
Recovery System

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 17), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Transactions: ACID Properties

 Atomicity. Either all operations of the transaction are properly reflected in the
database or none are.

 Consistency. Execution of a transaction in isolation preserves the consistency
of the database.

 Isolation. Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently executed
transactions.

 Durability. After a transaction completes successfully, the changes it has made
to the database persist, even if there are system failures.

Consistency: Programmer

Isolation: Concurrency Control System

Atomicity and Durability: Recovery System

A transaction is a unit of program execution that accesses and possibly

updates various data

1.3

Transaction

 commit

termination with success of the transaction

all operations are executed and changes to the database are persistent

 abort (or rollback)

abort of the transaction

none operation is executed

Transfers $50 from account A to account B

start transaction;

update Account

 set balance = balance – $50 where Accout_number = A;

update Account

 set balance = balance + $50 where Account_number = B;

commit;

1.4

Abort of a Transaction

start transaction;

update Account

 set balance = balance – $50 where Accout_number = A;

update Accont

 set balance = balance + $50 where Account_number = B;

select balance into V

 from Account where Account_number = A;

if (V>=0) then commit

 else abort;

1) Abort if balance of A less than $50

2) Abort if the system has entered an undesirable state (e.g. deadlock)

3) Abort in presence of failures

1.5

Failures

 A computer system is subject to failures

 Causes are: disk failure, power outage, hardware or software errors, ….

 In any failure, information may be lost

 DBMS must take actions in advance to ensure that atomicity
and durability properties of transactions are preserved in case of failures

Recovery System:
it can restore the database to the consistent state that existed before the failure

ASSUMPTIONS on failures:

 System crash: a power failure or other hardware or software failure causes
the system to crash.

 Fail-stop assumption:
non-volatile storage contents are not corrupted by system crash

 Disk failure:
a head crash or similar disk failure destroys all or part of disk storage

 Destruction is assumed to be detectable: disk drivers use checksums
 to detect failures

1.6

Recovery Algorithms

 Recovery algorithms are techniques to ensure database transaction

atomicity and durability despite failures

 Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures

2. Actions taken after a failure to recover the database contents to a

state that ensures atomicity and durability

1.7

Storage Structure

Resilience to failure classification:

 Volatile storage:

 does not survive system crashes

 examples: main memory, cache memory

 Nonvolatile storage:

 survives system crashes

 examples: disk, tape, flash memory,

 non-volatile (battery backed up) RAM

 Stable storage:

 a mythical form of storage that survives all failures

 approximated by maintaining multiple copies on distinct nonvolatile media

 Information residing in stable storage is never lost!!!

(theoretically cannot be guaranteed - it can be closely approximated by

techniques that make data loss extremely unlikely)

The recovery systems relies on stable storage

1.8

Data Access

 Physical blocks are those blocks residing on the disk.

 Buffer blocks are the blocks residing temporarily in main memory.

 Block movements between disk and main memory are initiated

through the following two operations:

 input(B) transfers the physical block B to main memory.

 output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.

 Each transaction Ti has its private work-area in which local copies of

all data items accessed and updated by it are kept.

 Ti's local copy of a data item X is called xi.

 We assume, for simplicity, that each data item fits in, and is stored

inside, a single block.

1.9

Data Access (Cont.)
 Transaction transfers data items between system buffer blocks and its

private work-area using the following operations :

 read(X) assigns the value of data item X to the local variable xi.

 write(X) assigns the value of local variable xi to data item {X} in

the buffer block.

 both these commands may necessitate the issue of an input(BX)

instruction before the assignment, if the block BX in which X

resides is not already in memory.

 Transactions

 Perform read(X) while accessing X for the first time;

 All subsequent accesses are to the local copy.

 After last access, transaction executes write(X).

 output(BX) need not immediately follow write(X).

System can perform the output operation when it deems fit.

1.10

Example of Data Access

X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

1.11

Recovery and Atomicity

 Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state.

 Consider transaction Ti that transfers $50 from account A to account B;

goal is either to perform all database modifications made by Ti or none

at all.

 Several output operations may be required for Ti (to output A and B).

A failure may occur after one of these modifications have been made

but before all of them are made.

1.12

Recovery and Atomicity (Cont.)

 To ensure atomicity despite failures, we first output information

describing the modifications to stable storage without modifying the

database itself.

 We study

 Log-based recovery

We assume (initially) that transactions run serially, that is, one after

the other.

1.13

Log-Based Recovery
 A log is kept on stable storage.

 The log is a sequence of log records, and maintains a record of update
activities on the database.

 When transaction Ti starts, it registers itself by writing a log record

 <Ti start>

 Before Ti executes write(X), a log record

 <Ti, X, V1, V2>

 is written, where V1 is the value of X before the write, and V2 is the value to be
written to X.

 Log record notes that Ti has performed a write on data item Xj Xj had value
V1 before the write, and will have value V2 after the write.

 When Ti finishes it last statement (commit statement) (partial commit of the
transaction), the following log record is written:

 <Ti commit>

1.14

Log-Based Recovery
Transaction rollback during normal operation

 If Ti executes the abort statement, the transaction is undone:

undo(Ti) restores the value of all data items updated by Ti to their old values,

going backwards from the last log record for Ti

 each time a data item X is restored to its old value V (write(X))

 a special log record is written out

 < Ti, X, V>

such log records are called compensation log records

 when undo of a transaction is complete, the following log record is written:

 <Ti abort>

 We assume for now that log records are written directly to stable storage (that is,
they are not buffered)

1.15

Log-Based Recovery

output(BX) need not immediately follow write(X).

System can perform the output operation when it deems fit.

 Possible schemes for the execution of the output(BX) operations are:

 Deferred database modification

 Immediate database modification

1.16

Deferred Database Modification

 The deferred database modification scheme records all

modifications to the log, but defers all the writes to disk

after partial commit

 the output(BX) operation executed after the partial commit

 old value of X is not needed in the log file for this scheme

 Transaction starts by writing <Ti start> record to log.

 A write(X) operation results in a log record <Ti, X, V> being written,

where V is the new value for X

 The write is not performed on X, but it is deferred after the partial

commit.

 When Ti partially commits, <Ti commit> is written to the log

 At the checkpoint, the log records are read and used to actually execute

the previously deferred writes.

1.17

Deferred Database Modification (Cont.)

 During recovery after a crash, a transaction needs to be redone if and

only if both <Ti start> and<Ti commit> are there in the Log.

 Redoing a transaction Ti (redoTi) sets the value of all data items updated

by the transaction to the new values.

 Crashes can occur while

 the transaction is executing the original updates, or

 while recovery action is being taken

 example transactions T0 and T1 (T0 executes before T1):

 T0: read (A) T1 : read (C)

 A:= A - 50 C:= C- 100

 Write (A) write (C)

 read (B)

 B:= B + 50

 write (B)

1.18

Deferred DB Modification Recovery

Example

 Below we show the log as it appears at three instances of time

Assume A= 1000, B=2000, C =700

 Assume we have a crash.

 (a) No redo actions need to be taken

 (b) redo(T0) must be performed since <T0 commit> is present

 (c) redo(T0) must be performed followed by redo(T1) since

 <T0 commit> and <Ti commit> are present

1.19

Immediate Database Modification

 The immediate database modification scheme allows database

updates output(B) of an uncommitted transaction to be made as the

writes are issued

 since undoing may be needed, update logs must have both old value

and new value

 Output of updated blocks can take place at any time (before or

after transaction commit)

 Update Log record must be written before database item is

written

 We assume that the log record is output directly to stable storage

 Can be extended to postpone log record output, so long as

prior to execution of an output(B) operation for a data block B,

all log records corresponding to items B must be flushed to

stable storage

<Ti, X, V1, V2>

1.20

Immediate Database Modification (Cont.)

 Recovery procedure has two operations instead of one:

 undo(Ti) restores the value of all data items updated by Ti to their
old values, going backwards from the last log record for Ti

 redo(Ti) sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

 Both operations must be idempotent

 That is, even if the operation is executed multiple times the effect is
the same as if it is executed once

 Needed since operations may get re-executed during recovery

 When recovering after failure:

 Transaction Ti needs to be undone if the log contains the record
<Ti start>, but does not contain the record <Ti commit>.

 Transaction Ti needs to be redone if the log contains both the record
<Ti start> and the record <Ti commit>.

 Undo operations are performed first, then redo operations.

1.21

Immediate DB Modification Recovery

Example

 Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700, and then A and B are

 set to 950 and 2050 respectively.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

 respectively. Then C is set to 600

1.22

DB Modification: An Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>

 A = 950

<To, B, 2000, 2050>

 B = 2050

 Output(BB)

<T0 commit>

<T1 start>

<T1, C, 700, 600>

 C = 600

 Output(BC)

<T1 commit>

 Output(BA)

 Note: BX denotes block containing X.

1.23

Checkpoints

 Problems in recovery procedure :

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which have already

 output their updates to the database.

 Streamline recovery procedure by periodically performing
checkpointing

1. Output all log records currently residing in main memory onto
stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable storage

Transactions are not allowed to execute any actions while a
checkpoint is in progress.

1.24

Checkpoints (Cont.)

 During recovery we need to consider only the most recent transaction

Ti that started before the checkpoint, and transactions that started

after Ti.

1. Scan backwards from end of log to find the most recent

<checkpoint> record

2. Continue scanning backwards till a record <Ti start> is found

for transaction in the checkpoint.

3. Need only consider the part of log following above start record.

Earlier part of log can be ignored during recovery, and can be

erased whenever desired.

4. For all transactions (starting from Ti or later) with no <Ti commit>,

or <Ti abort>, execute undo(Ti). (Done only in case of immediate

modification.)

5. Scanning forward in the log, for all transactions starting

 from Ti or later with a <Ti commit> or <Ti abort>, execute

redo(Ti).

1.25

Checkpoints (Cont.)

Note that

 If transaction Ti was undone earlier and the < Ti abort>

record written to the log, and then a failure occurs,

on recovery from failure Ti is redone –

such a redo redoes all the original actions including the steps

that restored old values

 Known as repeating history

Seems wasteful, but simplifies recovery greatly

1.26

Example of Checkpoints

Recovery from system failure

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc Tf

T1

T2

T3

T4

checkpoint system failure

1.27

Recovery With Concurrent Transactions

 We modify the log-based recovery schemes to allow multiple

transactions to execute concurrently.

 All transactions share a single disk buffer and a single log

 A buffer block can have data items updated by one or more

transactions

 We assume concurrency control using strict two-phase locking;

 i.e. the updates of uncommitted transactions should not be visible to

other transactions

 Logging is done as described earlier.

 Log records of different transactions may be interspersed in the log.

 The checkpointing technique and actions taken on recovery have to be

changed

 since several transactions may be active when a checkpoint is

performed.

1.28

Recovery With Concurrent Transactions (Cont.)

 Checkpoints are performed as before, except that the checkpoint log record
is now of the form

 < checkpoint L>

where L is the list of transactions active at the time of the checkpoint

 When the system recovers from a crash, it first does the following:

1. Initialize undo-list and redo-list to empty

2. Scan the log backwards from the end, stopping when the first
<checkpoint L> record is found.
For each record found during the backward scan:

 if the record is <Ti commit>/<Ti abort>, add Ti to redo-list

 if the record is <Ti start>, then if Ti is not in redo-list,
add Ti to undo-list

3. For every Ti in L, if Ti is not in redo-list, add Ti to undo-list

1.29

Recovery With Concurrent Transactions (Cont.)

 At this point undo-list consists of incomplete transactions which must

be undone, and redo-list consists of finished transactions that must be

redone.

 Recovery now continues as follows:

1. Scan log backwards from most recent record, stopping when

<Ti start> records have been encountered for every Ti

in L.

 During the scan, perform undo for each log record that

belongs to a transaction in undo-list.

2. Scan log forwards from the <Ti start> oldest record found at step

1 till the end of the log.

 During the scan, perform redo for each log record that

belongs to a transaction on redo-list

1.30

Example of Recovery

 Go over the steps of the recovery algorithm on the following log:

<T0 start>

<T0, A, 0, 10>

<T0 commit>

<T1 start> /* Scan at step 1 comes up to here */

<T1, B, 0, 10>

<T2 start>

<T2, C, 0, 10>

<T2, C, 10, 20>

<checkpoint {T1, T2}>

<T3 start>

<T3, A, 10, 20>

<T3, D, 0, 10>

<T3 commit>

 crash

1.31

Example of recovery (<T0 abort>)

1.32

Log Record Buffering

 Log record buffering: log records are buffered in main memory, instead

of being output directly to stable storage.

 Log records are output to stable storage when a block of log records

in the buffer is full, or a log force operation is executed.

Several log records can thus be output using a single output operation,

reducing the I/O cost.

1.33

Log Record Buffering (Cont.)

 The rules below must be followed if log records are buffered:

 Log records are output to stable storage in the order in which they

are created.

 Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage. Log force is

performed to commit a transaction by forcing all its log records

(including the commit record) to stable storage.

 Before a block of data in main memory is output to the database,

all log records pertaining to data in that block must have been

output to stable storage.

 This rule is called the write-ahead logging or WAL rule

1.34

Database Buffering

 Database maintains an in-memory buffer of data blocks

 When a new block is needed, if buffer is full an existing block needs to

be removed from buffer

 If the block chosen for removal has been updated, it must be output to

disk

 If a block with uncommitted updates is output to disk, log records

with undo information for the updates are output to the log on stable

storage first

 (Write ahead logging)

 No updates should be in progress on a block when it is output to disk.

1.35

Failure with Loss of Nonvolatile Storage

 So far we assumed no loss of non-volatile storage

 Technique similar to checkpointing used to deal with loss of non-
volatile storage

 Periodically dump the entire content of the database to stable
storage

 No transaction may be active during the dump procedure; a
procedure similar to checkpointing must take place

 Output all log records currently residing in main memory onto
stable storage.

 Output all buffer blocks onto the disk.

 Copy the contents of the database to stable storage.

 Output a record <dump> to log on stable storage.

1.36

Recovering from Failure of Non-Volatile Storage

 To recover from disk failure

 restore database from most recent dump.

 Consult the log and redo all transactions that committed after the
dump

 Apply the Log Recovery

CK(T1,T2)

Crash

<T1 start>
<T2 start>

<T2 commit> <T3 start>

<T3,…>
<T1, Z, …> <T1,Y, …>

dump
<T2,X, … >

<T1,…>
<T1, W, …>

CK(T1,T3)

