
1.1 

Indexing 

These slides are a modified  version of the slides  of the book  

“Database System Concepts” (Chapter 12), 5th Ed., McGraw-Hill, 

by  Silberschatz,  Korth and Sudarshan.   

Original slides are available at www.db-book.com  
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1.2 

Basic Concepts 

 Indexing mechanisms used to speed up access to desired data. 

 E.g., author catalog in library 

 Search Key - attribute to set of attributes used to look up records in a 

file. 

 An index file consists of records (called index entries) of the form 

 

 

 Index files are typically much smaller than the original file  

 Two basic kinds of indices: 

 Ordered indices:  search keys are stored in sorted order 

 Hash indices:  search keys are distributed uniformly across 

“buckets” using a “hash function”.  

search-key pointer 



1.3 

Index Evaluation Metrics 

 Access types supported efficiently.  E.g.,  

 records with a specified value in the attribute 

 or records with an attribute value falling in a specified range of 

values. 

 Access time 

 Insertion time 

 Deletion time 

 Space overhead 



1.4 

Ordered Indices 

 In an ordered index, index entries are stored sorted on the search key 

value.  E.g., author catalog in library. 

 Primary index: in a sequentially ordered file, the index whose search 

key specifies the sequential order of the file. 

 Also called clustering index 

 The search key of a primary index is usually but not necessarily the 

primary key. 

 Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called  

non-clustering index. 

 

Index-sequential file: ordered sequential file with a primary index. 



1.5 

Dense Index Files 

 Dense index — Index record appears for every search-key value in 

the file.  



1.6 

Sparse Index Files 

 Sparse Index:  contains index records for only some search-key 

values. 

 Applicable when records are sequentially ordered on search-key 

 To locate a record with search-key value K we: 

 Find index record with largest search-key value < K 

 Search file sequentially starting at the record to which the index 

record points 



1.7 

Sparse Index Files (Cont.) 

 Compared to dense indices: 

 Less space and less maintenance overhead for insertions and 

deletions. 

 Generally slower than dense index for locating records. 

 Good tradeoff: sparse index with an index entry for every block in file, 

corresponding to least search-key value in the block. 



1.8 

Multilevel Index 

 If primary index does not fit in memory, access becomes 

expensive. 

 Solution: treat primary index kept on disk as a sequential file 

and construct a sparse index on it. 

 outer index – a sparse index of primary index 

 inner index – the primary index file 

 If even outer index is too large to fit in main memory, yet 

another level of index can be created, and so on. 

 Indices at all levels must be updated on insertion or deletion 

from the file. 



1.9 

Multilevel Index (Cont.) 
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Index Update:  Deletion 

 If deleted record was the only record in the file with its particular search-

key value, the search-key is deleted from the index also. 

 Single-level index deletion: 

 Dense indices – deletion of search-key:similar to file record deletion. 

 Sparse indices – 

  if an entry for the search key exists in the index, it is deleted by 

replacing the entry in the index with the next search-key value in 

the file (in search-key order).   

 If the next search-key value already has an index entry, the entry 

is deleted instead of being replaced. 



1.11 

Index Update:  Insertion 

 Single-level index insertion: 

 Perform a lookup using the search-key value appearing in the 

record to be inserted. 

 Dense indices – if the search-key value does not appear in the 

index, insert it. 

 Sparse indices – if index stores an entry for each block of the file, 

no change needs to be made to the index unless a new block is 

created.   

 If a new block is created, the first search-key value appearing 

in the new block is inserted into the index. 

 Multilevel insertion (as well as deletion) algorithms are simple 

extensions of the single-level algorithms 
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Secondary Indices 

 Frequently, one wants to find all the records whose values in a 

certain field (which is not the search-key of the primary index) satisfy 

some condition. 

 Example 1: In the account relation stored sequentially by 

account number, we may want to find all accounts in a particular 

branch 

 Example 2: as above, but where we want to find all accounts 

with a specified balance or range of balances 

 We can have a secondary index with an index record for each 

search-key value 
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Secondary Indices Example 

 Index record points to a bucket that contains pointers to all the 

actual records with that particular search-key value. 

 Secondary indices have to be dense 

Secondary index on balance field of account 



1.14 

Primary and Secondary Indices 

 Indices offer substantial benefits when searching for records. 

 BUT: Updating indices imposes overhead on database modification --

when a file is modified, every index on the file must be updated,  

 Sequential scan using primary index is efficient, but a sequential scan 

using a secondary index is expensive  

 Each record access may fetch a new block from disk 

 Block fetch requires about 5 to 10 milliseconds 

  versus about 100 nanoseconds for memory access 
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B+-Tree Index Files 

 Disadvantage of indexed-sequential files 

 performance degrades as file grows, since many overflow blocks 
get created.   

 Periodic reorganization of entire file is required. 

 Advantage of B+-tree index files:   

 automatically reorganizes itself with small, local, changes, in the 
face of insertions and deletions.   

 Reorganization of entire file is not required to maintain 
performance. 

 (Minor) disadvantage of B+-trees:  

 extra insertion and deletion overhead, space overhead. 

 Advantages of B+-trees outweigh disadvantages 

 B+-trees are used extensively 

B+-tree indices are an alternative to indexed-sequential files. 
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Example of a B+-tree 

B+-tree for account (n=3)  account file  



1.17 

B+-Tree Node Structure 

 Typical node 

 

 

 

 

 a node is the same size as a disk block  

 Ki are the search-key values  

 Pi are pointers to children (for non-leaf nodes) or pointers to 

records or buckets of records (for leaf nodes) 

 n maximum number of pairs (K, P) that fit in a node 

 

 The search-keys in a node are ordered  

   K1 < K2 < K3 < . . . < Kn–1 
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B+-Tree Index Files (Cont.) 

 All paths from root to leaf are of the same length 

 Each node that is not a root or a leaf has between n/2 and n 

children. 

 A leaf node has between (n–1)/2 and n–1 values 

 Special cases:  

 If the root is not a leaf, it has at least 2 children. 

 If the root is a leaf (that is, there are no other nodes in the 

tree), it can have between 0 and (n–1) values. 

A B+-tree is a rooted tree satisfying the following properties: 
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Leaf Nodes in B+-Trees 

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with search-

key value Ki, or to a bucket of pointers to file records, each record 

having search-key value Ki.  Only need bucket structure if search-key 

does not form a primary key. 

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than Lj’s 

search-key values 

 Pn points to next leaf node in search-key order 

Properties of a leaf node: 



1.20 

Non-Leaf Nodes in B+-Trees 

 Non leaf nodes form a multi-level sparse index on the leaf nodes.  For 

a non-leaf node with m pointers: 

 All the search-keys in the subtree to which P1 points are less than 

K1 

 For 2  i  n – 1, all the search-keys in the subtree to which Pi 

points have values greater than or equal to Ki–1 and less than Ki 

 All the search-keys in the subtree to which Pn points have values 

greater than or equal to Kn–1 
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Example of a B+-tree (n=3) 

account file 

 Leaf nodes must have between 1 and 2 values  

((n–1)/2 and n –1, with n = 3). 

 Non-leaf nodes other than root must have  

between 2 and 3 children ((n/2 and n with n =3). 

 Root must have at least 2 children. 
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Example of B+-tree (n=5) 

 Leaf nodes must have between 2 and 4 values  

((n–1)/2 and n –1, with n = 5). 

 Non-leaf nodes other than root must have between 3 

and 5 children ((n/2 and n with n =5). 

 Root must have at least 2 children. 

account file 
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Observations about B+-trees 

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices. 

 

 The B+-tree contains a relatively small number of levels 

 Level below root has at least 2* n/2 values 

 Next level has at least 2* n/2 * n/2 values 

 .. etc. 

 If there are K search-key values in the file, the tree height is no 

more than  logn/2(K) 

 thus searches can be conducted efficiently. 

 

 Insertions and deletions to the main file can be handled efficiently, as 

the index can be restructured in logarithmic time (as we shall see). 
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Queries on B+-Trees 

 Find all records with a search-key value of k. 

1. N=root 

2. Repeat 

1. Examine N for the smallest search-key value > k. 

2. If such a value exists, assume it is Ki.  Then set N = Pi 

3. Otherwise k  Kn–1. Set N = Pn  

Until N is a leaf node 

3. If for some i, key Ki = k  follow pointer Pi  to the desired record or bucket.   

4. Else no record with search-key value k exists. 
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Queries on B+-Trees (Cont.) 

 If there are K search-key values in the file, the height of the tree is no 

more than logn/2(K). 

 

 A node is generally the same size as a disk block, typically 4 

kilobytes 

 and n is typically around 100 (40 bytes per index entry). 

 

 With 1 million search key values and n = 100 

 at most  log50(1,000,000) = 4 nodes are accessed in a lookup. 

 

 Contrast this with a balanced binary tree with 1 million search key 

values — around 20 nodes are accessed in a lookup 

 above difference is significant since every node access may need 

a disk I/O, costing around 20 milliseconds 
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Updates on B+-Trees:  Insertion 

1. Find the leaf node in which the search-key value would appear 

2. If the search-key value is already present in the leaf node 

1. Add record to the file 

2. If necessary add a pointer to the bucket. 

3. If the search-key value is not present, then  

1. add the record to the main file (and create a bucket if 

necessary) 

2. If there is room in the leaf node, insert (key-value, pointer) 

pair in the leaf node 

3. Otherwise, split the node (along with the new  

(key-value, pointer) entry) as discussed in the next slide. 
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Updates on B+-Trees:  Insertion (Cont.) 

 Splitting a leaf node: 

 take the n (search-key value, pointer) pairs (including the one 

being inserted) in sorted order.  Place the first n/2 in the original 

node, and the rest in a new node. 

 let the new node be p, and let k be the least key value in p.  Insert 

(k,p) in the parent of the node being split.  

 If the parent is full, split it and propagate the split further up. 

 Splitting of nodes proceeds upwards till a node that is not full is found.  

 In the worst case the root node may be split increasing the height 

of the tree by 1.  

Result of splitting node containing Brighton and Downtown on inserting Clearview 

Next step: insert entry with (Downtown,pointer-to-new-node) into parent 
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Updates on B+-Trees:  Insertion (Cont.) 

B+-Tree before and after insertion of “Clearview” 
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Redwood 

Insertion in B+-Trees (Cont.) 

 Splitting a non-leaf node: when inserting (k,p) into an already full internal 

node N 

 Copy N to an in-memory area M with space for n+1 pointers and n 

keys 

 Insert (k,p) into M 

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N 

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’ 

 Insert (K n/2,N’) into parent of N 

 Pseudocode in book! 

Downtown  Mianus  Redwood Downtown 

 Mianus       
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Updates on B+-Trees: Deletion 

 Find the record to be deleted, and remove it from the main file and 

from the bucket (if present) 

 Remove (search-key value, pointer) from the leaf node if there is no 

bucket or if the bucket has become empty 

 

 If the node has too few entries due to the removal, and the entries in 

the node and a sibling fit into a single node, then merge siblings: 

 Insert all the search-key values in the two nodes into a single node 

(the one on the left), and delete the other node. 

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted 

node, from its parent, recursively using the above procedure. 

 Merge of intermediate node: value separating the two nodes (at 

parent) moves into merged node 
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Updates on B+-Trees:  Deletion 

 Otherwise, if the node has too few entries due to the removal, but the 

entries in the node and a sibling do not fit into a single node, then 

redistribute pointers: 

 Redistribute the pointers between the node and a sibling such that 

both have more than the minimum number of entries. 

 Update the corresponding search-key value in the parent of the 

node. 

 

 The node deletions may cascade upwards till a node which has  n/2 

or more pointers is found.   

 

 If the root node has only one pointer after deletion, it is deleted and 

the sole child becomes the root.  
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Examples of B+-Tree Deletion 

 Deleting “Downtown” causes merging of under-full leaves 

  leaf node can become empty only for n=3! 

Before and after deleting “Downtown” 
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Examples of B+-Tree Deletion (Cont.) 

 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and 
merged with its sibling. 

 As a result “Perryridge” node’s parent became underfull, and was merged with its sibling  

 Value separating two nodes (at parent) moves into merged node 

 Entry deleted from parent 

 Root node then has only one child, and is deleted 

Deletion of “Perryridge” from result of previous example 
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Example of B+-tree Deletion (Cont.) 

 Parent  of leaf containing Perryridge became underfull, since merge is 

not possible, borrowed a pointer from its left sibling 

 Search-key value in the parent’s parent changes as a result 

Before and after deletion of “Perryridge” from the first example 
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Example of B+-tree  for a  

sequentially ordered file 

Solution 1 

Leaf node:  (Pi, Ki), Pi is a  pointer to the first record with search key 

value Ki in the file 
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Example of B+-tree for a  

sequentially ordered file (cont.) 
Solution 2 
Leaf nodes:  pointers to blocks 

(Pi, Ki):  Pi pointer to a block of the file, whose least search key value is Ki 

Block0 

Block2 

Block1 



1.37 

B+-Tree File Organization 
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B+-Tree File Organization 

 Index file degradation problem is solved by using B+-Tree indices. 

 

 Data file degradation problem is solved by using B+-Tree File 

Organization. 

 

 The leaf nodes in a B+-tree file organization store records, instead of 

pointers. 

 

 Leaf nodes are still required to be half full 

 Since records are larger than pointers, the maximum number of 

records that can be stored in a leaf node is less than the number of 

pointers in a nonleaf node. 

 

 Insertion and deletion are handled in the same way as insertion and 

deletion of entries in a B+-tree index. 
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B+-Tree File Organization (Cont.) 

 Good space utilization important since records use more space than 

pointers.   

 

 To improve space utilization, involve more sibling nodes in redistribution 

during splits and merges 

Example of B+-tree File Organization 


