
1.1

Indexing

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 12), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up records in a

file.

 An index file consists of records (called index entries) of the form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

1.3

Index Evaluation Metrics

 Access types supported efficiently. E.g.,

 records with a specified value in the attribute

 or records with an attribute value falling in a specified range of

values.

 Access time

 Insertion time

 Deletion time

 Space overhead

1.4

Ordered Indices

 In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose search

key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

Index-sequential file: ordered sequential file with a primary index.

1.5

Dense Index Files

 Dense index — Index record appears for every search-key value in

the file.

1.6

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

1.7

Sparse Index Files (Cont.)

 Compared to dense indices:

 Less space and less maintenance overhead for insertions and

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in file,

corresponding to least search-key value in the block.

1.8

Multilevel Index

 If primary index does not fit in memory, access becomes

expensive.

 Solution: treat primary index kept on disk as a sequential file

and construct a sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet

another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion

from the file.

1.9

Multilevel Index (Cont.)

1.10

Index Update: Deletion

 If deleted record was the only record in the file with its particular search-

key value, the search-key is deleted from the index also.

 Single-level index deletion:

 Dense indices – deletion of search-key:similar to file record deletion.

 Sparse indices –

 if an entry for the search key exists in the index, it is deleted by

replacing the entry in the index with the next search-key value in

the file (in search-key order).

 If the next search-key value already has an index entry, the entry

is deleted instead of being replaced.

1.11

Index Update: Insertion

 Single-level index insertion:

 Perform a lookup using the search-key value appearing in the

record to be inserted.

 Dense indices – if the search-key value does not appear in the

index, insert it.

 Sparse indices – if index stores an entry for each block of the file,

no change needs to be made to the index unless a new block is

created.

 If a new block is created, the first search-key value appearing

in the new block is inserted into the index.

 Multilevel insertion (as well as deletion) algorithms are simple

extensions of the single-level algorithms

1.12

Secondary Indices

 Frequently, one wants to find all the records whose values in a

certain field (which is not the search-key of the primary index) satisfy

some condition.

 Example 1: In the account relation stored sequentially by

account number, we may want to find all accounts in a particular

branch

 Example 2: as above, but where we want to find all accounts

with a specified balance or range of balances

 We can have a secondary index with an index record for each

search-key value

1.13

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on balance field of account

1.14

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database modification --

when a file is modified, every index on the file must be updated,

 Sequential scan using primary index is efficient, but a sequential scan

using a secondary index is expensive

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 milliseconds

 versus about 100 nanoseconds for memory access

1.15

B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many overflow blocks
get created.

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local, changes, in the
face of insertions and deletions.

 Reorganization of entire file is not required to maintain
performance.

 (Minor) disadvantage of B+-trees:

 extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

1.16

Example of a B+-tree

B+-tree for account (n=3) account file

1.17

B+-Tree Node Structure

 Typical node

 a node is the same size as a disk block

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes)

 n maximum number of pairs (K, P) that fit in a node

 The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

1.18

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n

children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the

tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

1.19

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with search-

key value Ki, or to a bucket of pointers to file records, each record

having search-key value Ki. Only need bucket structure if search-key

does not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than Lj’s

search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

1.20

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes. For

a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are less than

K1

 For 2  i  n – 1, all the search-keys in the subtree to which Pi

points have values greater than or equal to Ki–1 and less than Ki

 All the search-keys in the subtree to which Pn points have values

greater than or equal to Kn–1

1.21

Example of a B+-tree (n=3)

account file

 Leaf nodes must have between 1 and 2 values

((n–1)/2 and n –1, with n = 3).

 Non-leaf nodes other than root must have

between 2 and 3 children ((n/2 and n with n =3).

 Root must have at least 2 children.

1.22

Example of B+-tree (n=5)

 Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3

and 5 children ((n/2 and n with n =5).

 Root must have at least 2 children.

account file

1.23

Observations about B+-trees

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

 The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is no

more than  logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled efficiently, as

the index can be restructured in logarithmic time (as we shall see).

1.24

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k  Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.

4. Else no record with search-key value k exists.

1.25

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree is no

more than logn/2(K).

 A node is generally the same size as a disk block, typically 4

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a lookup.

 Contrast this with a balanced binary tree with 1 million search key

values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

1.26

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

2. If necessary add a pointer to the bucket.

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if

necessary)

2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node

3. Otherwise, split the node (along with the new

(key-value, pointer) entry) as discussed in the next slide.

1.27

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first n/2 in the original

node, and the rest in a new node.

 let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

 In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brighton and Downtown on inserting Clearview

Next step: insert entry with (Downtown,pointer-to-new-node) into parent

1.28

Updates on B+-Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

1.29

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an already full internal

node N

 Copy N to an in-memory area M with space for n+1 pointers and n

keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’

 Insert (K n/2,N’) into parent of N

 Pseudocode in book!

Downtown Mianus Redwood Downtown

 Mianus

1.30

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file and

from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there is no

bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the entries in

the node and a sibling fit into a single node, then merge siblings:

 Insert all the search-key values in the two nodes into a single node

(the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure.

 Merge of intermediate node: value separating the two nodes (at

parent) moves into merged node

1.31

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then

redistribute pointers:

 Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.

 Update the corresponding search-key value in the parent of the

node.

 The node deletions may cascade upwards till a node which has n/2

or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root.

1.32

Examples of B+-Tree Deletion

 Deleting “Downtown” causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

1.33

Examples of B+-Tree Deletion (Cont.)

 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

 As a result “Perryridge” node’s parent became underfull, and was merged with its sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

Deletion of “Perryridge” from result of previous example

1.34

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, since merge is

not possible, borrowed a pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from the first example

1.35

Example of B+-tree for a

sequentially ordered file

Solution 1

Leaf node: (Pi, Ki), Pi is a pointer to the first record with search key

value Ki in the file

1.36

Example of B+-tree for a

sequentially ordered file (cont.)
Solution 2
Leaf nodes: pointers to blocks

(Pi, Ki): Pi pointer to a block of the file, whose least search key value is Ki

Block0

Block2

Block1

1.37

B+-Tree File Organization

1.38

B+-Tree File Organization

 Index file degradation problem is solved by using B+-Tree indices.

 Data file degradation problem is solved by using B+-Tree File

Organization.

 The leaf nodes in a B+-tree file organization store records, instead of

pointers.

 Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number of

records that can be stored in a leaf node is less than the number of

pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion and

deletion of entries in a B+-tree index.

1.39

B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than

pointers.

 To improve space utilization, involve more sibling nodes in redistribution

during splits and merges

Example of B+-tree File Organization

