Indexing

These slides are a modified version of the slides of the book
“Database System Concepts” (Chapter 12), 5th Ed.,

by Silberschatz, Korth and Sudarshan.

Original slides are available at

11

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

Basic Concepts

Indexing mechanisms used to speed up access to desired data.
E.g., author catalog in library

Search Key - attribute to set of attributes used to look up records in a
file.

An index file consists of records (called index entries) of the form

search-key | pointer

Index files are typically much smaller than the original file
Two basic kinds of indices:
Ordered indices: search keys are stored in sorted order

Hash indices: search keys are distributed uniformly across
“buckets” using a “hash function”.

1.2

Index Evaluation Metrics

Access types supported efficiently. E.g.,
records with a specified value in the attribute

or records with an attribute value falling in a specified range of
values.

Access time
Insertion time
Deletion time
Space overhead

13

Ordered Indices

® In an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.

B Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

Also called clustering index

The search key of a primary index is usually but not necessarily the
primary key.

m Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

Index-sequential file: ordered sequential file with a primary index.

14

Dense Index Files

m Dense index — Index record appears for every search-key value in

the file.

Brighton ™| A-217 | Brighton 750 >

Downtown »{ A-101 | Downtown 500 P

Mianus o A-110 | Downtown 600

Perryridge ——\ A-215 | Mianus 700 P

Redwood | . Aic2 Perryridge | 400 2

Round Hill — A-201 | Perryridge 900 P
A-218 | Perryridge 700 P
A-222 | Redwood 700 P
A-305 | Round Hill 350)

|_

15

Sparse Index Files

m Sparse Index: contains index records for only some search-key

values.

Applicable when records are sequentially ordered on search-key

® To locate a record with search-key value K we:
Find index record with largest search-key value < K

Search file sequentially starting at the record to which the index
record points

Brighton

Mianus

Redwood

e
N\

N

A-217 | Brighton 750
A-101 | Downtown 500
A-110 | Downtown 600
A-215 | Mianus 700
A-102 | Perryridge 400
A-201 | Perryridge 900
A-218 | Perryridge 700
A-222 | Redwood 700
A-305 | Round Hill 350

LWAVAVAVLVAVAVAV.

1.6

Sparse Index Files (Cont.)

m Compared to dense indices:

Less space and less maintenance overhead for insertions and
deletions.

Generally slower than dense index for locating records.

m Good tradeoff: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block.

data
block 0

data
vblock 1

1.7

Multilevel Index

If primary index does not fit in memory, access becomes
expensive.

Solution: treat primary index kept on disk as a sequential file
and construct a sparse index on it.

outer index — a sparse index of primary index
iInner index — the primary index file

If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

Indices at all levels must be updated on insertion or deletion
from the file.

1.8

Multilevel Index (Cont.)

' '
o o

index data
= block 0 block 0

index
block 1

outer index
. o—
[]

inner index

1.9

Index Update: Deletion

m |f deleted record was the only record in the file with its particular search-
key value, the search-key is deleted from the index also.

®m Single-level index deletion:

Dense indices — deletion of search-key:similar to file record deletion.

Sparse indices —

if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in

the file (in search-key order).

If the next search-key value already has an index entry, the entry
IS deleted instead of being replaced.

Brighton

Mianus

~

Redwood

N\

.

A-217 | Brighton 750
A-101 | Downtown 500
A-110 | Downtown 600
A-215 | Mianus 700
A-102 | Perryridge 400
A-201 | Perryridge 900
A-218 | Perryridge 700
A-222 | Redwood 700
A-305 | Round Hill 350

J\J\)\J\}\J\J\J\}

1.10

Index Update: Insertion

®m Single-level index insertion:

Perform a lookup using the search-key value appearing in the
record to be inserted.

Dense indices - if the search-key value does not appear in the
index, insert it.

Sparse indices — if index stores an entry for each block of the file,
no change needs to be made to the index unless a new block is
created.

If a new block is created, the first search-key value appearing
In the new block is inserted into the index.

m Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms

1.11

Secondary Indices

® Frequently, one wants to find all the records whose values in a
certain field (which is not the search-key of the primary index) satisfy

some condition.

Example 1: In the account relation stored sequentially by
account number, we may want to find all accounts in a particular

branch

Example 2: as above, but where we want to find all accounts
with a specified balance or range of balances

m We can have a secondary index with an index record for each
search-key value

1.12

Secondary Indices Example

A-217 | Brighton 750 | -

350 —f _] A-101 | Downtown | 500 -
. A-110 | Downtown | 600 -
400 ——/—> —
|
-

500 - A-215 | Mianus 700 | -
600 - A-102 | Perryridge 400 -
700 A-201 | Perryridge | 900 | A
7501 7 7 A-218 | Perryridge |700| -
B A-222 | Redwood | 700| .
A-305 | Round Hill | 350

\

>

MLVAVAVAVLVAVAVAV,

.&
(]

Secondary index on balance field of account

® Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

B Secondary indices have to be dense

Primary and Secondary Indices

Indices offer substantial benefits when searching for records.

BUT: Updating indices imposes overhead on database modification --
when a file is modified, every index on the file must be updated,

Sequential scan using primary index is efficient, but a sequential scan
using a secondary index is expensive

Each record access may fetch a new block from disk
Block fetch requires about 5 to 10 milliseconds
versus about 100 nanoseconds for memory access

1.14

B*-Tree Index Files

B*-tree indices are an alternative to indexed-sequential files.

m Disadvantage of indexed-sequential files

performance degrades as file grows, since many overflow blocks
get created.

Periodic reorganization of entire file is required.
m Advantage of B*-tree index files:

automatically reorganizes itself with small, local, changes, in the
face of insertions and deletions.

Reorganization of entire file is not required to maintain
performance.

® (Minor) disadvantage of B*-trees:

extra insertion and deletion overhead, space overhead.
m Advantages of B*-trees outweigh disadvantages

B*-trees are used extensively

1.15

Example of a B*-tree

Perryridge
1 1
Mianus Redwood
]]]
Brighton Downtown ™ | Mianus . Perryridge . Redwood| |[Round Hill

1 A-101 [Downtown | 500
——>1 A-305 | Round Hill | 350
| >{ A-102 | Perryridge | 400
— A-201 | Perryridge | 900
] A-218 | Perryridge | 700
A-222 | Redwood 700
A-215 | Mianus 700
A-110 | Downtown | 600
A-217 | Brighton 750

B*-tree for account (n=3) ”, account file

B*-Tree Node Structure

m Typical node

a hode is the same size as a disk block
K; are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes)

n maximum number of pairs (K, P) that fit in a node

B The search-keys in a node are ordered

Ki <K, <Kg<. .. <K

1.17

B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree satisfying the following properties:

All paths from root to leaf are of the same length

Each node that is not a root or a leaf has between [n/2] and n
children.

A leaf node has between [(n—1)/2 | and n-1 values
Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in the
tree), it can have between 0 and (n—1) values.

1.18

Leaf Nodes in B*-Trees

Properties of a leaf node:

m Fori=1,2,..., n-1, pointer P, either points to a file record with search-
key value K, or to a bucket of pointers to file records, each record

having search-key value K. Only need bucket structure if search-key
does not form a primary key.

m IfL;, L are leaf nodes and i <], Lj's search-key values are less than L;'s
search-key values

m P, points to next leaf node in search-key order

1.19

Non-Leaf Nodes in B*-Trees

® Non leaf nodes form a multi-level sparse index on the leaf nodes. For
a non-leaf node with m pointers:

All the search-keys in the subtree to which P, points are less than
Kl

For 2 <i<n-1, all the search-keys in the subtree to which P,
points have values greater than or equal to K,_; and less than K

All the search-keys in the subtree to which P, points have values
greater than or equal to K _,

1.20

Example of a B*-tree (n=3)

| |Perr}?ridge| | | |
L L

—

Mianus

!

T~

Redwood

|~

Brighton

Downtown

Mianus

— |Perryridge -+ |Redwood

Round Hill

_-

((n-1)/2]and n -1, with n = 3).

1 A-101 | Downtown | 500

——>1 A-305 | Round Hill | 350

I B A-102 | Perryridge | 400

E A-201 | Perryridge | 900

T————] A-218 | Perryridge | 700

] \- A-222 | Redwood 700

\ A-215 | Mianus 700

i A-110 | Downtown | 600

Leaf nodes must have between 1 and 2 values A-217 | Brighton 750
account file

Non-leaf nodes other than root must have
between 2 and 3 children ((n/21]and n with n =3).

Root must have at least 2 children.

1.21

Example of B*-tree (n=5)

Perryridge

Brighton | |Downtown| | Mianus erryridge| |[Redwood| [Round Hill
A-101 | Downtown [500
B— 1 A-305 | Round Hill | 350
7T L A-102 | Perryridge | 400
=>{ A-201 | Perryridge | 900
N| A-218 | Perryridge | 700
A-222 | Redwood 700

A-215 | Mianus 700

{ A-110 | Downtown | 600
A-217 | Brighton 750

Leaf nodes must have between 2 and 4 values
((n-1)/21and n -1, with n = 5).

Non-leaf nodes other than root must have between 3
and 5 children ((n/2]and n with n =5).

Root must have at least 2 children.

account file

1.22

Observations about B*-trees

® The non-leaf levels of the B*-tree form a hierarchy of sparse indices.

m The B*-tree contains a relatively small number of levels
Level below root has at least 2* [n/2 | values
Next level has at least 2* [n/2]* [n/2] values
.. etc.

If there are K search-key values in the file, the tree height is no
more than | logr,,1(K) |

thus searches can be conducted efficiently.

®m Insertions and deletions to the main file can be handled efficiently, as
the index can be restructured in logarithmic time (as we shall see).

1.23

Queries on B*-Trees

® Find all records with a search-key value of k.
N=root

Repeat
Examine N for the smallest search-key value > k.
If such a value exists, assume itis K. Then set N = P,
Otherwise k> K, _;. Set N = P,
Until N is a leaf node
If for some |, key K; = k follow pointer P; to the desired record or bucket.
Else no record with search-key value k exists.

Perryridge
[[
Mianus | Redwood

l L~

Brighton| [Downtown|-# | Mianus T [Perryridge T |Redwood | |[Round Hill

1.24

Queries on B*Trees (Cont.)

If there are K search-key values in the file, the height of the tree is no
more than rlogrnm(Kﬂ.

A node is generally the same size as a disk block, typically 4
kilobytes

and n is typically around 100 (40 bytes per index entry).

With 1 million search key values and n = 100
at most log:,(1,000,000) = 4 nodes are accessed in a lookup.

Contrast this with a balanced binary tree with 1 million search key
values — around 20 nodes are accessed in a lookup

above difference is significant since every node access may need
a disk /O, costing around 20 milliseconds

1.25

Updates on B*-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

Add record to the file

If necessary add a pointer to the bucket.
3. If the search-key value is not present, then

add the record to the main file (and create a bucket if
necessary)

If there is room in the leaf node, insert (key-value, pointer)
pair in the leaf node

Otherwise, split the node (along with the new
(key-value, pointer) entry) as discussed in the next slide.

1.26

Updates on B*-Trees: Insertion (Cont.)

m Splitting a leaf node:

take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first| n/2 | in the original
node, and the rest in a new node.

let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being spilit.

If the parent is full, split it and propagate the split further up.
m Splitting of nodes proceeds upwards till a node that is not full is found.

In the worst case the root node may be split increasing the height
of the tree by 1.

Brighton| |Clearview » [Downtown
]]]

P |

Result of splitting node containing Brighton and Downtown on inserting Clearview
Next step: insert entry with (Downtown,pointer-to-new-node) into parent

1.27

Updates on B*-Trees: Insertion (Cont.)

| Perryridge |
/ \
Mianus | | Redwood .
Brighton| [Downtown|-p» | Mianus T [Perryridge T |[Redwood| |Round Hill
| Perryridge |
/ \
Downtown Ivﬁanus | Redwood
Brighton | | Clearview Downtown 1| | Mianus T [Perryridge T Re;wood |RoundHiJl

B*-Tree before and after insertion of “Clearview”

1.28

Insertion in B*-Trees (Cont.)

m Splitting a non-leaf node: when inserting (k,p) into an already full internal
node N

Copy N to an in-memory area M with space for n+1 pointers and n
keys

Insert (k,p) into M
Copy Py,Ky, ..., K1211:P 121 from M back into node N
Copy Pryot1s Knolets- - K P from M into newly allocated node N’

Insert (Kr,,,,1,N’) into parent of N
B Pseudocode in book!

Mianus

o . N\

/ Downtown | Mianus | Redwood\ / Downtown|

o o

1.29

Updates on B*-Trees: Deletion

®m Find the record to be deleted, and remove it from the main file and
from the bucket (if present)

® Remove (search-key value, pointer) from the leaf node if there is no
bucket or if the bucket has become empty

m |[f the node has too few entries due to the removal, and the entries in
the node and a sibling fit into a single node, then merge siblings:

Insert all the search-key values in the two nodes into a single node
(the one on the left), and delete the other node.

Delete the pair (K._;, P;), where P; is the pointer to the deleted
node, from its parent, recursively using the above procedure.

Merge of intermediate node: value separating the two nodes (at
parent) moves into merged node

1.30

Updates on B*-Trees: Deletion

m Otherwise, if the node has too few entries due to the removal, but the
entries in the node and a sibling do not fit into a single node, then
redistribute pointers:

Redistribute the pointers between the node and a sibling such that
both have more than the minimum number of entries.

Update the corresponding search-key value in the parent of the
node.

® The node deletions may cascade upwards till a node which has [n/2|
or more pointers is found.

m [f the root node has only one pointer after deletion, it is deleted and
the sole child becomes the root.

1.31

Examples of B*-Tree Deletion

Perryridge
| 1
Dovmtown Mianus Redwood
l
Brighton | | Clearview Downtown T | Mianus 11 [Perryridge T IRedwood Round Hill

PE‘I'I'VI'ld&)e
Mianus Rede ocud
]
Brighton | | Clearview |4 | Mianus 1| |Perryridge Redwood | |Round Hill

Before and after deleting “Downtown”
m Deleting “Downtown” causes merging of under-full leaves
leaf node can become empty only for n=3!

1.32

Examples of B*-Tree Deletion (Cont.)

Perrvrldge
Mianus Redv» ood
|
Brighton | | Clearview |12 | Mianus T |Perrvridge Redwood | |Round Hill

Mianus | | Perryridge

Brighton| | Clearview -—>| | Mianus | | |- Redwood| |Round Hill

Deletion of “Perryridge” from result of previous example

m Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

® As a result “Perryridge” node’s parent became underfull, and was merged with its sibling
Value separating two nodes (at parent) moves into merged node

Entry deleted from parent

® Root node then has only one child, and is deleted

1.33

Example of B*-tree Deletion (Cont.)

| Perryridge |
/ \
Domtown Mianus | Redwood
Brighton | | Clearview [Downtown »1 | Mianus » [Perryridge > IRe;wood Round Hill
Mianus
/ \4
Downtown Perryridge
/ / \
mw > Downtownl » | Mianus lReclwoocl Round Hill

Before and after deletion of “Perryridge” from the first example

Parent of leaf containing Perryridge became underfull, since merge is
not possible, borrowed a pointer from its left sibling

Search-key value in the parent’s parent changes as a result

1.34

Example of B*-tree for a
sequentially ordered file

Solution 1
Leaf node: (Pi, Ki), Piis a pointer to the first record with search key

value Ki in the file

|| | Brighton | | Downtown | S

leaf node

A-212 | Brighton 750
A-101 | Downtown | 500
A-110 | Downtown | 600

Y Y

account file

1.35

Example of B*-tree for a

sequentially ordered file (cont.)

Solution 2

Leaf nodes: pointers to blocks
(Pi, Ki): Pi pointer to a block of the file, whose least search key value is Ki

Brighton
ot

Perryridge

il A-217 | Brighton 750 P i
E A-101 | Downtown 500) i
| A-110 | Downtown [600 5
| o |
1 — i - 1
>; A-102 | Perryridge 400 g’ :
:: A-201 | Perryridge 900 P :
| : .
I A-218 | Perryridge 700 P i
| A-222 | Redwood 700 “ |
| A-305 | Round Hill | 350 P ;‘
| -
| |
1 I
Locococoocoooocoocoocoocoocoocoocoococoooo e I

Block1

B*-Tree File Organization

B*-Tree File Organization

Index file degradation problem is solved by using B*-Tree indices.

Data file degradation problem is solved by using B*-Tree File
Organization.

The leaf nodes in a B*-tree file organization store records, instead of
pointers.

Leaf nodes are still required to be half full

Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number of
pointers in a nonleaf node.

Insertion and deletion are handled in the same way as insertion and
deletion of entries in a B*-tree index.

1.38

B*-Tree File Organization (Cont.)

Example of B*-tree File Organization

m Good space utilization important since records use more space than
pointers.

B To improve space utilization, involve more sibling nodes in redistribution
during splits and merges

1.39

