
Model Checking Fault Tolerant Systems

Cinzia Bernardeschi 1, Alessandro Fantechi 2, Stefania Gnesi 3

1 Dipartimento di Ingegneria della Informazione, Univ. di Pisa

Via Diotisalvi 2, 56126, Pisa, Italy, phone:+39-50-568511 cinzia@iet.unipi.it
2 Dip. di Sistemi e Informatica, Univ. di Firenze

Via S. Marta 3, 50139, Firenze, Italy, phone:+39-55-4796265 fantechi@dsi.uni�.it
3 Istituto di Elaborazione dell'Informazione, IEI-CNR

Via G. Moruzzi 1, 56124 Pisa, Italy, phone:+39-50-3152918 gnesi@iei.pi.cnr.it

Keywords: formal methods, fault tolerance, model checking, veri�cation.

Abstract

This paper proposes a modelling approach suitable for formalising fault

tolerant systems, taking into account di�erent fault scenarios. Veri�cation of

properties of such systems is then performed using model checking. A general

framework for the formal speci�cation and veri�cation of fault tolerant systems

is de�ned starting from these principles, and an experience in its application

to two case studies is then presented.

1 Introduction

The large deployment of computer{controlled systems has raised in last years many

concerns about safety issues when human activities and lifes depend on them. A

combination of fault prevention, fault tolerance, fault removal and fault forecasting

techniques are commonly used in order to achieve a high degree of dependability

[33]. There not exists, however, a common agreement on a standard method to

combine and integrate individual techniques: industries, basing on their di�erent

backgrounds and application �elds, adopt their own, di�erent, development trajec-

tories, which are based on the separate use of various techniques aimed at enhancing

dependability. Indeed, the combination and integration of di�erent dependability

techniques is still an open research area.

This paper addresses the combination of the adoption of fault tolerance mecha-

nisms and of the use of formal methods, and in particular formal veri�cation tools,

in the development of a system. While fault tolerance is achieved through a set of

well-established and commonly adopted techniques, which often exploit hardware

redundancy, formal methods have not gained a wide acceptance as a viable means

to reduce the failure rate of programs, though several success stories have been re-

ported (see, for example, [20]), and international standards and guidelines (e.g. the

CENELEC EN50128 guidelines for software development in the railway industry

[13]) recommend the use of formal methods in the development of safety critical

computer{controlled systems.

Nowadays, the industrial trend is directed to the adoption of formal veri�cation

techniques to validate the design, integrating them within the existing development

process. Industries are more keen to accept formal veri�cation techniques assessing

1

the quality attributes of their products, obtained by a traditional life cycle, rather

than a fully formal life cycle development, due to the lower training and innovation

costs of the former.

Following this trend, the paper proposes the use of a formal veri�cation tech-

nique, namely model checking, to verify the conformance of a design with respect

to desired properties, such as:

1. Correctness. The system delivers a correct service (in absence of faults)

2. Fault tolerance. The system delivers a correct service, despite faults

3. Fail-silence. The system failures can only be omission failures, that is, failures

to temporarily provide the service to the user of the system

4. Fail-stop. In case of faults, the system terminates the delivery of its service

5. Fail-safe. The system failure is a transition to a state in which no catastrophic

event can occur

The properties 2,3,4 and 5 will be studied with respect to speci�c classes of

faults and in presence of given fault occurrences, that is, under well-de�ned fault

assumptions. The properties informally expressed above can be formally speci�ed

using some logic formalism; temporal logic, whose operators permit explicit quan-

ti�cation over all possible futures, is a possible candidate. If a formal model of the

system under analysis is generated, typically by means of state machines or transi-

tion systems, model checking algorithms can be used to prove that the model of the

system satis�es the properties expressed in a temporal logic [14]. Unfortunately,

when model checking is applied to a system composed of several subsystems, it

su�ers of the so called "State Space Explosion" problem. In this case a �nite state

model with a number of states which is exponential in the number of the component

subsystems can be generated. The redundancy often introduced by fault tolerance

mechanisms could be a possible cause of such a problem, since it increases (often

even duplicates or triplicates) the number of subsystems. In this paper it is shown

that instead some typical redundant structures can help to contain the increase in

the state space. Following these observations, suitable techniques to adopt in order

to address this problem are indicated.

The paper is organised as follows. Section 2 presents a technique adopted for for-

mally specifying fault tolerant systems. Section 3 addresses fault tolerant systems

properties, their formalisation and veri�cation. Section 4 deals with the character-

istics that make model checking technique applicable in this �eld. Section 5 reports

on the application of the proposed formalisation technique and veri�cation tools to

two case studies concerning real systems. Section 6 reviews related work.

2 Modelling Fault tolerant Systems

This section presents an approach to specify fault tolerant systems in such a way

that the speci�cation can be analysed by model checking techniques. The approach

is derived from [4], in which the following concepts were de�ned, in accordance with

the terminology proposed in [33]:

De�nition 1 (system) System denotes the speci�cation of the system in absence

of faults.

De�nition 2 (failure mode) Failure mode denotes the way the system fails, in

terms of the behaviour of the system after the occurrence of a fault.

2

De�nition 3 (failing system) Failing system denotes the complete speci�cation

of the system, including all possible occurrence of faults and the corresponding failure

modes.

De�nition 4 (fault tolerant system) Fault tolerant system denotes the speci�-

cation of the addition of some fault tolerance technique to a failing system.

De�nition 5 (fault assumption) Fault assumption denotes the assumptions made

on the e�ectively possible occurrence of faults in the system.

The approach presented is based on the following points:

� a system is modelled as set of processes which communicate each other and

interact with the environment by executing actions

� faults are modelled directly by actions of the processes themselves. For each

fault action, the relative failure mode is also speci�ed. For example, a crash

fault in a state extends the behaviour of the system by allowing a crash to

occur in that state. Moreover, faults are modeled as random events

� assumptions on the occurrence of faults are included in the speci�cation by

de�ning ad hoc fault assumption processes. This allows the behaviour of the

fault tolerant system to be studied under di�erent fault scenarios

2.1 Specifying a system

Two di�erent formalisms are interchangeably used to specify a system: the CCS/Meije

process algebra and an (almost) equivalent graphical notation. The choice of these

formalisms, mainly due to the availability of veri�cation tools, has proven valuable

for their ability of modeling fault assumptions and fault tolerance mechanisms.

CCS/Meije is actually the subset of the Meije process algebra [1], in which only

the parallel composition operator that corresponds to the CCS one [34] is considered.

The syntax of CCS/Meije permits a two-layered speci�cation of concurrent sys-

tems, as process terms. The �rst layer is related to sequential processes, the second

one to networks of parallel sub-processes, supporting communication and action

renaming or restriction.

The CCS/Meije syntax uses a set of labels Act as atomic actions names ranged
over by �; �; � � �; such names represent emitted signals if they are pre�xed by the

"!" character, or received ones if they are pre�xed by "?". Actions !� and ?� are

called co-actions. � denotes a special action not belonging to Act, the unobservable
action used to model internal process actions. Act� = Act [f�g, ranged over by

a; b; � � �, denotes the full set of actions that a process can perform.

The syntax of the language is the following:

R ::= stop j X j a : R j R +R j

let rec fX = R [and X = R] g in X

P ::= R j P k P j P n � j P [�=�] j

let fX = P [and X = R] g in X

where

� R is the syntactic category of sequential processes and P is the syntactic

category of networks of parallel processes

� [: : :] denotes an optional and repeatable part of the syntax

3

� stop is the process that does not perform any action

� a : R is the action pre�x operator: the action a is executed and then the

process behaves like R

� X = R bounds the process variable X to the process R

� the sum is the non deterministic choice operator: a process R1+R2 can choose
between the behaviour the process R1 and that of the process R2

� the let rec construct allows recursive de�nitions of process variables

� k is the parallel operator. This operator is used to specify the interleaved

execution of processes and their possible synchronisation when co-actions are

executed.

� P n� is the action restriction operator, meaning that � can only be performed

within a communication. This operator is used to specify processes which

must synchronise on actions !� and ?�. The restriction operator transforms

the couple of co-actions executed together into the internal action �

� P [�=�] is the substitution operator, renaming � into �

The semantics of CCS/Meije is given operationally over LTSs. An LTS consists

of a set of states and transitions between states, where a transition corresponds to

the execution of an action of the system.

De�nition 6 An LTS is a 4-tuple A = (Q; q0; Act� ;!), where: Q is a set of states;

q0 is the initial state; Act is a �nite set of observable actions; !� Q�Act� �Q is

the transition relation; an element (r; a; q) 2! is called a transition and is written

as r
a

! q. It denotes the transition from the state r to the state q by executing

action a.

Paths over the LTS A are introduced. A sequence � = (q0; a0; q1) (q1; a1; q2) � � �
with (qi; ai; qi+1) 2! is called a path from q0. The empty path consists of a

single state q 2 Q and is denoted by q. A path that cannot be extended (i.e., is

in�nite or ends in a state without outgoing transitions) is called a full path. The

starting state q0 of the sequence is denoted by first(�) and the last state of the

sequence, if the sequence is �nite, is denoted by last(�). If � is an empty path (i.e.

� = q), first(�) = last(�) = q. Concatenation of paths is denoted by juxtaposition:
� = ��; it is only de�ned if � is a �nite path and last(�) = first(�). Let � = ��.
In this case � is a su�x of � and � is a proper su�x if � 6= q.

Figure 1 shows the structural operational semantics of some CCS/Meije opera-

tors previously described, in terms of LTSs 1. In particular, only �nite state LTSs

are considered here, since the two layered syntax of CCS/Meije adopted above al-

lows only �nite state processes to be de�ned2.

As an example, consider the speci�cation of a simple system that controls the

position of a level crossing gate p, allowing an operator to start the procedures for

the opening and the closure of the gate. The system is composed of three processes,

the process gate contr p (the gate), the process open p (the opening procedure)

and the process close p (the closure procedure). The process gate contr p has

1CCS/Meije inherits the operational rules of the parallel operator from CCS, whereas the

Meije parallel operator, instead, has an additional rule allowing product of actions that are not

necessarily co-actions.
2The restriction to �nite state systems in our opinion does not limit the applicability of the

approach to fault tolerant control systems, since they are usually required to exhibit a �nite-state

behaviour even in presence of faults

4

Operator Operational rules

a : P
a : P

a

�! P

P +Q
P

a

�! P 0

P +Q
a

�! P 0

Q
a

�! Q0

P +Q
a

�! Q0

P k Q
P

a

�! P 0

P k Q
a

�! P 0
k Q

Q
a

�! Q0

P k Q
a

�! P k Q0

P
?�
�! P 0; Q

!�
�! Q0

P k Q
�

�! P 0
k Q0

Figure 1: Operational semantics of some CCS/Meije operators

three states: unde�ned (initial state), open and closed. The gate changes its state

on receiving a command from the other processes. The open p operation checks the

state of the gate. If the state is unde�ned or closed, it sends the set state on signal

(action !s on p) to the gate. Similarly, the close p operation checks the state of

the gate. If the state is unde�ned or open, it sends the set state o� signal (action

!s off p) to the gate. The gate process is able to execute the actions !on p, !off p

and !undefined p to indicate that its current state is open, closed or unde�ned,

respectively.

Figure 2 reports the CCS/Meije speci�cation of gate contr p. Its states are

called UNDEFINED P, ON P and OFF P. For example, when the gate is in the state

ON P, the gate can send the signal !on p indicating the current state of the process,

receive a signal ?s off p (set state o�) and changing its state, or receive a signal

?s on p (set state on) and remaining in the same state.

gate_contr_p =

let rec {

ON_P = !on_p : ON_P +

?s_on_p : ON_P +

?s_off_p : OFF_P

and

OFF_P = !off_p : OFF_P +

?s_off_p : OFF_P +

?s_on_p : ON_P

and

UNDEFINED_P = !undefined_p : UNDEFINED_P +

?s_off_p : OFF_P +

?s_on_p : ON_P

} in UNDEFINED_P;

Figure 2: The gate contr p speci�cation

For shortness, the speci�cations of the open op and close op processes (which

would require more information on how the external environment commands the

operations of the level crossing gate) are omitted here. The speci�cation of the

whole system (net) is given by the parallel composition of the three processes (see

Figure 3). The open op and close op processes are independent from each other,

but both must synchronise with the process gate contr p when checking the level

crossing position (actions: on p, off p, undefined p) or when commanding the

change of the level crossing state (actions: s off p and s on p).

The graphical notation de�ned for the ATG tool [39], can alternatively be used.

5

net =

((open_op||close_op)||

gate_contr_P)\s_on_p\s_off_p\on_p\off_p\undefined_p;

Figure 3: The net speci�cation

This notation expresses a sequential process by drawing the LTS representing its

behaviour and expresses communicating processes by drawing a network of LTSs.

In the �rst case, circles and edges are used to represent states and transitions, re-

spectively. The initial state of the LTS is represented by a double circle and labels

can be associated both to edges and to vertices. Communicating processes are

represented by boxes with ports at the border. The ports are the places of inter-

connection of processes with the environment. If two boxes are drawn at the same

level, they can synchronise via the complementary actions they execute by linking

the corresponding ports.

Figures 4 and 5 report the graphical speci�cation of the gate contr p process

and of the network corresponding to the speci�cation shown in Figure 3, respec-

tively. Note that the synchronisation on the action s on p between the processes

open op and gate contr p is modeled by linking the !s on p of the open p labeled

box to the port ?s on p of the gate contr p labeled box.

UNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_P

OFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_P ON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_P

!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p
?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p
?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p
?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

Figure 4: The gate contr p graphical speci�cation.

open_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_opopen_op

gate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_pgate_contr_p

close_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_opclose_op

?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p

?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p

!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p

?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p

?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p

?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p

!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open!end_open
!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op!start_open_op

!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p

?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p?undefined_p

?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p?off_p

?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p?on_p
!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos!end_clos

!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op!start_clos_op

Figure 5: A network of processes

The graphical formalism provides two additional features with respect to CCS/Meije:

6

� Observable synchronisation actions. According to the CCS/Meije parallel

operator, synchronisations become the invisible � action. To observe synchro-
nisation actions, a label must be put on the edge linking the ports. In this

way each time a synchronisation occurs, a transition with the name of the

label is shown. An example is shown in Figure 6: by setting the label L on the

edge linking ports !b and ?b, each time processes synchronise by executing

!b and ?b, L is observed.

� Synchronisation among three or more subsystems. This is carried out by

the "web" operator. The ports corresponding to the actions which must be

executed all together are linked to the web by edges. As an example, Figure

6 shows a multi-way synchronisation among processes P, Q and R. A web is

used in Figure 6 to synchronise the three subsystems on the action f.

PPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQ

RRRRRRRRRRRRRRRRR

!f!f!f!f!f!f!f!f!f!f!f!f!f!f!f!f!f

?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f

?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f?f

!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b

?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b
LLLLLLLLLLLLLLLLL

Figure 6: Two-way and multi-way synchronisation

Given a network of LTSs or a process algebra term, the generation of the LTS

representing its overall behaviour is automatically performed by means of tools,

based on the related operational semantics rules [6].

2.2 Specifying the failing system

Each kind of fault is modelled explicitly as an action. The execution of the action

corresponds to the occurrence of the fault. Let F be the set of actions modelling the

possible faults in a system. The speci�cation of the failure of the system is obtained

by introducing occurrences of the possible faults as transitions in the LTSs modeling

the system. If the action f 2 F is executed in a state of a system, then the failure

mode of the system is exhibited, otherwise, the system goes on with its behaviour.

Figure 7 models the failing system gate contr p, when two kind of faults are

considered: a permanent fault, modelled by the ?f p action, and a temporary fault,

modelled by the ?f t action.

The permanent fault leads the system to a special state named FAULTY P in

which the state of the system is unde�ned forever (action !undefined p). The

temporary fault causes the system to lose the current correct state. The system

moves in the state UNDEFINED P until a signal re-setting the position of the level

crossing is received. Under the assumption that a fault may occur at any time, an

output edge labelled by ?f p and an output edge labelled ?f t exists starting from

each state of the LTS.

The failure mode of the system may depend on the point of the execution of

the system at which the fault occurs. In most cases, associating a fault action with

a di�erent failure mode to every state of the system is not necessary. Knowledge

of the actual failure points and failure modes can be used to produce a simpler

speci�cation. Some examples in this direction are:

1. con�ning faults to speci�c subsystems

7

?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t

?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t

?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t

?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t

?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p

?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p
?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p

?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p

?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

?s_off_p

?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p !on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

UNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_PUNDEFINED_P

OFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_POFF_P ON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_PON_P

FAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_PFAULTY_P

?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p

Figure 7: The failing system gate contr p

2. choose speci�c points in the execution of the subsystems at which a fault may

occur, realising some form of guided fault injection

3. associating faults to communications between subsystems

4. assuming that every subsystem exhibits always the same failure mode in every

state

A way to express the occurrence of a fault f at any point of the computation of

the system P is the following:

(P 0
k Q) n f

where

� P 0 is equal to P except that every state of P is extended with the possibility

of the occurrence of the fault followed by stop (f : stop)

� Q is a process of the form Q = f : Q0 where Q0 speci�es the failure mode of

the original system P

For every fault occurrence allowed by the fault assumption, a process Q must

be instantiated.

Some process algebras, like LOTOS [5], include the disabling operator ([>).
The term P [> (f ;Q) means that the process P can be interrupted at any point

by the action f . In this case the execution proceeds as Q. This operator allows

the possibility of a fault occurring in every state to be expressed more concisely.

However, this operator does not allow faults that can occur only in some states and

not in other states to be modeled.

The modelling of faults that cause all subprocesses within a system to fail syn-

chronously can be obtained by using the multiway synchronisation operator pro-

vided by the graphical notation. The port corresponding to a given fault in each

replica is linked to the web operator. As an example, Figure 6 models the syn-

chronous failure of the subsystems Q and R when the fault f occurs according to

the fault assumption P .
Since the formalisms used in our approach see actions as atomic, the actions of

the speci�cation are atomic w.r.t. faults. If the actions of the speci�cation model

8

functional activities of the real system, it may be needed to model instead faults

that can occur during these actions. In this case, a di�erent model of the behaviour

of the system should be produced, for example, dividing functional actions in more

atomic sub-actions and associating a choice of a fault action to each sub-action.

2.3 Introducing fault tolerance

The use of the parallel composition, restriction and relabelling operators of CCS/Meije

(or graphical composition) is generally required in order to conveniently express a

fault tolerant system design. A fault tolerance technique uses replicas of the system

composed together with some extra standard components (for example, a majority

voter) for masking the e�ects of the occurrence of faults. Formally, each replica

is an instantiation of the failing system with an ad hoc renaming of actions. In

particular, di�erent names for the fault actions are used to distinguish between

occurrences of the same kind of fault in di�erent replicas.

Figure 8 shows the graphical speci�cation of a classical duplication and compari-

son architecture applied to the gate example, duplicating the gate contr p process

and adding a comparator process. The same �gure shows that some actions must

have the same name in all the replicas, while other actions must be renamed. The

"set" signal must be sent synchronously to all replicas. The action ?s on p needs

not to be renamed in the replicas, since this action is actually a synchronisation ac-

tion among the replicas. The actions ?f p must be instead renamed in all replicas,

since this fault event is an asynchronous event for all of them.

Let n denote the number of replicas used by the fault tolerance technique and

F
j denote the set of faults of the j-th replica, j = 1; � � � ; n. The set of faults of the

fault tolerant system is therefore F =
S
n

j=1
F
j . Let M = fMi; 1 � i � kg be the

set of extra components added by the fault tolerance technique (M may be empty).

The application of a fault tolerance technique leads to a network of replicated

processes which includes the replicas and the added components synchronising in

the speci�c way imposed by the fault tolerance technique. This is described in the

CCS/Meije notation as (the parallel operator is left associative):

(�1 k � � � k �n kM1 k � � � kMk) n a1; � � � ; nas
where a1; � � � ; as are the synchronisation actions, ai 62 F , and �i is the i-th

replica, with an appropriate renaming of the actions as explained above.

Since each replica is a distinct process, the speci�cation of fault tolerance tech-

niques based on design diversity is allowed. In this case instead of replicas, variants

are used, each of which corresponds to a particular speci�cation of the system.

Finally, error processing is generally achieved through error detection and recov-

ery techniques. In this case, the error detection module can be speci�ed as a further

process which interacts with the failing system, checking states of the computation.

Di�erent actions can be used to distinguish various classes of errors, and the chosen

error recovery algorithm can be modelled in the speci�cation in a similar way.

2.4 Modelling fault assumptions

Assumptions on how faults are supposed to occur in the system can be speci�ed by

a further process, the fault assumption process, that is added to the speci�cation by

the parallel composition operator with synchronisation on the actions corresponding

to faults. The fault assumption generally limits the number of fault occurrences.

The most general fault assumption models any possible occurrence of faults. In the

case of two faults, for example f p and f t above, this fault assumption is shown in

Figure 9. The fault assumption (FA process) in Figure 8 allows the occurrence of at

most one permanent fault in one of the replicas. In the initial state, either !f p 1

or !f p 2 can be executed. Then the process stops. Note that the label FP1 on the

9

gate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_P

gate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_Pgate_contr_P

comparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparatorcomparator

FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFA

?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p
?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p
!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p?s_off_p
?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p?s_on_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p
!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1?on_p_1

?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1?off_p_1

?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1?undefined_p_1

?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2?on_p_2

?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2?off_p_2

?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2?undefined_p_2

!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p

?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t

?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p?f_p
?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t?f_t

!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p!s_off_p

!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p!s_on_p

?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2?f_p_2

?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2?f_t_2

?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1?f_p_1

?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1?f_t_1

!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p!on_p

!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p!off_p

!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p!undefined_p

!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1

!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1!f_t_1
!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2

!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2!f_t_2

!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1!f_p_1 !f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2!f_p_2

FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1FP1

FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1FT1

FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2FP2

FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2FT2

Figure 8: Fault tolerant system

link connecting the ports ?f p 1 and !f p 1 produces an LTS in which, when this

synchronisation action is executed, the action FP1 is observed. This label can be

useful in the formalisation of properties about the behaviour of the system after the

occurrence of the given fault.

!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_t!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p!f_p

Figure 9: A fault assumption

3 Properties of fault tolerant systems

3.1 The logic ACTL

ACTL (Action-based Computation Tree Logic) [17] is an action-based version of

the branching time temporal logic CTL [14]. ACTL has the advantage that, since

it is based on actions rather than states, it is naturally interpreted over LTSs.

Moreover, this logic is more expressive than other action-based logics, like Hennessy-

Milner logic [24], without resorting to the full use of �xed point operators, such as

the �-calculus logic [29]. �-calculus is more expressive than ACTL, but still most

interesting properties can be expressed in the latter.

The formulae of ACTL are built over the syntactic categories of action formulae,

state formulae and path formulae. An action formula permits expressing constraints

on the actions that can be observed. A state formula gives a characterisation about

the possible ways an execution can proceed after a state has been reached. A path

formula states properties of an execution. The truth or falsity of a formula refers

to a satis�ability relation over LTSs, denoted j=.

Given a set of observable actions Act, the action formulae on Act are de�ned as

follows (� ranges over Act):

� ::= true j � j :� j � _ �

The satisfaction relation j= for action formulae is given by:

10

� j= true always;

� j= � i� � = �;
� j= :� i� � 6j= �;
� j= � _ �0 i� � j= � or � j= �0.

From now on, false abbreviates the action formula :true and �^�0 abbreviates
the action formula :(:� _ :�0).

The syntax of state formulae and path formulae is given by the grammar below:

� :: = true j :� j �&�0 j E
 j A
 j < � > � j [�]�

 :: = F� j G� j �f�gUf�0g�0

where �; �0 range over action formulae, E and A are path quanti�ers, F is the

eventually operator, G is the always operator and U is the until operator.

The satisfaction relation j= for a state formula � (path formula
) by a state q
(path �) is given inductively by:

q j= true always

q j= :� iff q 6j= �
q j= � & �0 iff q j= � and q j= �0

q j= E
 iff there exists a full path � from q such that � j=

q j= A
 iff for all full path � from q, � j=

� j=< � > � iff there exists �; q0 such that (q; �; q0) 2!, q0 j= � and � j= �
� j= [�]� iff for all q0 such that (q; �; q0) 2!, q0 j= � and � j= �
� j= F� iff there exists a state q in � such that q j= �
� j= G� iff for all states q in �, q j= �
� j= �f�gUf�0g�0 iff there exists � = (q; �; q0)�0 su�x of �, such that

q0 j= �0, � j= �0, q j= � and for all � = (r; b; r0)�0,
su�xes of �, of which � is a proper su�x,
we have r j= � and (b j= � or b = �)

The modality < � > � means that there exists a next state of the path, reached

with an action satisfying � in which the formula � holds; while [�]� says that for

all next states of the path, reached with an action satisfying �, the formula � holds.

These modalities correspond to the diamond and box modalities of Hennessy-Milner

logic 3. The meaning of the indexed until modality �f�gUf�0g�0 is that any state

of the path is reached with an action in �[f�g and the state satis�es the formula �
until a state is reached with an action in �0 and the state satis�es the formula �0. Fi-
nally, note that G� can be derived as :F:� and [�]� can be derived as : < � > :�.

Examples of properties for the gate contr p system and their formalisation in

ACTL are:

� The system, after having received the action ?s on p, cannot execute the

action !undefined

�1 = AG[?s on p]:EF [!undefined p]true

� The system eventually executes the action !on p

�2 = AF < !on p > true

3In [17], the ACTL modalities < � > � and [�]� are actually de�ned instead to be the weak

version of the diamond and box operators

11

3.2 Properties veri�cation

The AMC model checker available in the veri�cation environment JACK [6] accepts

a �nite state machine (LTS) and an ACTL formula, and checks whether the formula

holds on the LTS. The generation of the LTS from a network of subsystems is

performed by means of other tools of JACK.

The time complexity of traditional model checking algorithms, which are used

by AMC, is linear in the size of the global LTS and in the size of the ACTL for-

mula, with respect to the number of di�erent subformulae that can be syntactically

recognised in it.

The model checker can be applied for the veri�cation of the properties �1 and �2
described in the previous sub-section over the gate system. Formula �1 is satis�ed
by the speci�cation of the gate without faults (Figure 4). On the other hand, the

same formula is false for the speci�cation of the gate that may fail (Figure 7), since

after a fault the gate moves into a state which allows the action !undefined to be

executed. Formula �2 is obviously false for both speci�cations of the gate. In fact

this formula is false for every path which does not include the ?s on p action. For

example, the LTS in Figure 4 contains an in�nite path from the initial state such

that the !undefined p action is always executed.

3.3 Formalising fault tolerance properties

The ACTL expression of the general classes of properties regarding the ability of

the system of tolerating faults (see Section 1) are:

� Fault tolerance

AG�Corr
where �Corr expresses a correctness condition on a state (an invariant)

� Fail-stop

AG[fault]�Term
where �Term expresses the termination of the system

� Fail-silence

AG[fault]�CorrOmiss

where �CorrOmiss expresses the correctness, apart from omission failures

� Fail-safe

AG[fault]:�Unsafe
where �Unsafe expresses all possible unsafe behaviours

The general expressions given above mostly use the form AG[fault]�, which
predicate over what should be valid forever in the life of the system after the oc-

currence of a fault. These kind of properties are called safety properties. Safety

properties are distinguished from the liveness properties. Liveness properties state

that something good should eventually (or in�nitely often) happen in the system.

Depending on the nature of the system, safety and/or liveness properties may

be needed to express fault-tolerance properties.

Example of properties concerning the behaviour of the gate contr p system

are:

� Fault tolerance property.

The system, after having received a signal ?s on p, cannot execute either the

action !off p or the action !undefined p until a signal ?s off p has been

received.

12

AG[?s on p]:E[truef:?s off pgUf!off p _ !undefined pgtrue]

Similarly, after having received a signal ?s off p, the system is not able to

execute the action !on p or the action !undefined p until a signal ?s on p

has been received.

AG[?s off p]:E[truef:?s on pgUf!on p _ !undefined pgtrue]

Fail-safe property.

The system, after having received a signal ?s on p, cannot execute the action

!off p until a signal ?s off p has been received.

AG[?s on p]:E[truef:?s off pgUf!off pgtrue]

Similarly, after having received a signal ?s off p, the system cannot execute

the action !on p until a signal ?s on p has been received.

AG[?s off p]:E[truef:?s on pgUf!on pgtrue]

� Liveness property.

The system, after having executed the action !off p, eventually executes the

action !on p.

[!off p]AF [!on p]true

The fault tolerance property states that if the gate is open, then on receiving a

request about its current state, the gate answers open, while if the state is closed

the gate answers closed.

The fail-safe property is weaker, since it states that if the gate is open, then

on receiving a request about its current state, the gate answers open or unde�ned.

Similarly, if the gate is closed, the gate answers closed or unde�ned.

The liveness property guarantees that a closed gate will be eventually open.

When applying the model checker with these formulae to the system in Figure

7, the results are that the system satis�es the fail-safe property, but not the fault

tolerance one. Also the liveness property is not satis�ed by this system.

It is well-known that by applying the duplication-with comparison technique,

the fault tolerant design tolerates one faulty replica. This can be proved by model

checking by considering ad hoc fault assumption processes. For example, the fault

assumption (FA process) in Figure 8 limits the occurrence of faults to at most one

permanent fault in one of the replicas. Model checking shows indeed that the LTS

of the fault tolerant system design in Figure 8 satis�es the fault tolerance property

above.

4 State space explosion problem

The main di�culty in using in practice model checking formal veri�cation methods

is due to the limits imposed by the state space size problem, that even challenges

more advanced model checking tools. Systems composed of several subsystems can

be associated to a �nite state model with a number of states which is exponential

in the number of the component subsystems. Moreover, systems which are highly

dependent on data values share the same problem, producing a number of states

exponential in the number of data variables.

13

In the following it is shown an estimate of the maximal state-space size based

on the structural knowledge of the system, i.e. on the observation that the phased

structure of fault tolerant systems and algorithms limits a priori the state explo-

sion problem. Indeed, a system employing redundancy is composed of a number of

identical modules which compute the same results. At the architectural level such

modules are often independent processors. Each module usually has a phased struc-

ture. Moreover, the modules have to synchronise periodically in order to maintain

their consistency, and the synchronisations are usually combined with some com-

parison or voting operation, aimed to detect or mask errors.

A common structure of such a system can be represented as a network of sub-

systems; each subsystem synchronises with the other ones at the end of each phase.

This structure is shown in Figure 10 in the case of duplication redundancy. The

picture abstracts from the details of the synchronisation protocol, and also from the

nature of the initial state of each phase, which generally is a set of states. These

abstractions do not a�ect however the generality of the following observations.

Phase 1

!endphase1 !endphase1

Phase 2

!endphase2 !endphase2

Phase m

!endphasem !endphasem

.....

Phase 1

!endphase1 !endphase1

Phase 2

!endphase2 !endphase2

Phase m

!endphasem !endphasem

.....

!endphase1

!endphase2

!endphasem

!endphase1

!endphase2

!endphasem

Figure 10: The phased structure

The behaviour of the overall system is obtained by the parallel composition of

the replicas. Due to the synchronisation at the end of each phase, the obtained

global LTS appears to be structured in phases as well; each phase of the overall

system is actually generated by the interleaving of the corresponding phases of

the di�erent replicas, while each phase is terminated by the synchronisation of the

replicas from which the next phase begins (see Figure 11, where Phase ijjPhase i
represents the LTS built by interleaving two replicas of Phase i).

Let S be the size of the state space of a replica and Si be the size of the state
space of the i-th phase. The cardinality of the state space of the interleaving of

n replicas has normally an upper bound of Sn. Due to the phased structure, the

upper bound for S is determined by the size of the interleaving of each phase, that

is: S1
n + S2

n + ::::+ Sm
n.

Moreover, the regular structure of a redundant system may be exploited to

contain state explosion with the help of existing established techniques, such as

symmetries and reduction preorders. Using symmetries, as proposed by Emerson

in [18], the number of states is reduced by identifying those states which coincide

14

Phase 1 || Phase 1

!endphase1 !endphase1

Phase 2 || Phase 2

!endphase2 !endphase2

Phase m || Phase m

!endphasem !endphasem

.....

Figure 11: The phased structure

up to a permutation of the system components. Partial order reduction [21, 26, 42]

employs the independency of the property to be checked from the order in which

interleaved processes are actually executed, to select just one order and hence only

a subset of the state space to check its validity. In the case of redundancy, the

complete interleaving of the replicas can be avoided in the generation of the model.

For example, the selected order of executions could be such that all the transition

of the �rst replica precedes in each phase the transitions of the second replica and

so on. The selection has however to take into account the interactions between the

replicas. The global state space of a phase i of the global LTS for a system of n
replicas is estimated to be of the order of n�Si, and therefore the global state space
of the overall algorithm is estimated to n � S.

Another observation that can be made is that the fault assumption process helps

in the containment of state space explosion. Consider for example a case in which

a replica is modelled by a sequence of phases, and in each of these phases, say the

i{th, Ni states reachable in absence of faults and Fi states reachable within a failure
mode are recognised (in reference to previous notations, it is Si = Ni +Fi). If only
a single fault is allowed to occur, say at the j{th phase, the total number of states

is bound by the sum: N1
n+ :::+Nj�1

n+Fj �Nj

n�1+ :::+Fn �Nn

n�1 (this formula

refers to the case in which partial order reduction methods are not used).

The observations above are related to the redundant structure of the system.

Other techniques can be used as well if the state space is still too large. Gener-

ally applicable techniques are decomposition and abstraction. For example, the

following techniques can be applied:

1. Identi�cation of the static con�guration parameters of the system. The mod-

elling of these attributes as if they were variables, contributes unnecessarily

to the growth of the number of states of the model. In the development of

the formal speci�cation, the con�gurations can be taken each at a time and

a property is satis�ed by the system if and only if it is veri�ed in all possible

con�gurations

2. The relabelling of multiple actions into one action is a well-known reduction

15

A

B

C

?ver_signals
?not_ver_signals

C

?ver_signal2

?ver_signal1

?ver_signal3

A

B

?not_ver_signal3

?not_ver_signal2

?not_ver_signal1

(b)(a)

Figure 12: (a) A LTS. (b) The LTS after the reduction.

technique. For example, consider the LTS in �gure 12 (a):

� the process sequentially tests several signals in order to execute an oper-

ation with success

� the failure of any of these tests leads to the failure of the operation itself

� the properties do not involve actions related to the tested signals

In this case the actions corresponding to a sequence of tests can be modelled

as a non deterministic choice between the success and the failure of the tests,

as shown in Figure 12 (b))

5 Case studies

This section shows an experience in the use of the proposed approach and veri�ca-

tion tools on real case studies. The �rst study is the speci�cation and veri�cation

of the safety requirements of a Railway Interlocking System developed by Ansaldo

Trasporti [2]. The second one is the speci�cation and veri�cation of the Inter-

consistency fault tolerant mechanism de�ned inside the project GUARDS (Generic

Upgradable Architecture for Real-Time Dependable Systems) [37]. Both studies

show that:

� the use of �nite state machine as speci�cation language has the advantage of

ensuring the adherence of the produced formal speci�cation to the original

semi-formal one

� some standard rules for the passage from the semi-formal description of the

system to its formal speci�cation can be successfully applied in the �eld of

fault tolerant systems. This passage is generally recognised one of the critical

points of the introduction of formal methods in the software development cycle

� the reduction in the state space due to the phased structure of these kind of

systems makes the model checking approach viable in this domain of applica-

tion

5.1 Railway Interlocking System

The �rst case study is part of a railway signaling interlocking control system devel-

oped by Ansaldo Segnalamento Ferroviario. The system operates within a complex

environment, interacting with human operators as well as with a number of di�er-

ent actuators and sensors. Sensors convey data concerning the physical status of

16

the environment, actuators allow for the control of the operations and the status of

the external environment. An operator may interact with the system sending com-

mands and selecting operation modes. The scope of this control system is that of

permitting a safe passage of trains by adjusting the setting of signals on the railway

line. The reader can refer to [2] for a detailed description of the speci�cation and

veri�cation activity.

The control system is represented by a set of communicating processes, mod-

elling logical and physical entities. The control of the entities is realised by op-

erations which act on variables. Variables are easily modeled as processes, since

they represent signals whose domain of values is very limited or signals for which a

limited number of values are of interest. Finally, each operation is transformed into

a process whose LTS describes the behaviour of the operation.

Every operation in the Ansaldo semi-formal speci�cation has three main parts:

� the pre-conditions on variables that must be satis�ed before continuing the

operation (\VERIFY THAT" part)

� the execution of the operation, performed by modifying the value of some

common variables (\ASSIGN" part)

� an \EXCEPTIONS" that speci�es what should be done if a \VERIFY THAT"

condition is not satis�ed

An example of the description of an operation in the semi-formal speci�cation

is shown in Figure 13.

Automatic closure request

I. VERIFY THAT

a. the command_state variable has the value "automatic";

b. the lcc_state variable has a value not equal to

"request to close".

II. ASSIGN

- the value "manual" to the command_state variable

EXCEPTIONS

|a| |b| command is lost; no recovery actions.

Figure 13: Semi-formal speci�cation

The translation from the semi-formal to the formal CCS/Meije speci�cation

of the operation was straightforward. Figure 14 shows the speci�cation of the

operation in Figure 13.

5.1.1 Reduction of the number of states

The abstraction technique presented in the previous section for testing signal values

was applied to every operation. The global LTS of the behaviour of the system

resulted in about one million of states. The identi�cation of the static con�guration

parameters of the system allowed a reduction in the number of states of this LTS

to 77294 states.

5.1.2 Safety properties veri�cation

A typical safety property for the interlocking system is: if the proceed signal is sent

to the train when entering a track containing a level crossing, then the level crossing

is closed. This property can be expressed more precisely as follows: in any state of

17

let rec {

S = ?start_op: VERIF_A

and

VERIF_A = ?automatic : VERIF_B +

?manual : EXC

and

VERIF_B = ?closure_req : EXC +

?open_req : ASSIGN

and

ASSIGN = !s_manual : F

and EXC = tau : F

and F = !end : S

} in S;

Figure 14: Formal speci�cation

the model if the position of the level crossing is not equal to closed, then there is no

execution in which the proceed signal is sent until the position of the level crossing

is equal to closed.

This property can be formalised as the following ACTL formula:

AG[:!off pos]:E[truef:?s off posgUf!raise shunt signgtrue)]

where !raise shunt sign corresponds to the proceed signal , !off pos corre-

sponds the state closed for the level crossing and ?s off pos corresponds to the set

o� signal received by the level crossing gate.

The property above is a fail-safe property. It was checked to be true on the

speci�cation of the interlocking system using the JACK environment.

5.2 Inter-consistency mechanism

The GUARDS project [37] has produced a generic architecture for safety critical

systems designed to be instantiated to support di�erent critical applications. Model

checking has been used in the project to validate the Inter-consistency mechanism

which is the basis of other ad hoc de�ned fault tolerant mechanisms.

The Inter-consistency mechanism must guarantee interactive consistency among

three or four processors in the GUARDS architecture. Interactive consistency fo-

cuses on the problem of reaching agreement among multiple processors in presence

of faults (also known as the "Byzantine Generals problem" [31]). The main di�-

culty to be overcome in achieving consistency is the possibility of con
icting values

sent by faulty processors. Message authentication is assumed. This requires that

faulty processors do not make undetectable modi�cations to messages as they are

relayed from one processor to another.

The mechanism uses the ZA Byzantine Agreement algorithm described in [22].

This algorithm is synchronous and uses several rounds of authenticated encoded

message exchange during which processor P tells processor Q what value it has

received from processor R and so on. Each node has at the end a voted knowledge

on each value hold by every other node. In [22] the generic algorithm has been

veri�ed using theorem proving techniques; the veri�cation activity carried on inside

the GUARDS project was instead aimed at the validation of the instances of the

algorithm de�ned for the particular architecture. In the formal speci�cation, two

protocols have been identi�ed: the transmitter and the receiver protocol. Every

node has been speci�ed as the composition of the protocols above. For example, in

18

phase 1: phase4:

vp:p := p encode(vp); p2 := p decode(msg2);

p broadcast(vp:p); msg3 := q receive();

phase2: phase5:

msg1 := s receive(); p3 := p decode(msg3);

vp(p) := vote(p1, p2, p3);

phase3:

p1 := p decode(msg1);

msg2 := r receive();

Table 1: The ZA algorithm of transmitter node P

the four nodes case P, Q, R and S, each node includes one transmitter protocol and

three receiver protocols. The pseudo-code for the transmitter node P is given in

Table 1, where vp is the private value of the node P. The mechanism is modelled as

a network of four communicating processes, each modelling one of the four nodes.

Moreover, since the algorithm has a phased structure: each process modeling a

node is described by a network of communicating processes modelling the di�erent

phases of the algorithm and the local variables.

The translation from the pseudo-code to the formal speci�cation is straightfor-

ward. For example, assuming two di�erent values 0 and 1, the process modelling

the phase 2 of node P is expressed by the following CCS/Meije term:

phase2P = {

RECEIVE = ?ssendp_encp_0 : !s_m1p_encp_0 : END +

?ssendp_encp_1 : !s_m1p_encp_1 : END +

?ssendp_omission : !s_m1p_omission : END

and

END = !startphase3 : stop

} in RECEIVE;

The node on receiving a message from S (or detecting an omission fault), saves

the message into the variable named m1p. The action XsendY encZ j corresponds

to a message containing j encoded by Z and sent by X to Y; XsendY omission

corresponds to an omission fault from X to Y; s m1p encZ j corresponds to storing

the value j encoded by Z into the variable m1p.

Then the node is ready to execute phase 3 of the protocol, and signals this by

the !startphase3 action, on which all the other nodes have to synchronise. The

complete speci�cation and veri�cation work is reported in [3].

5.2.1 Reduction of the number of states

Table 2 presents the size of the state space of the single node, and that of the network

composed of four nodes under di�erent fault assumptions. The fault assumptions

have been modelled by means of speci�c processes which constrain the occurrences

of faults.

The table shows that:

� the size of the state space of the network with four replicas is largely below

the fourth power of the size of the state space of a single node

� the state space increases with the generality of the fault assumptions, as evi-

dent in the last two rows

19

Model of: states

A single non faulty node 428

Network of 4 non faulty nodes 3479

Network with an arbitrarily faulty node and a symmetric faulty node 109613

Network with an arbitrarily faulty node, and authentication violation 122767

Table 2: Number of states for the GUARDS Byzantine Agreement.

5.2.2 Agreement and Validity properties veri�cation

The classical Agreement and Validity properties must be satis�ed to reach consis-

tency:

Agreement: if a pair of receivers are non faulty, then they agree on the value

ascribed to the transmitter.

Validity: if the receiver P is non faulty, then the value ascribed to the transmit-

ter by P is the value actually sent if the transmitter is non faulty or

symmetric faulty; or the distinguished value error, if the transmitter
is manifest faulty.

Consider only two possible values (0 and 1). Agreement can be formalised as:

for any execution, the non faulty nodes eventually agree on the value 1 or the nodes

eventually agree on the value 0.

Assume P is non faulty. V alidity can be formalised as: if in any state of the model,

it is true that the internal value of the node P is equal to 1 or 0, then for any exe-

cution of the processes, starting from such a state, if the processes are non faulty,

they eventually agree on such a value.

Assume S is faulty. The combination of the Agreement and V alidity properties in
the case of value 1, is expressed by the following ACTL formula:

AG[!psend vp 1](A[trueftruegUf!vp ofp eqto 1gtrue]&
A[trueftruegUf!vp ofq eqto 1gtrue]&
A[trueftruegUf!vp ofr eqto 1gtrue])

where the action !psend vp 1 indicates that the private value of the node P is 1

and the action !vp ofY eqto 1 indicates that 1 is the value ascribed by the receiver

node Y to the transmitter node P.

The properties above falls in the class of fault-tolerance properties, and model

checking has been applied to prove their invariance under di�erent fault assump-

tions. As expected, in the case of a violation of the assumption on authentication,

even a single faulty node is not tolerated.

6 Related work

The approach presented in this paper applies model-checking to fault tolerant sys-

tems speci�ed by using a standard process algebra. Faults are modeled as observable

actions. The observability of faults is not related to the possibility of detection of

faults (fault detection mechanisms usually detect the consequences, rather than the

fault occurrence itself). It enables to clearly distinguish faults from other internal

actions, and to control fault events, so that fault assumptions modeling is possible.

In the literature on the formalisation of fault tolerant systems, the earlier works

([15, 41]) do not model explicitly the occurrence of faults, but only the failure

behaviour.

20

Several later works are based on the use of standard process algebras to spec-

ify the behaviour of the system also under fault occurrences; equivalence relations

or preorders are employed to verify fault tolerant system designs. The major ad-

vantage of standard process-algebra based approaches is related to the existence of

automatic veri�cation tools. In particular, CCS process algebra and its observa-

tional equivalence [34] has been �rst used for this purpose in [38]. In [19], CCS

is used in verifying a distributed control for a railway block signaling system. In

[40] and [35] CSP and its trace theory [25] are applied. In [36], CSP and asser-

tional techniques are combined to design fault tolerant systems based on dynamic

redundancy; re�nement steps and proof obligations are applied.

Other works in the literature use instead specialised process algebras: in [30], a

CCS-like calculus for replicated systems is presented. In [16], new process algebra

operators to model faults and failure modes are de�ned. In [28, 27] a new semantics

for CCS is de�ned, which is parameterised on the fault assumptions.

Veri�cation of system fault tolerance properties has also been addressed both

with theorem proving and model checking techniques.

Theorem proving has been applied to study fault tolerance in [22]. The speci�-

cation language is a strongly typed high-order logic, and the PVS theorem prover

allows semi-automatic proofs to be generated.

In [32], a calculus for fault tolerance analysis based on TLA, the Temporal Logic

of Actions, is de�ned. Theorems asserted in the speci�cation are proved using the

method of structured proofs.

In [23] the micro-CRL and a modal logic for this language are used for modelling

a railway interlocking system and their safety properties. Properties are then veri-

�ed by transforming the speci�cation in propositional logic and by using a theorem

prover.

Model checking of properties expressed in modal �-calculus on CCS speci�ca-

tions is �rst applied in [11, 9] to the veri�cation of fault properties of a railway

interlocking system. In [10] fault-handling mechanisms are modelled using special-

purpose process operators; temporal properties which hold for fault tolerant mech-

anisms applied to simple processes are shown to hold as well when the mechanisms

are applied to more complex processes. The use of modal transition systems is

exploited in [8], where a modal process logic that captures the intention behind

failures is de�ned.

The model checking approach presented in this paper is based on traditional

process algebras in order to be able to exploit the powerful veri�cation capabilities

o�ered by existing veri�cation environments. Moreover, the modelling of faults as

observable actions, allows the veri�cation under di�erent fault scenarios.

7 Conclusions

This paper shows the application of the model checking technique for the speci�ca-

tion and veri�cation of fault tolerant systems. The results on the application of the

approach to two case studies are reported. The studies show the feasibility of model

checking to real examples, and con�rm that key-point in the acceptance of model

checking are the use of a speci�cation formalism which is essentially some variants

of �nite-state machines (commonly used in many industrial activities, especially in

the safety critical systems area) and the existence of automatic veri�cation tools.

State explosion represents the main problem to the application of model checking

for handling large systems. However, recent advances in model checking techniques

have managed to deal with very large state spaces by the use of symbolic manipula-

tion algorithms inside model checkers. The most notable example is the SMV model

checker [12]. In SMV the transition relations are represented implicitly by means

21

of Boolean formulae and are implemented by means of Binary Decision Diagrams

(BDDs, [7]). This usually results in a much smaller representation for the systems'

transition relations, thus allowing the maximum size of the systems that can be

dealt with to be signi�cantly enlarged. These advances, together with what re-

ported in this paper about the state space of redundant systems, indicate that fault

tolerant systems are a promising �eld of application of model checking techniques.

Acknowledgments

This work has been partially supported by the Italian Ministry of University and

Research within the projects COFIN QUACK and 5%SP4.

Special thanks go to the anonymous reviewers for their appropriate remarks and

their suggestions.

References

[1] Austry D, Boudol G. 1984. Algebre de processus at synchronisation. Theoretical

Computer Science, 1(30): 91-131.

[2] Bernardeschi C, Fantechi A, Gnesi S, Larosa S, Mongardi G, Romano D. 1998.

A formal veri�cation environment for railway signaling system design. Formal

Methods in System Design, 12 : 139-161.

[3] Bernardeschi C, Fantechi A, Gnesi S. 1999. Formal validation of fault tolerance

mechanisms inside GUARDS. Proceedings SAFECOMP'99, Toulouse, Lecture

Notes in Computer Science 1698: 420-430.

[4] Bernardeschi C, Fantechi A, Simoncini L. 2000. Formally verifying fault toler-

ant system designs. The Computer Journal, 43(3): 191-205.

[5] Bolognesi, T, Brinksma E. Introduction to ISO Speci�cation Language LO-

TOS. Comp. Networks and ISDN Systems, 14: 25-59.

[6] Bouali A, Gnesi S, Larosa S. 1994. The integration project for the JACK

environment. Bulletin of the EATCS, 54: 207-223.

[7] Bryant RE. 1986. Graph based algorithms for boolean function manipulation.

IEEE Transaction on Computers, C-35(8).

[8] Bruns G. 1995. Re�nement and dependable systems. Proceedings 10th Annual

Conference on Computer Assurance, IEEE : 49-55.

[9] Bruns G. 1997. Distributed systems analysis with CCS. Prentice Hall.

[10] Bruns G, Sutherland I. 1997. Model checking and fault tolerance. Proceedings

6-th International Conference on Algebraic Methodology and Software Technol-

ogy, Lecture Notes in Computer Science 1349, Sydney, Australia: 45-59.

[11] Bruns G. 1992. A case study in safety-critical design. Proceedings Computer

Aided Veri�cation '92, Lecture Notes in Computer Science 663: 220-234.

[12] Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ. 1992. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):

142-170.

[13] Railway Applications: Software for Railway Control and Protection Systems.

1994. European Committee for the Electrotechnical Standardization (CEN-

ELEC), EN 50128.

22

[14] Clarke EM, Emerson EA, Sistla AP. 1986. Automatic veri�cation of �nite state

concurrent systems using temporal logic speci�cations. ACM Transaction on

Programming Languages and Systems, 8(2): 244-263.

[15] Cristian F. 1985. A rigorous approach to fault tolerant programming. IEEE

Transaction on Software Engineering, 11(1): 23-31.

[16] De Boer FS, Coenen J, Gerth R. 1993. Exception Handling in Process Algebra.

Proceedings First North American Process Algebra Workshop, Workshop in

Computing Series, Springer-Verlag.

[17] De Nicola R, Vaandrager FW. 1990. Actions versus state based logics for tran-

sition systems. Proceedings Ecole de Printemps on Semantics of Concurrency,

Lecture Notes in Computer Science 469, Springer, Berlin : 407-419.

[18] Emerson EA, Sistla AP. 1993. Symmetry and model checking. Proceed-

ings Computer Aided Veri�cation'93, Lecture Notes in Computer Science 697,

Springer, Berlin.

[19] Fisher S, Scholz A, Taubner D. 1992. Veri�cation in process algebra of the

distributed control track vehicles-A case study. Proceedings Computer Aided

Veri�cation '92, Lecture Notes in Computer Science 663 : 192-205.

[20] Formal Methods Europe Applications Database.

http://www.fmeurope.org/databases/full.html

[21] Godefroid P. 1990. Using partial orders to improve automatic veri�cation meth-

ods Proceedings Computer Aided Veri�cation '90, Lecture Notes in Computer

Science 531: 176-185.

[22] Gong L, Lincoln P, Rushby J. 1995. Byzantine agreement with authentication:

observations and applications in tolerating hybrid and link faults. Proceedings

5th Conference on Dependable Computing for Critical Applications, (DCCA-5),

Urbana-Champaign, USA.

[23] Groote JF, van Vlijmen SFM, Koorn JWC. 1995. The safety guaranteeing

system at station Hoorn-Kersenboogerd. Proceedings 10th Annual Conference

on Computer Assurance, IEEE : 57-68.

[24] Hennessy M, Milner R. 1985. Algebraic laws for nondeterminism and concur-

rency. ACM, 32(1): 137-161.

[25] Hoare, C.A.R. 1985. Communicating Sequential Processes. Prentice-Hall In-

ternational, Englewood Cli�s.

[26] Holzmann GJ, Peled D. 1994. An improvement in formal veri�cation. Proceed-

ings FORTE 1994 Conference, Bern, Switzerland.

[27] Janowski T. 1997. On bisimulation, fault-monotonicity and provable fault-

tolerance. Proceedings 6-th International Conference on Algebraic Methodology

and Software Technology, Lecture Notes in Computer Science 1349 : 292-306.

[28] Janowski T. 1994. Fault-tolerant bisimulation and process transformations.

Proceedings 3-rd International Symposium on Formal techniques in Real-Time

and Fault Tolerant Systems, Lecture Notes in Computer Science 863 : 372-392.

[29] Kozen D. 1983. Results on the propositional mu-calculus. Theoretical Computer

Science, 27 : 333-354.

23

[30] Krishnan P. 1994 A semantic characterisation for faults in replicated systems.

Theoretical Computer Science 128: 159-177.

[31] Lamport L, Shostak R, Pease M. 1982. The byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3): 382-401.

[32] Lamport L, Merz S. 1994. Specifying and verifying fault-tolerant systems. Proc.

3-rd International Symposium on Formal Techniques in Real-Time and Fault

Tolerant Systems, Lecture Notes in Computer Science 863: 41-76.

[33] Laprie JC (Ed.). 1992. Dependability: basic concepts and terminology. De-

pendable Computing and Fault-Tolerant Systems, 5, Springer-Verlag.

[34] Milner R. 1989. Communication and concurrency. Prentice-Hall International,

Englewood Cli�s.

[35] Nordahl J. 1992. Design for dependability. In Landwehr, C.E., Randell, B.,

Simoncini, L. (eds), Dependable Computing for Critical Applications 3, De-

pendable Computing and Fault-Tolerant Systems series, 8, Springer-Verlag:

65-89.

[36] Peleska J. 1990. Design and veri�cation of fault tolerant systems with CSP.

Distributed Computing, 5 (2): 95-106.

[37] Powell D, Arlat J, Beus-Dukic L, Bondavalli A, Coppola P, Fantechi A, Jenn E,

Rabejac C, Wellings A. 1999. GUARDS: a generic upgradable architecture for

real-time dependable systems. IEEE Transactions on Parallel and Distributed

Systems, 10(6): 580-599.

[38] Prasad KVS. 1984. Speci�cation and proof of a simple fault tolerant system

in CCS. Internal Report CSR-178-84, Dept. of Computer Science, Univ. of

Edinburg.

[39] Roy V, De Simone R. 1990. AUTO and Autograph. Proceedings of the Work-

shop on Computer Aided Veri�cation, Lecture Notes in Computer Science 531:

65-75.

[40] Schepers H, Hooman J. 1994. Trace-based compositional proof theory for fault

tolerant distributed systems. Theoretical Computer Science 128: 127-157.

[41] Schneider FB. 1990. Implementing fault tolerant services using the state ma-

chine approach: a Tutorial. ACM Computing Surveys 22 (4): 299-319.

[42] Valmari A. 1990. A stubborn attack on state explosion Proceedings Computer

Aided Veri�cation '90, Lecture Notes in Computer Science 531: 156-165.

24

