

� State space explosion problem

The main di�culty in using in practice model checking formal veri�cation methods
is due to the limits imposed by the size problem� that even challenges more advanced
model checking tools� Systems composed of several subsystems can be associated
to a �nite state model with a number of states which is exponential in the number
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of the component subsystems� Moreover� systems which are highly dependent on
data values share the same problem� producing a number of states exponential in
the number of data variables�

In the following it is shown an estimate of the maximal state
space size based
on structural knowledge about the system� The phased structure of fault tolerant
systems and algorithms limits a priori the state explosion problem� even if adopting
traditional model checking algorithms� A system employing redundancy is com

posed of a number of identical modules which compute the same results� At the
architecture level such modules are often independent processors� These modules
have to synchronize periodically in order to maintain their consistency� and the
synchronizations are usually combined with some comparison or voting operation�
aimed to detect or mask errors�

A common structure of such a system can be represented �in the case of du

plication redundancy� as shown in Figure ��� as a network of automata� each LTS
synchronizes with the other ones at the end of each phase�

Phase 1

!endphase1 !endphase1

Phase 2

!endphase2 !endphase2

Phase m

!endphasem !endphasem

.....

Phase 1

!endphase1 !endphase1

Phase 2

!endphase2 !endphase2

Phase m

!endphasem !endphasem

.....

!endphase1

!endphase2

!endphasem

!endphase1

!endphase2

!endphasem

Figure ��� The phased structure

The behaviour of the overall system is obtained by the parallel composition of
the replicas� Due to the synchronization at the end of each phase� the obtained
global LTS appears to be structured in phases as well� each phase of the overall
system is actually generated by the interleaving of the corresponding phases of
the di�erent replicas� while each phase is terminated by the synchronization of the
replicas� from which the next phase begins �see Figure ��� where Phase ijjPhase i
represents the LTS built by interleaving two replicas of Phase i��

If we call S the size of the state space of a replica� the cardinality of the state
space of the interleaving of n replicas has normally an upper bound of Sn� Due to
the phased structure� if we denote by Si the size of the state space of the i
th phase�
the upper bound for S is determined by the size of the interleaving of each phase�
that is� S�

n � S�
n � ����� Sm

n�
Moreover� the regular structure of a redundant system may be exploited to

contain state explosion with the help of existing established techniques� such as
symmetries and reduction preorders� Using symmetries� as proposed by Emerson
in ����� the number of states is reduced by identifying those states which coincide
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Phase 1 || Phase  1

!endphase1 !endphase1

Phase 2 || Phase 2

!endphase2 !endphase2

Phase m || Phase m

!endphasem !endphasem

.....

Figure ��� The phased structure

up to a permutation of the system components� Reduction preorders ���� employ
the independency of the property to be checked from the order in which interleaved
processes are actually executed� to select just one order and hence only a subset
of the state space to check its validity� In the case of redundancy� the complete
interleaving of the replicas can be avoided in the generation of the model� For
example� the selected executions could satisfy the constraint that all the transition
contributed to the global LTS by the �rst replica precedes the transitions of the
second replica and so on� The selection has however to take into account the
interactions between the replicas� The global state space of a phase i of the global
LTS for a system of n replicas is estimated to be of the order of n
Si� and therefore
the global state space of the overall algorithm is estimated to n 
 S�

Finally� the use of techniques such as decomposition and abstraction� can be
applied to overcome the state space explosion problem at the speci�cation level�

In particular� the following technique can be applied�

�� identi�cation of the system�s static con�guration parameters� The modelling
of these attributes as if they were variables� would contribute unnecessarily
to the growth of the number of states of the model� In the development of
the formal speci�cation� the con�gurations can be taken each at a time and
a property is satis�ed by the system if and only if it is veri�ed in all possible
con�gurations�

�� the relabelling of multiple actions into one action reduction well
known tech

nique� Assume �� an entity sequentially tests several signals in order to exe

cute an operation with success� �� the failure of any of these tests leads to the
failure of the operation itself� �� the properties do not involve actions related
to the tested signals� In this case the actions corresponding to a sequence of
tests can be modelled as a non deterministic choice between the success and
the failure of the tests� Consider the LTS in �gure �� �a�� The failure of any
test leads to state C� while the success of all the tests leads to state B� The
sequential tests can be substituted by a simple abstract test which may fail�
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A

B

C

?ver_signals
?not_ver_signals

C

?ver_signal2

?ver_signal1

?ver_signal3

A

B

?not_ver_signal3

?not_ver_signal2

?not_ver_signal1

(b)(a)

Figure ��� �a� A LTS� �b� The LTS after the reduction�

leading to state C� or it may be executed with success leading to state �Figure
�� �b���

�� the fault assumption process helps in the containment of state space explosion�
Consider for example a case in which a replica is modelled by a sequence of
phases� and in each of these phases� say the i�th� we can recognize Ni states
reachable in absence of faults and Fi states which are reached within a failure
mode �in reference to previous notations� we have therefore that Si � Ni�Fi��
If only a single fault is allowed to occur� say at the j�th phase� the total number
of states is bound by the sum� N�

n� ����Nj��
n�Fj 
Nj

n�������Fn 
Nn
n���

if we are not using reduction preorder� REFEREE �� cite general work on
partial order methods for model checking

In addition to the above techniques� domain
speci�c optimization of model
checking algorithms have been studied in the literature� In particular� some speci�c
features of safety critical systems may be searched that can be used to optimize the
veri�cation algorithms� As an example of possible domain speci�c optimizations�
Eisner ���� has shown how the safety critical characteristics of robustness and local

ity can be used to avoid di�cult �xed
point calculations in symbolic model checking
when applied to railway interlocking�

� Case studies

The approach proposed in the paper has been applied for specifying and verifying
two fault tolerant system designs� The �rst study is the speci�cation and veri�cation
of the safety requirements of a Railway Interlocking System developed by Ansaldo
Trasporti ���� The second one is the speci�cation and veri�cation of fault tolerant
mechanisms de�ned inside the project GUARDS �Generic Upgradable Architecture
for Real
Time Dependable Systems� �
��� Both studies show that�

� Some standard rules for the passage from the semi
formal description of the
system to its formal speci�cation can be successfully applied in the �eld of
fault tolerant systems� This passage is generally recognized one of the critical
points of the introduction of formal methods in the software development
cycle�

� the reduction in the state space due to the phased structure of redundant sys

tems makes the model checking approach viable in this domain of application�
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��� Railway Interlocking System

The �rst case study is a part of a railway signaling interlocking control system
developed by Ansaldo Segnalamento Ferroviario� The system operates within a
complex environment� interacting with a number of di�erent actuators and sensors�
and human operators� Sensors convey data concerning the physical status of the
environment� actuators allow for the control of the operations and the status of the
external environment� An operator may interact with the system sending commands
and selecting operation modes� The central Safety
nucleus is based on a TMR
�Triple Modular Redundancy� con�guration of computers implementing a two out
of three voting scheme� with automatic exclusion of the unit in disagreement with
the other two�

The scope of this control system is that of permitting a safe passage of trains
by adjusting the setting of signals on the railway line� The control system is rep

resented by a set communicating processes� modelling logical and physical entities�
The control of the entities is realised by operations which act on variables� Of

ten variables represents signals whose domain of values is very limited or a limited
number of values are of interest� The speci�cation and veri�cation of the system is
reported in ����

The translation from the semi
formal to the formal speci�cation was straight

forward as shown in �gure �� and �gure �
�

Each operation in the Ansaldo semi
formal speci�cation can be described in
three main parts�

pre
conditions on variables that must be satis�ed before continuing the operation
��VERIFY THAT� part� are de�ned� The operation is performed by modifying
the value of some common variables ��ASSIGN� part�� An �EXCEPTIONS� part
speci�es what should be done if a �VERIFY THAT� condition is not satis�ed�

Automatic closure request

I� VERIFY THAT

a� the command�state variable has the value �automatic��

b� the lcc�state variable has a value not equal to

�request to close��

II� ASSIGN

� the value �manual� to the command�state variable

EXCEPTIONS


a
 
b
 command is lost� no recovery actions�

Figure ��� Semi
formal speci�cation

�	�	� Reduction of the number of states

The use of the abstraction techniques presented above for testing signal values�
before combining the replicas of the TMR con�guration by means of the tools of the
Jack environment� have produced a model of the behaviour of the system composed
by one replica of about one million of states� The use of static parameters allowed
a reduction in the number of states of this global LTS from about one million states
to ���	
 states�

�	�	� Safety requirements veri�cation

A typical safety requirement for an interlocking system is that if a train is entering
a track containing a level crossing� if the proceed signal is sent to the train at the
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let rec �

S � �start�op� VERIF�A

and

VERIF�A � �automatic � VERIF�B �

�manual � EXC

and

VERIF�B � �closure�req � EXC �

�open�req � ASSIGN

and

ASSIGN � �s�manual � F

and EXC � tau � F

and F � �end � S

� in S�

Figure �
� Formal speci�cation

beginning of the track then the position of the level crossing is closed � This property
can be expressed more precisely as a proposition on the model of the behaviour of
the system as follows� in any state of the model if the position of the level crossing
is not equal to closed� then there is not an execution in which the proceed signal is
sent until the position of the level crossing is equal to closed� Hence� this property
can be classi�ed as a fail�safe property�

This expression can be formalised as a formula in the ACTL logic as follows� Let
raise shunt sign be the action corresponding to the proceed signal and let on pos�
off pos and undefined pos be the di�erent positions that the level crossing can
assume�

AG��
�off pos��
E�truef
�s off posgUf�raise shunt signgtrue����

��� Inter�consistency mechanism

The GUARDS project has produced a generic architecture for safety critical systems
�
�� designed to be instantiated to support di�erent critical applications� Model
checking techniques have been used in the project to validate the Inter
Consistency
mechanism which is the basis of the ad hoc de�ned fault tolerant mechanisms�

Interactive consistency focuses on the problem of reaching agreement among
multiple processors in presence of faults �also known as the �Byzantine Generals
problem� ������ The principal di�culty to be overcome in achieving interactive
consistency is the possibility of con icting values sent by faulty processors�

The Inter
consistency mechanism uses the ZA Byzantine Agreement algorithm
described in ����� According to the GUARDS architecture� the Inter
Consistency
mechanism must guarantee consistency among three or four processors� The al

gorithm is synchronous and uses several rounds of authenticated encoded message
exchange during which processor P tells processor Q what value it has received from
processor R and so on� Each node has at the end a voted knowledge on each value
hold by every other node� The assumption of message authentication requires that
faulty processors do not make undetectable modi�cations to messages as they are
relayed from one processor to another� The mechanism is a composition of trans

mitter and receiver protocols� for example� in the four nodes case P� Q� R and S� each
node includes one transmitter protocol and three receiver protocols� The pseudo

code for the transmitter node P is given in Table �� where vp is the private value of
the node P�

The algorithm is modelled as a network of four communicating processes� each
modelling one of the four nodes� Moreover� the algorithm has a phased structure�
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phase �� phase��

vp�p �� p encode	vp�� p� �� p decode	msg���

p broadcast	vp�p�� msg� �� q receive	��

phase�� phase��

msg� �� s receive	�� p� �� p decode	msg���

vp	p� �� vote	p�� p�� p���

phase��

p� �� p decode	msg���

msg� �� r receive	��

Table �� The ZA algorithm of transmitter node P

Table �� Number of states for the GUARDS Byzantine Agreement�
Model of� states
A single non faulty node 
��
Network of 
 non faulty nodes �
�	
Network with an arbitrarily faulty node and a symmetric faulty node ��	���
Network with an arbitrarily faulty node� and authentication violation ������

each of the previous processes is described by a network communicating processes
modelling the di�erent phases of the algorithm and the local variables� We refer
the reader to ��� for the complete speci�cation and veri�cation work�

The translation from the speudo
code to the formal speci�cation is straightfor

ward� For example� assuming two di�erent values � and �� the process modelling
the phase � of node P is expressed by the following CCS�Meije term�

phase�P � �

RECEIVE � �ssendp�encp�� � �s�m�p�encp�� � END 	

�ssendp�encp�� � �s�m�p�encp�� � END 	

�ssendp�omission � �s�m�p�omission � END

and

END � �startphase
 � stop

� in RECEIVE�

The node upon receiving a message from S �or detecting an omission fault��
saves the message into the variable named m�p� Then it is ready to execute phase

 of protocol� and signals this by the �startphase
 action� on which all the other
nodes have to synchronize�

�	�	� Reduction of the number of states

Table � presents the size of the state space of the single node� and that of the network
composed of four nodes under di�erent fault assumptions� The fault assumptions
have been modelled by means of speci�c processes which constraint the occurrences
of faults�

The table clearly shows�

� the fact that the size of the state space is largely below the fourth power of
the size of the state space of a single node con�rms the observations we have
enunciated previously�
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� the increase of the state space with the generality of the fault assumptions�
evident in the last two rows�

�	�	� Agreement and Validity properties veri�cation

The classical Agreement and Validity properties must be satis�ed to reach consis

tency�

Agreement� if a pair of receivers are non faulty� then they agree on the value
ascribed to the transmitter�

Validity� if the receiver P is non faulty� then the value ascribed to the transmit

ter by P is the value actually sent if the transmitter is non faulty or
symmetric faulty� or the distinguished value error� if the transmitter
is manifest faulty�

The formalisation of these properties as ACTL formulae is�
Agreement�
for any execution of the processes�

the nodes eventually agree on the value � �actions �vp ofp eqto �
 �vp ofq eqto �


�vp ofr eqto �
 �vp ofs eqto �� or the nodes eventually agree on the value � �ac

tions �vp ofp eqto �
 �vp ofq eqto �
 �vp ofr eqto �
 �vp ofs eqto �� �
V alidity�
if in any state of the model� it is true that the internal value of the node P is equal
to � �action �psend vp �� or � �action �psend vp �� � then for any execution of the
processes� starting from such a state� the nodes eventually agree on such a value�

Assume S faulty� The combination of the Agreement and V alidity properties in
the case of value �� is expressed by the following ACTL formula�

AG��psend vp ���A�trueftruegUf�vp ofp eqto �gtrue��
A�trueftruegUf�vp ofq eqto �gtrue��A�trueftruegUf�vp ofr eqto �gtrue��

We applied the model checker tool to prove the invariance of required properties
under given fault assumptions� As expected� we found that in the case of a violation
of the assumption on authentication� even a single faulty node is not tolerated�

� Conclusions

This paper shows the application of the model checking technique for the speci�

cation and veri�cation of fault tolerant systems� The results on the application of
the approach to two case studies are reported� The studies show the feasibility of
model checking to case studies from industries and con�rm that key
point in the
industrial acceptance of model checking are

� the using of a speci�cation formalism which is essentially some variants of
�nite
state machines �commonly used in many industrial activities� especially
in the safety critical systems area��

� the existence of automatic veri�cation tools�

State explosion represents the main problem to the application of model checking
for handling large industrial systems in many �elds� However� recent advances
in model checking techniques� have managed to deal with very large state spaces
by the use of symbolic manipulation algorithms inside model checkers� The most
notable example is the SMV model checker ����� In SMV the transition relations are
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represented implicitly by means of Boolean formulae and are implemented by means
of Binary Decision Diagrams �BDDs� ����� This usually results in a much smaller
representation for the systems� transition relations� thus allowing the maximum size
of the systems that can be dealt with to be signi�cantly enlarged�
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