
Distributed Databases

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 20 and 22), 5th Ed.,

McGraw-Hill, by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Centralized Databases

Centralized Database systems are those that run on a single computer system

The architecture of a database system is greatly influenced by the underlying

computer system on which it run, in particular by such aspects of computer

architecture as networking, parallelism and distribution

Database-system architectures

1.3

Centralized Systems

 Run on a single computer system and do not interact with other

computer systems.

 One to a few CPUs and a number of device controllers that are

connected through a common bus that provides access to shared

memory.

 Single-user system (e.g., personal computer or workstation): desk-top

unit, single user, usually has only one CPU and one or two hard

disks; the OS may support only one user.

 Multi-user system: more disks, more memory, multiple CPUs, and a

multi-user OS. Serve a large number of users who are connected to

the system vie terminals. Often called server systems.

Database-systems support the full transactional features that we have

studied earlier.

1.4

Client-Server Systems

 A centralized system acts as server system.

 Server systems satisfy requests generated at m client systems, whose general

structure is shown below:

The functionality provided by the database system can be divided into two parts:

- The front end: consists of tools such as SQL user interface, report generation

tools, Standards such as ODBC and JDBC developed to interface clients

with servers

- The back end: manages access structures, query evaluation and

optimization, concurrency control and recovery

1.5

Distributed Databases

 Data spread over multiple machines (also referred to as sites or

nodes). Sites do not share main memory or disks.

 Network interconnects the machines (LAN or WAN)

 Data shared by users on multiple machines

 We differentiate between local transactions (access data only from the

site where the transaction was initiated) / global transaction (access

data in a site different from the site where the transaction was initiated

General structure

of a distributed system

1.6

Distributed Databases

 Homogeneous distributed databases

 Same software/schema on all sites, data may be partitioned
among sites (e.g, banking application: data at different branches)

 Goal: provide a view of a single database, hiding details of
distribution

 Heterogeneous distributed databases

 Different software/schema on different sites

 Goal: integrate existing databases to provide useful functionality

1.7

Trade-offs in Distributed Systems

There are several reasons for building distributed database systems

 Sharing data – users at one site able to access the data residing at

some other sites.

 Autonomy – each site is able to retain a degree of control over data

stored locally.

 Higher system availability through redundancy — data can be

replicated at remote sites, and system can function even if a site fails.

 Disadvantage: added complexity required to ensure proper

coordination among sites.

Distributed Databases

1.9

Implementation Issues for Distributed

Databases

 Atomicity needed for transactions that update data at multiple

sites

 All or nothing

(updates are executed at all sites or none update is executed)

 A transaction that commits at one site and abort at another,

leads to an inconsistent state.

 Distributed concurrency control (and deadlock detection) required:

Transaction managers at sites where the transaction is executed, need to

coordinate to implement concurrency control.

1.10

System Failure Modes

 Failures unique to distributed systems:

 Failure of a site

 Loss of messages

 Failure of a communication link

 Network partition

 A network is said to be partitioned when it has been split into

two or more subsystems that lack any connection between

them

1.11

Distributed transactions

t1: begin transaction

 UPDATE account

 SET balance=balance + 500.000

 WHERE account_number=45;

 UPDATE account

 SET balance=balance - 500.000

 WHERE account_number=35;

 commit

 end transaction

site1 site2

t11: UPDATE account

 SET balance=balance + 500.000

 WHERE account_number=45;

t12:UPDATE account

 SET balance=balance - 500.000

 WHERE account number=35;

t1

Client:

t1

t1: distributed transaction

(access data at different sites)

account_number

45

account_number
35

Account =(account_name, branch_name, balance)

divided into a number of fragments, each of which

consists of accounts belonging to a particular branch

Each branch responsable

of data on its accounts

1.12

Distributed Transactions

 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.

 Distributing sub-transactions at appropriate sites for execution.

 Coordinating the termination of each transaction that originates
at the site, which may result in the

 “transaction being committed at all sites or aborted at all
sites”

 Each site has a local transaction manager responsible for:

 Maintaining a Log for recovery purposes

 Participating in coordinating the concurrent execution of the
transactions executing at that site.

1.13

Transaction System Architecture

1.14

Commit Protocols

 Commit protocols are used to ensure atomicity across sites

 a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.

 not acceptable to have a transaction committed at one site and

aborted at another

 The two-phase commit (2PC) protocol is widely used

 The three-phase commit (3PC) protocol is more complicated and

more expensive, but avoids some drawbacks of two-phase commit

protocol.

 The four-phase commit (4PC) avoids some drawbacks by replicating

the transaction coordinator.

1.15

Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do

not cause any other harm, such as sending incorrect messages to

other sites.

 Execution of the protocol is initiated by the coordinator after the last

step of the transaction has been reached.

 The protocol involves all the local sites at which the transaction

executed

 Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

1.16

Phase 1: Obtaining a Decision

 Coordinator asks all participants to prepare to commit transaction Ti.

 Ci adds the records <prepare T> to the log and forces log to

stable storage

 sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at site determines if it

can commit the transaction

 if not, add a record <no T> to the log and send abort T message

to Ci

 if the transaction can be committed, then:

 add the record <ready T> to the log

 force all records for T to stable storage

 send ready T message to Ci

1.17

Phase 2: Recording the Decision

 T can be committed of Ci received a ready T message from all the

participating sites: otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the

log and forces record onto stable storage. Once the record stable

storage it is irrevocable (even if failures occur)

 Coordinator sends a message to each participant informing it of the

decision (commit or abort)

 Participants take appropriate action locally.

1.18

TC

Two-phase commit: commit of a transaction

TMi

<prepare T> <global_commit T>

<ready T>
<commit T>

<prepareT>

<ready T>

<global_commit T>

<complete T>

<ackT>

<commit T> <ready T> TMj

<ready T>

<prepareT>

timeout1
timeout2 <global_decision>

<global_commit T>

<ack T>

1.19

TC

Two-phase commit: abort of a transaction

TMi

<prepare T> <global_abort T>

<ready T> <abort T>

<prepare T>

<ready T>

<global_abort T>

<complete T>

<ackT>

<abort T> <no T> TMj

<no T>

<prepare T>

timeout1
timeout2

<global_abort T>

<ackT>

1.20

 A site at which T executed can unconditionally abort T any time before it

sends the message <ready T> to the coordinator

 The <ready T> message is a promise by a site to follow the coordinator’s

decision to commit T or abort T

 Time-out at the end of the first phase: the coordinator can decide abort of

the transaction.

 Time-out at the end of the second phase: the coordinator re-sends the

global decision.

 The acknowledgement message <ack T> at the end of the second phase,

is optional

Two-phase commit

1.21

Handling of Failures - Site Failure

When a site Si recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

 Log contains <commit T> record: site executes redo (T)

 Log contains <abort T> record: site executes undo (T)

 Log contains <ready T> record: site must consult the coordinator to

determine the fate of T.

 If T committed, redo (T)

 If T aborted, undo (T)

 The log contains no control records concerning T

Si failed before responding to the prepare T message

 since the failure of Si precludes the sending of such a

response the coordinator must abort T

 Si must execute undo (T)

1.22

Handling of Failures- Coordinator Failure

When coordinator Ci recovers, it examines its log:

 Log contains < prepare T> record:

 T is aborted or the prepare message is re-sent

 Log contains <global_decision> record: global decision is re-sent

 Blocking problem : active sites may have to wait for failed

coordinator to recover.

If a site has a <ready T> record in its logs, but no additional control

records (such as <abort T> of <commit T>), the site must wait for Ci

to recover, to find decision.

 A participant can’t assume the role of the coordinator to terminate the

transaction

1.23

Handling of Failures - Network Partition

 If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.

 If the coordinator and its participants belong to several partitions:

 Sites that are not in the partition containing the coordinator think

the coordinator has failed, and execute the protocol to deal with

failure of the coordinator.

 No harm results, but sites may still have to wait for decision

from coordinator.

 The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and

follow the usual commit protocol.

 Again, no harm results

1.24

Three-phase commit

 Pre-commit phase is added.

 Assume a permanent crash of the coordinator.

A site can substitute the coordinator to terminate the transaction.

 The participant site decides:

<global_abort T> if the last record in the log is <ready T>

<global_commit T> the last record in the log is <precommit T>

1.25

Three-phase commit

Prepare CompletePre-commit Global Commit

Local
Commit

Pre
CommitReady

TC

TMi

1.26

Four-phase commit

 Coordinator backup is created at a different site

the backup maintains enough information to assume the role of

coordinator if the actual coordinator crashes and does not recover.

 The coordinator informs the backup of the actions taken.

 If the coordinator crashes, the backup assume the role of coordinator:

1) Another backup is started.

2) The two-phase commit protocol is completed.

1.27

Four-phase commit

P GC

Global Commit CompletePrepare

Ready Commit

partecipante (RM)

coordinatore (TM)

 backup

TC

TMi

1.28

Atomicity property

 We assume that each site participates in the execution of a commit

protocol to ensure global transaction automicity.

1.29

Concurrency Control

 Modify concurrency control schemes for use in distributed environment.

Given a distributed transaction ti, we use the following notation:

tij: sub-transaction of ti executed at site j

rij(x): ti executes read(x) at site j

wij(x): ti executes write(x) at site j

1.30

t1: t2:

 read(x) read(y)

 write(x) write(y)

 read(y) read(x)

 write(y) write(x)

 S= t11 t22 t21 t12

 S= r11(x) w11(x) r22(y)w22(y) r21(x) w21(x) r12(y) w12(y)

 NOT GLOBALLY SERIALIZABLE

site1

x

site2

y

Client:

t1

Client:

t2

t11 t12

t22 t21

Distributed transactions

t11

t12

t22

t21

LOCK RELEASED AFTER THE TWO-PHASE COMMIT PROTOCOL

 t1: lock_X(x) ok

 t2: lock_X(y) ok

 t2: lock_X(x) wait for t1 DEADLOCK

 t1: lock_X(y) wait for t2

1.31

site1 site2

Locking protocol
- (strict) rigorous 2PL

all locks are held till abort/commit

(Two-phase commit protocol)

lock_X(record 45) site1

…..

lock_X(record 35) site2

…..

unlock() site1

unlock() site2

< Two-phase commit protocol>

Client:

t1

account_number

45 +500.000

account_number

35 -500.000

1.32

Single-Lock-Manager Approach

 System maintains a single lock manager that resides in a single

chosen site, say Si

 When a transaction needs to lock a data item, it sends a lock request

to Si and lock manager determines whether the lock can be granted

immediately

 If yes, lock manager sends a message to the site which initiated

the request

 If no, request is delayed until it can be granted, at which time a

message is sent to the initiating site

1.33

Single-Lock-Manager Approach (Cont.)

 Advantages of scheme:

 Simple implementation

 Simple deadlock handling

 Disadvantages of scheme are:

 Bottleneck: lock manager site becomes a bottleneck

 Vulnerability: system is vulnerable to lock manager site failure.

t1 t2

y

x

Wait-for graph

 (cycle)
site1

x

site2

y

Client:

t1

Client:

t2

t11 t12

t22 t21

1.34

Distributed Lock Manager
 In this approach, functionality of locking is implemented by lock

managers at each site

 Lock managers control access to local data items

 Advantage: work is distributed and can be made robust to failures

 Disadvantage: deadlock detection is more complicated

 Lock managers cooperate for deadlock detection

t1 t2

y

Wait-for graph

(without a cycle)

t1 t2

x

Wait-for graph

(wohout a cycle)

lock manager

Site 1
lock manager

Site 2

site1

x

site2

y

Client:

t1

Client:

t2

t11 t12

t22 t21

deadlock which cannot be detected locally at either site

1.35

Timestamping

 Timestamp based concurrency-control protocols can be used in

distributed systems

 Each transaction must be given a unique timestamp

 Main problem: how to generate a timestamp in a distributed fashion

 Each site generates a unique local timestamp using either a logical

counter or the local clock.

 Global unique timestamp is obtained by concatenating the unique

local timestamp with the unique identifier.

1.36

site2

site3

site1
1.1 7.1 2.1 8.1

5.3 6.3

1.2 2.2

7.3

Lamport algoritm to assign timestamps

Timestamp: local_timestamp.site_identifier

 (integer)

1.37

Timestamping (Cont.)
 Transaction initiated at a site are assigned timestamps in sequence

 site1: 1.1 2.1 3.1 ……

 site2: 1.2 2.2 3.2 ……

When a transaction moves from site i to site j, the timestamp assigned to
the transaction at site j must be greater than the last timestamp
already assigned to transactions at j and the current timestamp of the
transaction

1.1 2.1 3.1

1.2 2.2 3.2

4.1

The order of concatenation (local timestamp, site identifier) is important!

1.1 1.2 1.3

2.1 2.2 2.3

1.10

If we have (site identifier, local timestamp):

1.38

Deadlock detection locally at each site is not sufficient

Distributed Lock Manager:

Handling deadlock

1.39

Centralized Approach

 A global wait-for graph is constructed and maintained in a single site

(the deadlock-detection coordinator)

 the global wait-for graph can be constructed when:

 a new edge is inserted in or removed from one of the local wait-

for graphs.

 a number of changes have occurred in a local wait-for graph.

 the coordinator needs to invoke cycle-detection.

 If the coordinator finds a cycle, it selects a victim and notifies all sites.

The sites roll back the victim transaction.

1.40

Distributed deadlock detection algorithm

(IBM DB2)

- A transaction is divided into sub-transactions executing at different sites

- Sub-transactions are executed synchronously

 t11 enables t12

 t11 waits for the completion of t12

Waiting conditions:

1) A sub-transaction of t waits for another sub-stransaction of t

executed at a different site

2) A sub-transaction of t waits for a sub-transaction of t’

on a shared data item x

1.41

site 1

DBMS 1

site 2

DBMS 2

t12: lock_X(y)

 waits t22

t11 enables t12

t11 waits t12

t22 enables t21

t22 waits t21

t12

t11

lock_X(x)

t21

t22

lock(y)

x y

t1: r11(x) w11(x) r12(y) w12(y)

t2: r22(y)w22(y) r21(x) w21(x)

S = r11(x) w11(x) r22(y)w22(y) r21(x) w21(x) r12(y) w12(y)

Distributed deadlock detection algorithm

(IBM DB2)

t21: lock_X(x)

 waits t11

1.42

- Wait-for sequences

Ein -> ti -> tj -> Eout

Example:

 DBMS1: E2 -> t21 -> t11 -> E2

 DBMS2: E1 -> t12 -> t22 -> E1

- Build the wait-for graph locally to a site

Distributed deadlock detection algorithm

(IBM DB2)

1.43

Each site periodically runs the algorithm:

Phase 1

 - update the wait-for graph locally with received “wait-for sequences”

Phase 2

 - check the wait-for graph locally: if a deadlock arises, rollback

 a selected transaction. Abort of the transaction at all sites

Phase 3

 - “wait-for sequences” are computed and sent to other sites

Distributed deadlock detection algorithm

The same deadlock can be deteced at multiple sites.

Different transactions can be chosen for the rollback at sites.

1.44

 Ein -> ti -> tj -> Eout

- a wait-for sequence is sent iff :

 i > j, with i and j the transaction identifiers

- Sequences are sent forward, i.e., to the DBMS where

transaction tj is executed

Distributed deadlock detection algorithm

RULE:

1.45

Example

site 1

DBMS 1

site 2

DBMS 2

t12: lock_X(y)

 waits t22

t11 enables t12

t11 waits t12

t22 enables t21

t22 waits t21

t12

t11

lock_X(x)

t21

t22

lock(y)

x y

t21: lock_X(x)

 waits t11

Phase 1

DBMS1: wait-for graph t2 -> t1

DBMS2: wait-for graph t1 -> t2

Phase2

DBMS1: -

DBMS2: -

1.46

Phase 3

DBMS1: E2 -> t21 -> t11 -> E2 E2 -> t2 -> t1 -> E2

 2>1

 sent to DBMS2

DBMS2: E1 -> t12 -> t22 -> E1 E1 -> t1 -> t2 -> E1

 1> 2

 not sent

Phase1:

DBMS1: -

DBMS2 receives the sequence and updates the wait-for graph:

 E1 -> t1 t2 -> E1

 E2 E2

Phase 2

Site 1: -

Site2: deadlock detected. Abort of a transaction

Example

1.47

Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost

of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:

 The cost of a data transmission over the network.

 The potential gain in performance from having several sites

process parts of the query in parallel.

