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Abstract

This paper proposes a modelling approach suitable for formalising fault
tolerant systems, taking into account different fault scenarios. Verification of
properties of such systems is then performed using model checking. A general
framework for the formal specification and verification of fault tolerant systems
is defined starting from these principles, and an experience in its application
to two case studies is then presented.

1 Introduction

The large deployment of computer—controlled systems has raised in last years many
concerns about safety issues when human activities and lifes depend on them. A
combination of fault prevention, fault tolerance, fault removal and fault forecasting
techniques are commonly used in order to achieve a high degree of dependability
[33]. There not exists, however, a common agreement on a standard method to
combine and integrate individual techniques: industries, basing on their different
backgrounds and application fields, adopt their own, different, development trajec-
tories, which are based on the separate use of various techniques aimed at enhancing
dependability. Indeed, the combination and integration of different dependability
techniques is still an open research area.

This paper addresses the combination of the adoption of fault tolerance mecha-
nisms and of the use of formal methods, and in particular formal verification tools,
in the development of a system. While fault tolerance is achieved through a set of
well-established and commonly adopted techniques, which often exploit hardware
redundancy, formal methods have not gained a wide acceptance as a viable means
to reduce the failure rate of programs, though several success stories have been re-
ported (see, for example, [20]), and international standards and guidelines (e.g. the
CENELEC EN50128 guidelines for software development in the railway industry
[13]) recommend the use of formal methods in the development of safety critical
computer—controlled systems.

Nowadays, the industrial trend is directed to the adoption of formal verification
techniques to validate the design, integrating them within the existing development
process. Industries are more keen to accept formal verification techniques assessing



the quality attributes of their products, obtained by a traditional life cycle, rather
than a fully formal life cycle development, due to the lower training and innovation
costs of the former.

Following this trend, the paper proposes the use of a formal verification tech-
nique, namely model checking, to verify the conformance of a design with respect
to desired properties, such as:

1. Correctness. The system delivers a correct service (in absence of faults)
2. Fault tolerance. The system delivers a correct service, despite faults

3. Fail-silence. The system failures can only be omission failures, that is, failures
to temporarily provide the service to the user of the system

4. Fail-stop. In case of faults, the system terminates the delivery of its service

5. Fail-safe. The system failure is a transition to a state in which no catastrophic
event can occur

The properties 2,3,4 and 5 will be studied with respect to specific classes of
faults and in presence of given fault occurrences, that is, under well-defined fault
assumptions. The properties informally expressed above can be formally specified
using some logic formalism; temporal logic, whose operators permit explicit quan-
tification over all possible futures, is a possible candidate. If a formal model of the
system under analysis is generated, typically by means of state machines or transi-
tion systems, model checking algorithms can be used to prove that the model of the
system satisfies the properties expressed in a temporal logic [14]. Unfortunately,
when model checking is applied to a system composed of several subsystems, it
suffers of the so called ”State Space Explosion” problem. In this case a finite state
model with a number of states which is exponential in the number of the component
subsystems can be generated. The redundancy often introduced by fault tolerance
mechanisms could be a possible cause of such a problem, since it increases (often
even duplicates or triplicates) the number of subsystems. In this paper it is shown
that instead some typical redundant structures can help to contain the increase in
the state space. Following these observations, suitable techniques to adopt in order
to address this problem are indicated.

The paper is organised as follows. Section 2 presents a technique adopted for for-
mally specifying fault tolerant systems. Section 3 addresses fault tolerant systems
properties, their formalisation and verification. Section 4 deals with the character-
istics that make model checking technique applicable in this field. Section 5 reports
on the application of the proposed formalisation technique and verification tools to
two case studies concerning real systems. Section 6 reviews related work.

2 Modelling Fault tolerant Systems

This section presents an approach to specify fault tolerant systems in such a way
that the specification can be analysed by model checking techniques. The approach
is derived from [4], in which the following concepts were defined, in accordance with
the terminology proposed in [33]:

Definition 1 (system) System denotes the specification of the system in absence
of faults.

Definition 2 (failure mode) Failure mode denotes the way the system fails, in
terms of the behaviour of the system after the occurrence of a fault.



Definition 3 (failing system) Failing system denotes the complete specification
of the system, including all possible occurrence of faults and the corresponding failure
modes.

Definition 4 (fault tolerant system) Fault tolerant system denotes the specifi-
cation of the addition of some fault tolerance technique to a failing system.

Definition 5 (fault assumption) Fault assumption denotes the assumptions made
on the effectively possible occurrence of faults in the system.

The approach presented is based on the following points:

e 3 system is modelled as set of processes which communicate each other and
interact with the environment by executing actions

e faults are modelled directly by actions of the processes themselves. For each
fault action, the relative failure mode is also specified. For example, a crash
fault in a state extends the behaviour of the system by allowing a crash to
occur in that state. Moreover, faults are modeled as random events

e assumptions on the occurrence of faults are included in the specification by
defining ad hoc fault assumption processes. This allows the behaviour of the
fault tolerant system to be studied under different fault scenarios

2.1 Specifying a system

Two different formalisms are interchangeably used to specify a system: the CCS/Meije
process algebra and an (almost) equivalent graphical notation. The choice of these
formalisms, mainly due to the availability of verification tools, has proven valuable
for their ability of modeling fault assumptions and fault tolerance mechanisms.

CCS/Meije is actually the subset of the Meije process algebra [1], in which only
the parallel composition operator that corresponds to the CCS one [34] is considered.

The syntax of CCS/Meije permits a two-layered specification of concurrent sys-
tems, as process terms. The first layer is related to sequential processes, the second
one to networks of parallel sub-processes, supporting communication and action
renaming or restriction.

The CCS/Meije syntax uses a set of labels Act as atomic actions names ranged
over by a, 3,---; such names represent emitted signals if they are prefixed by the
”I” character, or received ones if they are prefixed by ”?7”. Actions !a and 7« are
called co-actions. 7 denotes a special action not belonging to Act, the unobservable
action used to model internal process actions. Act, = Act U {7}, ranged over by
a,b, -, denotes the full set of actions that a process can perform.

The syntax of the language is the following:

R == stop | X | a:R | R+R |
let rec {X =R[and X =R] }in X

P == R | P||P | P\a | Pla/g] |
let {X=Pland X =R]} in X

where

e R is the syntactic category of sequential processes and P is the syntactic
category of networks of parallel processes

e [...] denotes an optional and repeatable part of the syntax



e stop is the process that does not perform any action

e a : R is the action prefix operator: the action a is executed and then the
process behaves like R

e X = R bounds the process variable X to the process R

e the sum is the non deterministic choice operator: a process R1+ R2 can choose
between the behaviour the process R1 and that of the process R2

e the let rec construct allows recursive definitions of process variables

e || is the parallel operator. This operator is used to specify the interleaved
execution of processes and their possible synchronisation when co-actions are
executed.

e P\ « is the action restriction operator, meaning that a can only be performed
within a communication. This operator is used to specify processes which
must synchronise on actions !a and ?a. The restriction operator transforms
the couple of co-actions executed together into the internal action 7

e Pla/f] is the substitution operator, renaming 3 into «

The semantics of CCS/Meije is given operationally over LTSs. An LTS consists
of a set of states and transitions between states, where a transition corresponds to
the execution of an action of the system.

Definition 6 An LTS is a 4-tuple A = (Q,q°, Act,,—), where: Q is a set of states;
q° is the initial state; Act is a finite set of observable actions; —C @Q x Act, X Q is
the transition relation; an element (r,a,q) €— is called a transition and is written
as v = q. It denotes the transition from the state r to the state q by executing
action a.

Paths over the LTS A are introduced. A sequence 7 = (qo, a0, q1) (¢1,01,¢2) - - -
with (g;,a;,¢qi+1) €— is called a path from go. The empty path consists of a
single state ¢ € @ and is denoted by ¢g. A path that cannot be extended ( i.e., is
infinite or ends in a state without outgoing transitions) is called a full path. The
starting state go of the sequence is denoted by first(m) and the last state of the
sequence, if the sequence is finite, is denoted by last(w). If 7 is an empty path (i.e.
7w = q), first(r) = last(m) = q. Concatenation of paths is denoted by juxtaposition:
m = pB; it is only defined if p is a finite path and last(p) = first(f). Let 7 = pb.
In this case 0 is a suffiz of m and 6 is a proper suffix if p # q.

Figure 1 shows the structural operational semantics of some CCS/Meije opera-
tors previously described, in terms of LTSs . In particular, only finite state LTSs
are considered here, since the two layered syntax of CCS/Meije adopted above al-
lows only finite state processes to be defined?.

As an example, consider the specification of a simple system that controls the
position of a level crossing gate p, allowing an operator to start the procedures for
the opening and the closure of the gate. The system is composed of three processes,
the process gate_contr_p (the gate), the process open_p (the opening procedure)
and the process close_p (the closure procedure). The process gate_contr_p has

LCCS/Meije inherits the operational rules of the parallel operator from CCS, whereas the
Meije parallel operator, instead, has an additional rule allowing product of actions that are not
necessarily co-actions.

2The restriction to finite state systems in our opinion does not limit the applicability of the
approach to fault tolerant control systems, since they are usually required to exhibit a finite-state
behaviour even in presence of faults



Operator Operational rules
a:P _—
a:P—P
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Figure 1: Operational semantics of some CCS/Meije operators

three states: undefined (initial state), open and closed. The gate changes its state
on receiving a command from the other processes. The open_p operation checks the
state of the gate. If the state is undefined or closed, it sends the set state on signal
(action !s_on_p) to the gate. Similarly, the close_p operation checks the state of
the gate. If the state is undefined or open, it sends the set state off signal (action
I's_off p) to the gate. The gate process is able to execute the actions !on_p, 'off_p
and 'undefined p to indicate that its current state is open, closed or undefined,
respectively.

Figure 2 reports the CCS/Meije specification of gate_contr_p. Its states are
called UNDEFINED P, ON_P and OFF_P. For example, when the gate is in the state
ON_P, the gate can send the signal !on_p indicating the current state of the process,
receive a signal 7s_off_p (set state off) and changing its state, or receive a signal
?s_on_p (set state on) and remaining in the same state.

gate_contr_p =

let rec {
ON_P = lon_p : ON_P +
?s_on_p : ON_P +
?s_off_p : OFF_P
and
OFF_P = !off_p : OFF_P +
?s_off_p : OFF_P +
?s_on_p : ON_P
and
UNDEFINED_P = !undefined_p : UNDEFINED_P +

?s_off_p : OFF_P +
?s_on_p : ON_P
} in UNDEFINED_P;

Figure 2: The gate_contr_p specification

For shortness, the specifications of the open_op and close_op processes (which
would require more information on how the external environment commands the
operations of the level crossing gate) are omitted here. The specification of the
whole system (net) is given by the parallel composition of the three processes (see
Figure 3). The open_op and close_op processes are independent from each other,
but both must synchronise with the process gate_contr_p when checking the level
crossing position (actions: on_p, off_p, undefined p) or when commanding the
change of the level crossing state (actions: s_off_p and s_on_p).

The graphical notation defined for the ATG tool [39], can alternatively be used.



net =
((open_op| |close_op) ||
gate_contr_P)\s_on_p\s_off_p\on_p\off_p\undefined_p;

Figure 3: The net specification

This notation expresses a sequential process by drawing the LTS representing its
behaviour and expresses communicating processes by drawing a network of LTSs.
In the first case, circles and edges are used to represent states and transitions, re-
spectively. The initial state of the LTS is represented by a double circle and labels
can be associated both to edges and to vertices. Communicating processes are
represented by boxes with ports at the border. The ports are the places of inter-
connection of processes with the environment. If two boxes are drawn at the same
level, they can synchronise via the complementary actions they execute by linking
the corresponding ports.

Figures 4 and 5 report the graphical specification of the gate_contr_p process
and of the network corresponding to the specification shown in Figure 3, respec-
tively. Note that the synchronisation on the action s_on_p between the processes
open_op and gate_contr_p is modeled by linking the !s_on_p of the open_p labeled
box to the port ?s_on_p of the gate_contr_p labeled box.

lundefined_p

UNDEFINED_P
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close_op
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?undefined_p

Is_off_p

Figure 5: A network of processes

The graphical formalism provides two additional features with respect to CCS/Meije:



e Observable synchronisation actions. According to the CCS/Meije parallel
operator, synchronisations become the invisible 7 action. To observe synchro-
nisation actions, a label must be put on the edge linking the ports. In this
way each time a synchronisation occurs, a transition with the name of the
label is shown. An example is shown in Figure 6: by setting the label L on the
edge linking ports !'b and ?b, each time processes synchronise by executing
'b and 7b, L is observed.

e Synchronisation among three or more subsystems. This is carried out by
the ”web” operator. The ports corresponding to the actions which must be
executed all together are linked to the web by edges. As an example, Figure
6 shows a multi-way synchronisation among processes P, Q and R. A web is
used in Figure 6 to synchronise the three subsystems on the action f.

Figure 6: Two-way and multi-way synchronisation

Given a network of LTSs or a process algebra term, the generation of the LTS
representing its overall behaviour is automatically performed by means of tools,
based on the related operational semantics rules [6].

2.2 Specifying the failing system

Each kind of fault is modelled explicitly as an action. The execution of the action
corresponds to the occurrence of the fault. Let F be the set of actions modelling the
possible faults in a system. The specification of the failure of the system is obtained
by introducing occurrences of the possible faults as transitions in the LTSs modeling
the system. If the action f € F is executed in a state of a system, then the failure
mode of the system is exhibited, otherwise, the system goes on with its behaviour.

Figure 7 models the failing system gate_contr_p, when two kind of faults are
considered: a permanent fault, modelled by the 7f_p action, and a temporary fault,
modelled by the ?f_t action.

The permanent fault leads the system to a special state named FAULTY_P in
which the state of the system is undefined forever (action !undefined_p). The
temporary fault causes the system to lose the current correct state. The system
moves in the state UNDEFINED P until a signal re-setting the position of the level
crossing is received. Under the assumption that a fault may occur at any time, an
output edge labelled by 7f_p and an output edge labelled 7f_t exists starting from
each state of the LTS.

The failure mode of the system may depend on the point of the execution of
the system at which the fault occurs. In most cases, associating a fault action with
a different failure mode to every state of the system is not necessary. Knowledge
of the actual failure points and failure modes can be used to produce a simpler
specification. Some examples in this direction are:

1. confining faults to specific subsystems
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Figure 7: The failing system gate_contr_p

2. choose specific points in the execution of the subsystems at which a fault may
occur, realising some form of guided fault injection

3. associating faults to communications between subsystems

4. assuming that every subsystem exhibits always the same failure mode in every
state

A way to express the occurrence of a fault f at any point of the computation of
the system P is the following:
P l\f

where

e P'is equal to P except that every state of P is extended with the possibility
of the occurrence of the fault followed by stop (f : stop)

e () is a process of the form @ = f : Q" where Q' specifies the failure mode of
the original system P

For every fault occurrence allowed by the fault assumption, a process () must
be instantiated.

Some process algebras, like LOTOS [5], include the disabling operator ([>).
The term P[> (f;() means that the process P can be interrupted at any point
by the action f. In this case the execution proceeds as ). This operator allows
the possibility of a fault occurring in every state to be expressed more concisely.
However, this operator does not allow faults that can occur only in some states and
not in other states to be modeled.

The modelling of faults that cause all subprocesses within a system to fail syn-
chronously can be obtained by using the multiway synchronisation operator pro-
vided by the graphical notation. The port corresponding to a given fault in each
replica is linked to the web operator. As an example, Figure 6 models the syn-
chronous failure of the subsystems @ and R when the fault f occurs according to
the fault assumption P.

Since the formalisms used in our approach see actions as atomic, the actions of
the specification are atomic w.r.t. faults. If the actions of the specification model



functional activities of the real system, it may be needed to model instead faults
that can occur during these actions. In this case, a different model of the behaviour
of the system should be produced, for example, dividing functional actions in more
atomic sub-actions and associating a choice of a fault action to each sub-action.

2.3 Introducing fault tolerance

The use of the parallel composition, restriction and relabelling operators of CCS/Meije
(or graphical composition) is generally required in order to conveniently express a
fault tolerant system design. A fault tolerance technique uses replicas of the system
composed together with some extra standard components (for example, a majority
voter) for masking the effects of the occurrence of faults. Formally, each replica
is an instantiation of the failing system with an ad hoc renaming of actions. In
particular, different names for the fault actions are used to distinguish between
occurrences of the same kind of fault in different replicas.

Figure 8 shows the graphical specification of a classical duplication and compari-
son architecture applied to the gate example, duplicating the gate_contr_p process
and adding a comparator process. The same figure shows that some actions must
have the same name in all the replicas, while other actions must be renamed. The
”set” signal must be sent synchronously to all replicas. The action ?s_on_p needs
not to be renamed in the replicas, since this action is actually a synchronisation ac-
tion among the replicas. The actions 7f_p must be instead renamed in all replicas,
since this fault event is an asynchronous event for all of them.

Let n denote the number of replicas used by the fault tolerance technique and
FJ denote the set of faults of the j-th replica, j = 1,---,n. The set of faults of the
fault tolerant system is therefore 7 = |J;_, F7. Let M = {M;,1 < i < k} be the
set of extra components added by the fault tolerance technique (M may be empty).

The application of a fault tolerance technique leads to a network of replicated
processes which includes the replicas and the added components synchronising in
the specific way imposed by the fault tolerance technique. This is described in the
CCS/Meije notation as (the parallel operator is left associative):

Ell - 1 & Il M - 1 M) N, \a

where ay,---,as are the synchronisation actions, a; € F, and &; is the i-th
replica, with an appropriate renaming of the actions as explained above.

Since each replica is a distinct process, the specification of fault tolerance tech-
niques based on design diversity is allowed. In this case instead of replicas, variants
are used, each of which corresponds to a particular specification of the system.

Finally, error processing is generally achieved through error detection and recov-
ery techniques. In this case, the error detection module can be specified as a further
process which interacts with the failing system, checking states of the computation.
Different actions can be used to distinguish various classes of errors, and the chosen
error recovery algorithm can be modelled in the specification in a similar way.

2.4 Modelling fault assumptions

Assumptions on how faults are supposed to occur in the system can be specified by
a further process, the fault assumption process, that is added to the specification by
the parallel composition operator with synchronisation on the actions corresponding
to faults. The fault assumption generally limits the number of fault occurrences.
The most general fault assumption models any possible occurrence of faults. In the
case of two faults, for example £_p and £_t above, this fault assumption is shown in
Figure 9. The fault assumption (FA process) in Figure 8 allows the occurrence of at
most one permanent fault in one of the replicas. In the initial state, either 'f p_1
or !'f_p_2 can be executed. Then the process stops. Note that the label FP1 on the
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Figure 8: Fault tolerant system

link connecting the ports ?f_p_1 and !f_p_1 produces an LTS in which, when this
synchronisation action is executed, the action FP1 is observed. This label can be
useful in the formalisation of properties about the behaviour of the system after the
occurrence of the given fault.

Figure 9: A fault assumption

3 Properties of fault tolerant systems

3.1 The logic ACTL

ACTL (Action-based Computation Tree Logic) [17] is an action-based version of
the branching time temporal logic CTL [14]. ACTL has the advantage that, since
it is based on actions rather than states, it is naturally interpreted over LTSs.
Moreover, this logic is more expressive than other action-based logics, like Hennessy-
Milner logic [24], without resorting to the full use of fixed point operators, such as
the p-calculus logic [29]. p-calculus is more expressive than ACTL, but still most
interesting properties can be expressed in the latter.

The formulae of ACTL are built over the syntactic categories of action formulae,
state formulae and path formulae. An action formula permits expressing constraints
on the actions that can be observed. A state formula gives a characterisation about
the possible ways an execution can proceed after a state has been reached. A path
formula states properties of an execution. The truth or falsity of a formula refers
to a satisfiability relation over LTSs, denoted .

Given a set of observable actions Act, the action formulae on Act are defined as
follows (« ranges over Act):

xu=true | a | =-x | xVx

The satisfaction relation |= for action formulae is given by:

10



a [ true always;
alEp iff a=pg;
aE-x iff alfEx
aExVvY iff aEyxoralEyx.

From now on, false abbreviates the action formula —true and x Ay’ abbreviates
the action formula —(—x VvV —x’).
The syntax of state formulae and path formulae is given by the grammar below:

¢ true | =g | ¢&¢' | Ey | Ay | <x>¢ | [x]l¢
vy o= Fé | Go | ¢{x}U{x'}¢

where y, x' range over action formulae, E and A are path quantifiers, F' is the
eventually operator, G is the always operator and U is the until operator.

The satisfaction relation |= for a state formula ¢ (path formula +) by a state ¢
(path p) is given inductively by:

q = true always

qE -9 iff qE9

aF¢& ¢ iff gF ¢and g = ¢

ql=Ey iff there exists a full path 6 from ¢ such that 6 = v

q = Ay iff for all full path 6 from ¢, 6 =y

pE<Xx>¢ iff there exists «, ¢’ such that (¢,a,q') €=, ¢ E ¢ and a |= x
p E x| iff for all ¢' such that (q,,¢') €=, ¢ E ¢ and a | x
pEF¢ iff there exists a state g in p such that ¢ = ¢

pEGP iff for all states ¢ in p, q |= ¢

p E o Ju{x'}¢'  iff there exists 8 = (g, @, ¢')6' suffix of p, such that

q, ': gb’? e |: X’? q |: gb a’nd for a’ll /,7 = (T7 b7 r’)n’?
suffixes of p, of which @ is a proper suffix,
we haver = ¢ and (b= x or b=1)

The modality < x > ¢ means that there exists a next state of the path, reached
with an action satisfying x in which the formula ¢ holds; while [x]¢ says that for
all next states of the path, reached with an action satisfying , the formula ¢ holds.
These modalities correspond to the diamond and box modalities of Hennessy-Milner
logic 3. The meaning of the indexed until modality ¢{x}U{x'}¢ is that any state
of the path is reached with an action in xy U{7} and the state satisfies the formula ¢
until a state is reached with an action in x’ and the state satisfies the formula ¢'. Fi-
nally, note that G¢ can be derived as =F'—¢ and [x]¢ can be derived as = < x > —¢.

Examples of properties for the gate_contr_p system and their formalisation in
ACTL are:

e The system, after having received the action 7s_on_p, cannot execute the
action !'undefined
¢1 = AG[?s_on_p|-EF[lundefined_p|true

e The system eventually executes the action !'on_p
¢2 = AF < lon_p > true

3In [17], the ACTL modalities < x > ¢ and [x]¢ are actually defined instead to be the weak
version of the diamond and box operators

11



3.2 Properties verification

The AMC model checker available in the verification environment JACK [6] accepts
a finite state machine (LTS) and an ACTL formula, and checks whether the formula
holds on the LTS. The generation of the LTS from a network of subsystems is
performed by means of other tools of JACK.

The time complexity of traditional model checking algorithms, which are used
by AMC, is linear in the size of the global LTS and in the size of the ACTL for-
mula, with respect to the number of different subformulae that can be syntactically
recognised in it.

The model checker can be applied for the verification of the properties ¢; and ¢,
described in the previous sub-section over the gate system. Formula ¢; is satisfied
by the specification of the gate without faults (Figure 4). On the other hand, the
same formula is false for the specification of the gate that may fail (Figure 7), since
after a fault the gate moves into a state which allows the action !undefined to be
executed. Formula ¢- is obviously false for both specifications of the gate. In fact
this formula is false for every path which does not include the ?s_on_p action. For
example, the LTS in Figure 4 contains an infinite path from the initial state such
that the 'undefined_p action is always executed.

3.3 Formalising fault tolerance properties

The ACTL expression of the general classes of properties regarding the ability of
the system of tolerating faults (see Section 1) are:

o Fault tolerance

AGQSCO’I‘T

where @ expresses a correctness condition on a state (an invariant)

o Fail-stop
AG[fault]drerm
where ¢rerm expresses the termination of the system

e Fuil-silence

AG[faUlt]¢CorrOmiss
where ¢corromiss €xpresses the correctness, apart from omission failures

e Fail-safe
AG[fa’U'lt]_'QsUnsafe
where ¢unsape expresses all possible unsafe behaviours

The general expressions given above mostly use the form AG|[fault]¢, which
predicate over what should be valid forever in the life of the system after the oc-
currence of a fault. These kind of properties are called safety properties. Safety
properties are distinguished from the liveness properties. Liveness properties state
that something good should eventually (or infinitely often) happen in the system.

Depending on the nature of the system, safety and/or liveness properties may
be needed to express fault-tolerance properties.

Example of properties concerning the behaviour of the gate contr p system
are:

o Fuault tolerance property.
The system, after having received a signal ?s_on_p, cannot execute either the
action !'off_p or the action !'undefined p until a signal ?s_off_p has been
received.

12



AG[?s_on_p|-E[true{—7s_off p}U{loff p V lundefined p}true]

Similarly, after having received a signal ?s_off_p, the system is not able to
execute the action !on_p or the action !'undefined p until a signal ?s_on_p
has been received.

AG[?s_off _p|-E[true{—?s_on_p}U{lon_p V lundefined p}irue]

Fuail-safe property.
The system, after having received a signal ?s_on_p, cannot execute the action
loff_p until a signal ?s_off_p has been received.

AG[?s_on_p|-E[true{~?s_off p}U{loff _p}true]

Similarly, after having received a signal ?s_off_p, the system cannot execute
the action !on_p until a signal ?s_on_p has been received.

AG[?s_off_p|-E[true{—7s_on_p}U{lon_p}true]

e Liveness property.
The system, after having executed the action !'off_p, eventually executes the
action !on_p.
[loff_p|AF[lon_p|true

The fault tolerance property states that if the gate is open, then on receiving a
request about its current state, the gate answers open, while if the state is closed
the gate answers closed.

The fail-safe property is weaker, since it states that if the gate is open, then
on receiving a request about its current state, the gate answers open or undefined.
Similarly, if the gate is closed, the gate answers closed or undefined.

The liveness property guarantees that a closed gate will be eventually open.

When applying the model checker with these formulae to the system in Figure
7, the results are that the system satisfies the fail-safe property, but not the fault
tolerance one. Also the liveness property is not satisfied by this system.

It is well-known that by applying the duplication-with comparison technique,
the fault tolerant design tolerates one faulty replica. This can be proved by model
checking by considering ad hoc fault assumption processes. For example, the fault
assumption (FA process) in Figure 8 limits the occurrence of faults to at most one
permanent fault in one of the replicas. Model checking shows indeed that the LTS
of the fault tolerant system design in Figure 8 satisfies the fault tolerance property
above.

4 State space explosion problem

The main difficulty in using in practice model checking formal verification methods
is due to the limits imposed by the state space size problem, that even challenges
more advanced model checking tools. Systems composed of several subsystems can
be associated to a finite state model with a number of states which is exponential
in the number of the component subsystems. Moreover, systems which are highly
dependent on data values share the same problem, producing a number of states
exponential in the number of data variables.
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In the following it is shown an estimate of the maximal state-space size based
on the structural knowledge of the system, i.e. on the observation that the phased
structure of fault tolerant systems and algorithms limits a priori the state explo-
sion problem. Indeed, a system employing redundancy is composed of a number of
identical modules which compute the same results. At the architectural level such
modules are often independent processors. Each module usually has a phased struc-
ture. Moreover, the modules have to synchronise periodically in order to maintain
their consistency, and the synchronisations are usually combined with some com-
parison or voting operation, aimed to detect or mask errors.

A common structure of such a system can be represented as a network of sub-
systems; each subsystem synchronises with the other ones at the end of each phase.
This structure is shown in Figure 10 in the case of duplication redundancy. The
picture abstracts from the details of the synchronisation protocol, and also from the
nature of the initial state of each phase, which generally is a set of states. These
abstractions do not affect however the generality of the following observations.

o SN—
!endphasel !endphasel
!endphasel
!endphase2| !endphase2
!endphase2
—
!endphasem !endphasem
tendphasem ‘endphasem Iendphasem tendphasem

Figure 10: The phased structure

The behaviour of the overall system is obtained by the parallel composition of
the replicas. Due to the synchronisation at the end of each phase, the obtained
global LTS appears to be structured in phases as well; each phase of the overall
system is actually generated by the interleaving of the corresponding phases of
the different replicas, while each phase is terminated by the synchronisation of the
replicas from which the next phase begins (see Figure 11, where Phase i||Phase i
represents the LTS built by interleaving two replicas of Phase 7).

Let S be the size of the state space of a replica and S; be the size of the state
space of the i-th phase. The cardinality of the state space of the interleaving of
n replicas has normally an upper bound of S™. Due to the phased structure, the
upper bound for S is determined by the size of the interleaving of each phase, that
is: S1" 4+ So" + ... + Sp".

Moreover, the regular structure of a redundant system may be exploited to
contain state explosion with the help of existing established techniques, such as
symmetries and reduction preorders. Using symmetries, as proposed by Emerson
in [18], the number of states is reduced by identifying those states which coincide
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Figure 11: The phased structure

up to a permutation of the system components. Partial order reduction [21, 26, 42]
employs the independency of the property to be checked from the order in which
interleaved processes are actually executed, to select just one order and hence only
a subset of the state space to check its validity. In the case of redundancy, the
complete interleaving of the replicas can be avoided in the generation of the model.
For example, the selected order of executions could be such that all the transition
of the first replica precedes in each phase the transitions of the second replica and
so on. The selection has however to take into account the interactions between the
replicas. The global state space of a phase i of the global LTS for a system of n
replicas is estimated to be of the order of nx S;, and therefore the global state space
of the overall algorithm is estimated to n x S.

Another observation that can be made is that the fault assumption process helps
in the containment of state space explosion. Consider for example a case in which
a replica is modelled by a sequence of phases, and in each of these phases, say the
i—th, IV; states reachable in absence of faults and F; states reachable within a failure
mode are recognised (in reference to previous notations, it is S; = N; + F}). If only
a single fault is allowed to occur, say at the j—th phase, the total number of states
is bound by the sum: N1"+...4+ N; 1"+ F} *Nj”71 +..+F,xN," ! (this formula
refers to the case in which partial order reduction methods are not used).

The observations above are related to the redundant structure of the system.
Other techniques can be used as well if the state space is still too large. Gener-
ally applicable techniques are decomposition and abstraction. For example, the
following techniques can be applied:

1. Identification of the static configuration parameters of the system. The mod-
elling of these attributes as if they were variables, contributes unnecessarily
to the growth of the number of states of the model. In the development of
the formal specification, the configurations can be taken each at a time and
a property is satisfied by the system if and only if it is verified in all possible
configurations

2. The relabelling of multiple actions into one action is a well-known reduction
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Figure 12: (a) A LTS. (b) The LTS after the reduction.

technique. For example, consider the LTS in figure 12 (a):

e the process sequentially tests several signals in order to execute an oper-
ation with success

o the failure of any of these tests leads to the failure of the operation itself

e the properties do not involve actions related to the tested signals

In this case the actions corresponding to a sequence of tests can be modelled
as a non deterministic choice between the success and the failure of the tests,
as shown in Figure 12 (b))

5 Case studies

This section shows an experience in the use of the proposed approach and verifica-
tion tools on real case studies. The first study is the specification and verification
of the safety requirements of a Railway Interlocking System developed by Ansaldo
Trasporti [2]. The second one is the specification and verification of the Inter-
consistency fault tolerant mechanism defined inside the project GUARDS (Generic
Upgradable Architecture for Real-Time Dependable Systems) [37]. Both studies
show that:

e the use of finite state machine as specification language has the advantage of
ensuring the adherence of the produced formal specification to the original
semi-formal one

e some standard rules for the passage from the semi-formal description of the
system to its formal specification can be successfully applied in the field of
fault tolerant systems. This passage is generally recognised one of the critical
points of the introduction of formal methods in the software development cycle

e the reduction in the state space due to the phased structure of these kind of
systems makes the model checking approach viable in this domain of applica-
tion

5.1 Railway Interlocking System

The first case study is part of a railway signaling interlocking control system devel-
oped by Ansaldo Segnalamento Ferroviario. The system operates within a complex
environment, interacting with human operators as well as with a number of differ-
ent actuators and sensors. Sensors convey data concerning the physical status of
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the environment, actuators allow for the control of the operations and the status of
the external environment. An operator may interact with the system sending com-
mands and selecting operation modes. The scope of this control system is that of
permitting a safe passage of trains by adjusting the setting of signals on the railway
line. The reader can refer to [2] for a detailed description of the specification and
verification activity.

The control system is represented by a set of communicating processes, mod-
elling logical and physical entities. The control of the entities is realised by op-
erations which act on variables. Variables are easily modeled as processes, since
they represent signals whose domain of values is very limited or signals for which a
limited number of values are of interest. Finally, each operation is transformed into
a process whose LTS describes the behaviour of the operation.

Every operation in the Ansaldo semi-formal specification has three main parts:

e the pre-conditions on variables that must be satisfied before continuing the
operation (“VERIFY THAT” part)

e the execution of the operation, performed by modifying the value of some
common variables (“ASSIGN” part)

e an “EXCEPTIONS?” that specifies what should be done if a “VERIFY THAT”
condition is not satisfied

An example of the description of an operation in the semi-formal specification
is shown in Figure 13.

Automatic closure request
I. VERIFY THAT
a. the command_state variable has the value "automatic";
b. the lcc_state variable has a value not equal to
"request to close".

II. ASSIGN
- the value "manual" to the command_state variable
EXCEPTIONS

lal |Ib| command is lost; no recovery actions.

Figure 13: Semi-formal specification

The translation from the semi-formal to the formal CCS/Meije specification
of the operation was straightforward. Figure 14 shows the specification of the
operation in Figure 13.

5.1.1 Reduction of the number of states

The abstraction technique presented in the previous section for testing signal values
was applied to every operation. The global LTS of the behaviour of the system
resulted in about one million of states. The identification of the static configuration
parameters of the system allowed a reduction in the number of states of this LTS
to 77294 states.

5.1.2 Safety properties verification

A typical safety property for the interlocking system is: if the proceed signal is sent
to the train when entering a track containing a level crossing, then the level crossing
is closed. This property can be expressed more precisely as follows: in any state of
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let rec {
S = ?start_op: VERIF_A

and

VERIF_A = 7automatic : VERIF_B +
?manual : EXC

and

VERIF_B = ?closure_req : EXC +
?open_req : ASSIGN
and
ASSIGN = !s_manual : F
and EXC = tau : F
and F = !end : S
} in S;

Figure 14: Formal specification

the model if the position of the level crossing is not equal to closed, then there is no
execution in which the proceed signal is sent until the position of the level crossing
is equal to closed.

This property can be formalised as the following ACTL formula:

AG[-loff _pos]|-E[true{—?s_off_pos}U{!raise_shunt_sign}irue)]

where !raise_shunt_sign corresponds to the proceed signal, !'off_pos corre-
sponds the state closed for the level crossing and ?s_off_pos corresponds to the set
off signal received by the level crossing gate.

The property above is a fail-safe property. It was checked to be true on the
specification of the interlocking system using the JACK environment.

5.2 Inter-consistency mechanism

The GUARDS project [37] has produced a generic architecture for safety critical
systems designed to be instantiated to support different critical applications. Model
checking has been used in the project to validate the Inter-consistency mechanism
which is the basis of other ad hoc defined fault tolerant mechanisms.

The Inter-consistency mechanism must guarantee interactive consistency among
three or four processors in the GUARDS architecture. Interactive consistency fo-
cuses on the problem of reaching agreement among multiple processors in presence
of faults (also known as the ”Byzantine Generals problem” [31]). The main diffi-
culty to be overcome in achieving consistency is the possibility of conflicting values
sent by faulty processors. Message authentication is assumed. This requires that
faulty processors do not make undetectable modifications to messages as they are
relayed from one processor to another.

The mechanism uses the ZA Byzantine Agreement algorithm described in [22].
This algorithm is synchronous and uses several rounds of authenticated encoded
message exchange during which processor P tells processor @ what value it has
received from processor R and so on. Each node has at the end a voted knowledge
on each value hold by every other node. In [22] the generic algorithm has been
verified using theorem proving techniques; the verification activity carried on inside
the GUARDS project was instead aimed at the validation of the instances of the
algorithm defined for the particular architecture. In the formal specification, two
protocols have been identified: the transmitter and the receiver protocol. Every
node has been specified as the composition of the protocols above. For example, in
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phase 1: phase4:
vp:p := p_encode(vp); p2 := p_decode(msg2);

p-broadcast (vp:p); msg3 := q_receive();

phase2: phaseb:

msgl := s_receive(); p3 := p-decode(msg3);
vp(p) := vote(pl, p2, p3);

phase3:

pl := p_decode(msgl);

msg2 := r_receive();

Table 1: The ZA algorithm of transmitter node P

the four nodes case P, Q, R and S, each node includes one transmitter protocol and
three receiver protocols. The pseudo-code for the transmitter node P is given in
Table 1, where vp is the private value of the node P. The mechanism is modelled as
a network of four communicating processes, each modelling one of the four nodes.
Moreover, since the algorithm has a phased structure: each process modeling a
node is described by a network of communicating processes modelling the different
phases of the algorithm and the local variables.

The translation from the pseudo-code to the formal specification is straightfor-
ward. For example, assuming two different values 0 and 1, the process modelling
the phase 2 of node P is expressed by the following CCS/Meije term:

phase2P = {

RECEIVE = 7ssendp_encp_0O : !s_mlp_encp_0O : END +
?ssendp_encp_1 : !s_mlp_encp_1 : END +
?ssendp_omission : !s_mlp_omission : END

and

END = !startphase3 : stop

} in RECEIVE;

The node on receiving a message from S (or detecting an omission fault), saves
the message into the variable named m1p. The action XsendY_encZ_j corresponds
to a message containing j encoded by Z and sent by X to Y; XsendY_omission
corresponds to an omission fault from X to Y; s.mip_encZ_j corresponds to storing
the value j encoded by Z into the variable m1p.

Then the node is ready to execute phase 3 of the protocol, and signals this by
the !'startphase3 action, on which all the other nodes have to synchronise. The
complete specification and verification work is reported in [3].

5.2.1 Reduction of the number of states

Table 2 presents the size of the state space of the single node, and that of the network
composed of four nodes under different fault assumptions. The fault assumptions
have been modelled by means of specific processes which constrain the occurrences
of faults.

The table shows that:

e the size of the state space of the network with four replicas is largely below
the fourth power of the size of the state space of a single node

e the state space increases with the generality of the fault assumptions, as evi-
dent in the last two rows
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Model of: states
A single non faulty node 428
Network of 4 non faulty nodes 3479
Network with an arbitrarily faulty node and a symmetric faulty node 109613
Network with an arbitrarily faulty node, and authentication violation 122767

Table 2: Number of states for the GUARDS Byzantine Agreement.

5.2.2 Agreement and Validity properties verification

The classical Agreement and Validity properties must be satisfied to reach consis-
tency:

Agreement: if a pair of receivers are non faulty, then they agree on the value
ascribed to the transmitter.

Validity: if the receiver P is non faulty, then the value ascribed to the transmit-
ter by P is the value actually sent if the transmitter is non faulty or
symmetric faulty; or the distinguished value error, if the transmitter
is manifest faulty.

Consider only two possible values (0 and 1). Agreement can be formalised as:

for any execution, the non faulty nodes eventually agree on the value 1 or the nodes
eventually agree on the value 0.
Assume P is non faulty. Validity can be formalised as: if in any state of the model,
it is true that the internal value of the node P is equal to 1 or 0, then for any exe-
cution of the processes, starting from such a state, if the processes are non faulty,
they eventually agree on such a value.

Assume S is faulty. The combination of the Agreement and Validity properties in
the case of value 1, is expressed by the following ACTL formula:

AG['psend_vp_1](Aftrue{true}U{!vp-ofp_eqto_1}true]&
Altrue{true}U{lvp_ofq_eqto_1}iruel&
Altrue{true}U{lvp_ofr_eqto_1}irue])

where the action !psend_vp_1 indicates that the private value of the node P is 1
and the action !vp_ofY_eqto_1 indicates that 1 is the value ascribed by the receiver
node Y to the transmitter node P.

The properties above falls in the class of fault-tolerance properties, and model
checking has been applied to prove their invariance under different fault assump-
tions. As expected, in the case of a violation of the assumption on authentication,
even a single faulty node is not tolerated.

6 Related work

The approach presented in this paper applies model-checking to fault tolerant sys-
tems specified by using a standard process algebra. Faults are modeled as observable
actions. The observability of faults is not related to the possibility of detection of
faults (fault detection mechanisms usually detect the consequences, rather than the
fault occurrence itself). It enables to clearly distinguish faults from other internal
actions, and to control fault events, so that fault assumptions modeling is possible.

In the literature on the formalisation of fault tolerant systems, the earlier works
([15, 41]) do not model explicitly the occurrence of faults, but only the failure
behaviour.
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Several later works are based on the use of standard process algebras to spec-
ify the behaviour of the system also under fault occurrences; equivalence relations
or preorders are employed to verify fault tolerant system designs. The major ad-
vantage of standard process-algebra based approaches is related to the existence of
automatic verification tools. In particular, CCS process algebra and its observa-
tional equivalence [34] has been first used for this purpose in [38]. In [19], CCS
is used in verifying a distributed control for a railway block signaling system. In
[40] and [35] CSP and its trace theory [25] are applied. In [36], CSP and asser-
tional techniques are combined to design fault tolerant systems based on dynamic
redundancy; refinement steps and proof obligations are applied.

Other works in the literature use instead specialised process algebras: in [30], a
CCS-like calculus for replicated systems is presented. In [16], new process algebra
operators to model faults and failure modes are defined. In [28, 27] a new semantics
for CCS is defined, which is parameterised on the fault assumptions.

Verification of system fault tolerance properties has also been addressed both
with theorem proving and model checking techniques.

Theorem proving has been applied to study fault tolerance in [22]. The specifi-
cation language is a strongly typed high-order logic, and the PVS theorem prover
allows semi-automatic proofs to be generated.

In [32], a calculus for fault tolerance analysis based on TLA, the Temporal Logic
of Actions, is defined. Theorems asserted in the specification are proved using the
method of structured proofs.

In [23] the micro-CRL and a modal logic for this language are used for modelling
a railway interlocking system and their safety properties. Properties are then veri-
fied by transforming the specification in propositional logic and by using a theorem
prover.

Model checking of properties expressed in modal u-calculus on CCS specifica-
tions is first applied in [11, 9] to the verification of fault properties of a railway
interlocking system. In [10] fault-handling mechanisms are modelled using special-
purpose process operators; temporal properties which hold for fault tolerant mech-
anisms applied to simple processes are shown to hold as well when the mechanisms
are applied to more complex processes. The use of modal transition systems is
exploited in [8], where a modal process logic that captures the intention behind
failures is defined.

The model checking approach presented in this paper is based on traditional
process algebras in order to be able to exploit the powerful verification capabilities
offered by existing verification environments. Moreover, the modelling of faults as
observable actions, allows the verification under different fault scenarios.

7 Conclusions

This paper shows the application of the model checking technique for the specifica-
tion and verification of fault tolerant systems. The results on the application of the
approach to two case studies are reported. The studies show the feasibility of model
checking to real examples, and confirm that key-point in the acceptance of model
checking are the use of a specification formalism which is essentially some variants
of finite-state machines (commonly used in many industrial activities, especially in
the safety critical systems area) and the existence of automatic verification tools.
State explosion represents the main problem to the application of model checking
for handling large systems. However, recent advances in model checking techniques
have managed to deal with very large state spaces by the use of symbolic manipula-
tion algorithms inside model checkers. The most notable example is the SMV model
checker [12]. In SMV the transition relations are represented implicitly by means
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of Boolean formulae and are implemented by means of Binary Decision Diagrams
(BDDs, [7]). This usually results in a much smaller representation for the systems’
transition relations, thus allowing the maximum size of the systems that can be
dealt with to be significantly enlarged. These advances, together with what re-
ported in this paper about the state space of redundant systems, indicate that fault
tolerant systems are a promising field of application of model checking techniques.
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