
1.1

Indexing

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 12), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.

 E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up records in a

file.

 An index file consists of records (called index entries) of the form

 Index files are typically much smaller than the original file

 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

1.3

Index Evaluation Metrics

 Access types supported efficiently. E.g.,

 records with a specified value in the attribute

 or records with an attribute value falling in a specified range of

values.

 Access time

 Insertion time

 Deletion time

 Space overhead

1.4

Ordered Indices

 In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose search

key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

Index-sequential file: ordered sequential file with a primary index.

1.5

Dense Index Files

 Dense index — Index record appears for every search-key value in

the file.

1.6

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

1.7

Sparse Index Files (Cont.)

 Compared to dense indices:

 Less space and less maintenance overhead for insertions and

deletions.

 Generally slower than dense index for locating records.

 Good tradeoff: sparse index with an index entry for every block in file,

corresponding to least search-key value in the block.

1.8

Multilevel Index

 If primary index does not fit in memory, access becomes

expensive.

 Solution: treat primary index kept on disk as a sequential file

and construct a sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet

another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion

from the file.

1.9

Multilevel Index (Cont.)

1.10

Index Update: Deletion

 If deleted record was the only record in the file with its particular search-

key value, the search-key is deleted from the index also.

 Single-level index deletion:

 Dense indices – deletion of search-key:similar to file record deletion.

 Sparse indices –

 if an entry for the search key exists in the index, it is deleted by

replacing the entry in the index with the next search-key value in

the file (in search-key order).

 If the next search-key value already has an index entry, the entry

is deleted instead of being replaced.

1.11

Index Update: Insertion

 Single-level index insertion:

 Perform a lookup using the search-key value appearing in the

record to be inserted.

 Dense indices – if the search-key value does not appear in the

index, insert it.

 Sparse indices – if index stores an entry for each block of the file,

no change needs to be made to the index unless a new block is

created.

 If a new block is created, the first search-key value appearing

in the new block is inserted into the index.

 Multilevel insertion (as well as deletion) algorithms are simple

extensions of the single-level algorithms

1.12

Secondary Indices

 Frequently, one wants to find all the records whose values in a

certain field (which is not the search-key of the primary index) satisfy

some condition.

 Example 1: In the account relation stored sequentially by

account number, we may want to find all accounts in a particular

branch

 Example 2: as above, but where we want to find all accounts

with a specified balance or range of balances

 We can have a secondary index with an index record for each

search-key value

1.13

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on balance field of account

1.14

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database modification --

when a file is modified, every index on the file must be updated,

 Sequential scan using primary index is efficient, but a sequential scan

using a secondary index is expensive

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 milliseconds

 versus about 100 nanoseconds for memory access

1.15

B+-Tree Index Files

 Disadvantage of indexed-sequential files

 performance degrades as file grows, since many overflow blocks
get created.

 Periodic reorganization of entire file is required.

 Advantage of B+-tree index files:

 automatically reorganizes itself with small, local, changes, in the
face of insertions and deletions.

 Reorganization of entire file is not required to maintain
performance.

 (Minor) disadvantage of B+-trees:

 extra insertion and deletion overhead, space overhead.

 Advantages of B+-trees outweigh disadvantages

 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

1.16

Example of a B+-tree

B+-tree for account (n=3) account file

1.17

B+-Tree Node Structure

 Typical node

 a node is the same size as a disk block

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes)

 n maximum number of pairs (K, P) that fit in a node

 The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

1.18

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length

 Each node that is not a root or a leaf has between n/2 and n

children.

 A leaf node has between (n–1)/2 and n–1 values

 Special cases:

 If the root is not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the

tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

1.19

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with search-

key value Ki, or to a bucket of pointers to file records, each record

having search-key value Ki. Only need bucket structure if search-key

does not form a primary key.

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than Lj’s

search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

1.20

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes. For

a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are less than

K1

 For 2 i n – 1, all the search-keys in the subtree to which Pi

points have values greater than or equal to Ki–1 and less than Ki

 All the search-keys in the subtree to which Pn points have values

greater than or equal to Kn–1

1.21

Example of a B+-tree (n=3)

account file

 Leaf nodes must have between 1 and 2 values

((n–1)/2 and n –1, with n = 3).

 Non-leaf nodes other than root must have

between 2 and 3 children ((n/2 and n with n =3).

 Root must have at least 2 children.

1.22

Example of B+-tree (n=5)

 Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3

and 5 children ((n/2 and n with n =5).

 Root must have at least 2 children.

account file

1.23

Observations about B+-trees

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

 The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 .. etc.

 If there are K search-key values in the file, the tree height is no

more than logn/2(K)

 thus searches can be conducted efficiently.

 Insertions and deletions to the main file can be handled efficiently, as

the index can be restructured in logarithmic time (as we shall see).

1.24

Queries on B+-Trees

 Find all records with a search-key value of k.

1. N=root

2. Repeat

1. Examine N for the smallest search-key value > k.

2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.

4. Else no record with search-key value k exists.

1.25

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree is no

more than logn/2(K).

 A node is generally the same size as a disk block, typically 4

kilobytes

 and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a lookup.

 Contrast this with a balanced binary tree with 1 million search key

values — around 20 nodes are accessed in a lookup

 above difference is significant since every node access may need

a disk I/O, costing around 20 milliseconds

1.26

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear

2. If the search-key value is already present in the leaf node

1. Add record to the file

2. If necessary add a pointer to the bucket.

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if

necessary)

2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node

3. Otherwise, split the node (along with the new

(key-value, pointer) entry) as discussed in the next slide.

1.27

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:

 take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first n/2 in the original

node, and the rest in a new node.

 let the new node be p, and let k be the least key value in p. Insert

(k,p) in the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

 Splitting of nodes proceeds upwards till a node that is not full is found.

 In the worst case the root node may be split increasing the height

of the tree by 1.

Result of splitting node containing Brighton and Downtown on inserting Clearview

Next step: insert entry with (Downtown,pointer-to-new-node) into parent

1.28

Updates on B+-Trees: Insertion (Cont.)

B+-Tree before and after insertion of “Clearview”

1.29

Redwood

Insertion in B+-Trees (Cont.)

 Splitting a non-leaf node: when inserting (k,p) into an already full internal

node N

 Copy N to an in-memory area M with space for n+1 pointers and n

keys

 Insert (k,p) into M

 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N

 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’

 Insert (K n/2,N’) into parent of N

 Pseudocode in book!

Downtown Mianus Redwood Downtown

 Mianus

1.30

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file and

from the bucket (if present)

 Remove (search-key value, pointer) from the leaf node if there is no

bucket or if the bucket has become empty

 If the node has too few entries due to the removal, and the entries in

the node and a sibling fit into a single node, then merge siblings:

 Insert all the search-key values in the two nodes into a single node

(the one on the left), and delete the other node.

 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted

node, from its parent, recursively using the above procedure.

 Merge of intermediate node: value separating the two nodes (at

parent) moves into merged node

1.31

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the

entries in the node and a sibling do not fit into a single node, then

redistribute pointers:

 Redistribute the pointers between the node and a sibling such that

both have more than the minimum number of entries.

 Update the corresponding search-key value in the parent of the

node.

 The node deletions may cascade upwards till a node which has n/2

or more pointers is found.

 If the root node has only one pointer after deletion, it is deleted and

the sole child becomes the root.

1.32

Examples of B+-Tree Deletion

 Deleting “Downtown” causes merging of under-full leaves

 leaf node can become empty only for n=3!

Before and after deleting “Downtown”

1.33

Examples of B+-Tree Deletion (Cont.)

 Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

 As a result “Perryridge” node’s parent became underfull, and was merged with its sibling

 Value separating two nodes (at parent) moves into merged node

 Entry deleted from parent

 Root node then has only one child, and is deleted

Deletion of “Perryridge” from result of previous example

1.34

Example of B+-tree Deletion (Cont.)

 Parent of leaf containing Perryridge became underfull, since merge is

not possible, borrowed a pointer from its left sibling

 Search-key value in the parent’s parent changes as a result

Before and after deletion of “Perryridge” from the first example

1.35

Example of B+-tree for a

sequentially ordered file

Solution 1

Leaf node: (Pi, Ki), Pi is a pointer to the first record with search key

value Ki in the file

1.36

Example of B+-tree for a

sequentially ordered file (cont.)
Solution 2
Leaf nodes: pointers to blocks

(Pi, Ki): Pi pointer to a block of the file, whose least search key value is Ki

Block0

Block2

Block1

1.37

B+-Tree File Organization

1.38

B+-Tree File Organization

 Index file degradation problem is solved by using B+-Tree indices.

 Data file degradation problem is solved by using B+-Tree File

Organization.

 The leaf nodes in a B+-tree file organization store records, instead of

pointers.

 Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number of

records that can be stored in a leaf node is less than the number of

pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion and

deletion of entries in a B+-tree index.

1.39

B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than

pointers.

 To improve space utilization, involve more sibling nodes in redistribution

during splits and merges

Example of B+-tree File Organization

