
1.1 

Indexing 

These slides are a modified  version of the slides  of the book  

“Database System Concepts” (Chapter 12), 5th Ed., McGraw-Hill, 

by  Silberschatz,  Korth and Sudarshan.   

Original slides are available at www.db-book.com  
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1.2 

Basic Concepts 

 Indexing mechanisms used to speed up access to desired data. 

 E.g., author catalog in library 

 Search Key - attribute to set of attributes used to look up records in a 

file. 

 An index file consists of records (called index entries) of the form 

 

 

 Index files are typically much smaller than the original file  

 Two basic kinds of indices: 

 Ordered indices:  search keys are stored in sorted order 

 Hash indices:  search keys are distributed uniformly across 

“buckets” using a “hash function”.  

search-key pointer 



1.3 

Index Evaluation Metrics 

 Access types supported efficiently.  E.g.,  

 records with a specified value in the attribute 

 or records with an attribute value falling in a specified range of 

values. 

 Access time 

 Insertion time 

 Deletion time 

 Space overhead 



1.4 

Ordered Indices 

 In an ordered index, index entries are stored sorted on the search key 

value.  E.g., author catalog in library. 

 Primary index: in a sequentially ordered file, the index whose search 

key specifies the sequential order of the file. 

 Also called clustering index 

 The search key of a primary index is usually but not necessarily the 

primary key. 

 Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called  

non-clustering index. 

 

Index-sequential file: ordered sequential file with a primary index. 



1.5 

Dense Index Files 

 Dense index — Index record appears for every search-key value in 

the file.  



1.6 

Sparse Index Files 

 Sparse Index:  contains index records for only some search-key 

values. 

 Applicable when records are sequentially ordered on search-key 

 To locate a record with search-key value K we: 

 Find index record with largest search-key value < K 

 Search file sequentially starting at the record to which the index 

record points 



1.7 

Sparse Index Files (Cont.) 

 Compared to dense indices: 

 Less space and less maintenance overhead for insertions and 

deletions. 

 Generally slower than dense index for locating records. 

 Good tradeoff: sparse index with an index entry for every block in file, 

corresponding to least search-key value in the block. 



1.8 

Multilevel Index 

 If primary index does not fit in memory, access becomes 

expensive. 

 Solution: treat primary index kept on disk as a sequential file 

and construct a sparse index on it. 

 outer index – a sparse index of primary index 

 inner index – the primary index file 

 If even outer index is too large to fit in main memory, yet 

another level of index can be created, and so on. 

 Indices at all levels must be updated on insertion or deletion 

from the file. 



1.9 

Multilevel Index (Cont.) 



1.10 

Index Update:  Deletion 

 If deleted record was the only record in the file with its particular search-

key value, the search-key is deleted from the index also. 

 Single-level index deletion: 

 Dense indices – deletion of search-key:similar to file record deletion. 

 Sparse indices – 

  if an entry for the search key exists in the index, it is deleted by 

replacing the entry in the index with the next search-key value in 

the file (in search-key order).   

 If the next search-key value already has an index entry, the entry 

is deleted instead of being replaced. 



1.11 

Index Update:  Insertion 

 Single-level index insertion: 

 Perform a lookup using the search-key value appearing in the 

record to be inserted. 

 Dense indices – if the search-key value does not appear in the 

index, insert it. 

 Sparse indices – if index stores an entry for each block of the file, 

no change needs to be made to the index unless a new block is 

created.   

 If a new block is created, the first search-key value appearing 

in the new block is inserted into the index. 

 Multilevel insertion (as well as deletion) algorithms are simple 

extensions of the single-level algorithms 
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Secondary Indices 

 Frequently, one wants to find all the records whose values in a 

certain field (which is not the search-key of the primary index) satisfy 

some condition. 

 Example 1: In the account relation stored sequentially by 

account number, we may want to find all accounts in a particular 

branch 

 Example 2: as above, but where we want to find all accounts 

with a specified balance or range of balances 

 We can have a secondary index with an index record for each 

search-key value 
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Secondary Indices Example 

 Index record points to a bucket that contains pointers to all the 

actual records with that particular search-key value. 

 Secondary indices have to be dense 

Secondary index on balance field of account 



1.14 

Primary and Secondary Indices 

 Indices offer substantial benefits when searching for records. 

 BUT: Updating indices imposes overhead on database modification --

when a file is modified, every index on the file must be updated,  

 Sequential scan using primary index is efficient, but a sequential scan 

using a secondary index is expensive  

 Each record access may fetch a new block from disk 

 Block fetch requires about 5 to 10 milliseconds 

  versus about 100 nanoseconds for memory access 



1.15 

B+-Tree Index Files 

 Disadvantage of indexed-sequential files 

 performance degrades as file grows, since many overflow blocks 
get created.   

 Periodic reorganization of entire file is required. 

 Advantage of B+-tree index files:   

 automatically reorganizes itself with small, local, changes, in the 
face of insertions and deletions.   

 Reorganization of entire file is not required to maintain 
performance. 

 (Minor) disadvantage of B+-trees:  

 extra insertion and deletion overhead, space overhead. 

 Advantages of B+-trees outweigh disadvantages 

 B+-trees are used extensively 

B+-tree indices are an alternative to indexed-sequential files. 



1.16 

Example of a B+-tree 

B+-tree for account (n=3)  account file  



1.17 

B+-Tree Node Structure 

 Typical node 

 

 

 

 

 a node is the same size as a disk block  

 Ki are the search-key values  

 Pi are pointers to children (for non-leaf nodes) or pointers to 

records or buckets of records (for leaf nodes) 

 n maximum number of pairs (K, P) that fit in a node 

 

 The search-keys in a node are ordered  

   K1 < K2 < K3 < . . . < Kn–1 

 

 

 



1.18 

B+-Tree Index Files (Cont.) 

 All paths from root to leaf are of the same length 

 Each node that is not a root or a leaf has between n/2 and n 

children. 

 A leaf node has between (n–1)/2 and n–1 values 

 Special cases:  

 If the root is not a leaf, it has at least 2 children. 

 If the root is a leaf (that is, there are no other nodes in the 

tree), it can have between 0 and (n–1) values. 

A B+-tree is a rooted tree satisfying the following properties: 
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Leaf Nodes in B+-Trees 

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with search-

key value Ki, or to a bucket of pointers to file records, each record 

having search-key value Ki.  Only need bucket structure if search-key 

does not form a primary key. 

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than Lj’s 

search-key values 

 Pn points to next leaf node in search-key order 

Properties of a leaf node: 



1.20 

Non-Leaf Nodes in B+-Trees 

 Non leaf nodes form a multi-level sparse index on the leaf nodes.  For 

a non-leaf node with m pointers: 

 All the search-keys in the subtree to which P1 points are less than 

K1 

 For 2  i  n – 1, all the search-keys in the subtree to which Pi 

points have values greater than or equal to Ki–1 and less than Ki 

 All the search-keys in the subtree to which Pn points have values 

greater than or equal to Kn–1 
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Example of a B+-tree (n=3) 

account file 

 Leaf nodes must have between 1 and 2 values  

((n–1)/2 and n –1, with n = 3). 

 Non-leaf nodes other than root must have  

between 2 and 3 children ((n/2 and n with n =3). 

 Root must have at least 2 children. 
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Example of B+-tree (n=5) 

 Leaf nodes must have between 2 and 4 values  

((n–1)/2 and n –1, with n = 5). 

 Non-leaf nodes other than root must have between 3 

and 5 children ((n/2 and n with n =5). 

 Root must have at least 2 children. 

account file 



1.23 

Observations about B+-trees 

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices. 

 

 The B+-tree contains a relatively small number of levels 

 Level below root has at least 2* n/2 values 

 Next level has at least 2* n/2 * n/2 values 

 .. etc. 

 If there are K search-key values in the file, the tree height is no 

more than  logn/2(K) 

 thus searches can be conducted efficiently. 

 

 Insertions and deletions to the main file can be handled efficiently, as 

the index can be restructured in logarithmic time (as we shall see). 



1.24 

Queries on B+-Trees 

 Find all records with a search-key value of k. 

1. N=root 

2. Repeat 

1. Examine N for the smallest search-key value > k. 

2. If such a value exists, assume it is Ki.  Then set N = Pi 

3. Otherwise k  Kn–1. Set N = Pn  

Until N is a leaf node 

3. If for some i, key Ki = k  follow pointer Pi  to the desired record or bucket.   

4. Else no record with search-key value k exists. 



1.25 

Queries on B+-Trees (Cont.) 

 If there are K search-key values in the file, the height of the tree is no 

more than logn/2(K). 

 

 A node is generally the same size as a disk block, typically 4 

kilobytes 

 and n is typically around 100 (40 bytes per index entry). 

 

 With 1 million search key values and n = 100 

 at most  log50(1,000,000) = 4 nodes are accessed in a lookup. 

 

 Contrast this with a balanced binary tree with 1 million search key 

values — around 20 nodes are accessed in a lookup 

 above difference is significant since every node access may need 

a disk I/O, costing around 20 milliseconds 
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Updates on B+-Trees:  Insertion 

1. Find the leaf node in which the search-key value would appear 

2. If the search-key value is already present in the leaf node 

1. Add record to the file 

2. If necessary add a pointer to the bucket. 

3. If the search-key value is not present, then  

1. add the record to the main file (and create a bucket if 

necessary) 

2. If there is room in the leaf node, insert (key-value, pointer) 

pair in the leaf node 

3. Otherwise, split the node (along with the new  

(key-value, pointer) entry) as discussed in the next slide. 
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Updates on B+-Trees:  Insertion (Cont.) 

 Splitting a leaf node: 

 take the n (search-key value, pointer) pairs (including the one 

being inserted) in sorted order.  Place the first n/2 in the original 

node, and the rest in a new node. 

 let the new node be p, and let k be the least key value in p.  Insert 

(k,p) in the parent of the node being split.  

 If the parent is full, split it and propagate the split further up. 

 Splitting of nodes proceeds upwards till a node that is not full is found.  

 In the worst case the root node may be split increasing the height 

of the tree by 1.  

Result of splitting node containing Brighton and Downtown on inserting Clearview 

Next step: insert entry with (Downtown,pointer-to-new-node) into parent 



1.28 

Updates on B+-Trees:  Insertion (Cont.) 

B+-Tree before and after insertion of “Clearview” 
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Redwood 

Insertion in B+-Trees (Cont.) 

 Splitting a non-leaf node: when inserting (k,p) into an already full internal 

node N 

 Copy N to an in-memory area M with space for n+1 pointers and n 

keys 

 Insert (k,p) into M 

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N 

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’ 

 Insert (K n/2,N’) into parent of N 

 Pseudocode in book! 

Downtown  Mianus  Redwood Downtown 

 Mianus       
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Updates on B+-Trees: Deletion 

 Find the record to be deleted, and remove it from the main file and 

from the bucket (if present) 

 Remove (search-key value, pointer) from the leaf node if there is no 

bucket or if the bucket has become empty 

 

 If the node has too few entries due to the removal, and the entries in 

the node and a sibling fit into a single node, then merge siblings: 

 Insert all the search-key values in the two nodes into a single node 

(the one on the left), and delete the other node. 

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted 

node, from its parent, recursively using the above procedure. 

 Merge of intermediate node: value separating the two nodes (at 

parent) moves into merged node 

 



1.31 

Updates on B+-Trees:  Deletion 

 Otherwise, if the node has too few entries due to the removal, but the 

entries in the node and a sibling do not fit into a single node, then 

redistribute pointers: 

 Redistribute the pointers between the node and a sibling such that 

both have more than the minimum number of entries. 

 Update the corresponding search-key value in the parent of the 

node. 

 

 The node deletions may cascade upwards till a node which has  n/2 

or more pointers is found.   

 

 If the root node has only one pointer after deletion, it is deleted and 

the sole child becomes the root.  
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Examples of B+-Tree Deletion 

 Deleting “Downtown” causes merging of under-full leaves 

  leaf node can become empty only for n=3! 

Before and after deleting “Downtown” 
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Examples of B+-Tree Deletion (Cont.) 

 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and 
merged with its sibling. 

 As a result “Perryridge” node’s parent became underfull, and was merged with its sibling  

 Value separating two nodes (at parent) moves into merged node 

 Entry deleted from parent 

 Root node then has only one child, and is deleted 

Deletion of “Perryridge” from result of previous example 
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Example of B+-tree Deletion (Cont.) 

 Parent  of leaf containing Perryridge became underfull, since merge is 

not possible, borrowed a pointer from its left sibling 

 Search-key value in the parent’s parent changes as a result 

Before and after deletion of “Perryridge” from the first example 
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Example of B+-tree  for a  

sequentially ordered file 

Solution 1 

Leaf node:  (Pi, Ki), Pi is a  pointer to the first record with search key 

value Ki in the file 
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Example of B+-tree for a  

sequentially ordered file (cont.) 
Solution 2 
Leaf nodes:  pointers to blocks 

(Pi, Ki):  Pi pointer to a block of the file, whose least search key value is Ki 

Block0 

Block2 

Block1 



1.37 

B+-Tree File Organization 



1.38 

B+-Tree File Organization 

 Index file degradation problem is solved by using B+-Tree indices. 

 

 Data file degradation problem is solved by using B+-Tree File 

Organization. 

 

 The leaf nodes in a B+-tree file organization store records, instead of 

pointers. 

 

 Leaf nodes are still required to be half full 

 Since records are larger than pointers, the maximum number of 

records that can be stored in a leaf node is less than the number of 

pointers in a nonleaf node. 

 

 Insertion and deletion are handled in the same way as insertion and 

deletion of entries in a B+-tree index. 
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B+-Tree File Organization (Cont.) 

 Good space utilization important since records use more space than 

pointers.   

 

 To improve space utilization, involve more sibling nodes in redistribution 

during splits and merges 

Example of B+-tree File Organization 


