
1

Backward error recovery: Recovery block
Brian Randell early 1970s at Newcastle

Basic structure: Ensure T

By P

else by Q

Else error

 Each recovery block contains variables global to the block that will be

automatically checkpointed if they are altered within the block.

 Upon entry to a recovery block, the primary alternate is executed and subjected

to an acceptance test to detect any error in the result.

If the test is passed, the block is exited.

If the test is failed or the alternative fails to execute, the content of the recovery

cache pertinent to the block is reinstated, and the second alternate is executed.

This cycle is executed until either an alternative is successful or no more

alternatives exist. In this case an error is reported.

 Accettability of the result is decided by an acceptance test T

 Primary alternate, secondary alternates
checkpoint

Acceptance

test

Multi-version approach (with error detection and recovery)

2

(From Fault-Tolerant Computer System Design

D. K. Pradhan, Prentice Hall, 1996)

Primary

Version

Secondary

Version N-1

Secondary

Version 1

Program Outputs

.

.

.

.

Program Inputs

N-to-1

Program

Switch

Acceptance

Tests

Test Result

 A single acceptance test

 Only one single implementation of the program is run at a time

 Combines elements of checkpointing and backup

 Minimizes the information to be backed up

 Releases the programmer from determining which variables should

be checkpointed and when

 linguistic structure for recovery blocks requires a suitable mechanism for providing automatic

backward error recovery. Randell produced the first such "recovery cache“ scheme

Backward error recovery: Recovery block

3

Recovery block in concurrent systems

When a system of cooperating processes employs recovery blocks, each
process will be continually establishing and discarding checkpoints, and may
also need to restore to a previously established checkpoint.

However, if recovery and communication operations are not performed in a
coordinated fashion, then the rollback of a process can result in a cascade of
rollbacks that could push all the processes back to their beginnings — the
domino

[Randell 1975] had come up with the notion of a conversation — something
which we later realized was a special case of a nested atomic action.

4

Conversion scheme

- one of the fundamental approaches to structured design of fault-tolerant

concurrent programs.

- provides a means of coordinating the recovery blocks of interacting processes

Example where three processes P1, p2 and P3 communicate within a conversation

and the processes P1 and P2 communicate within a nested conversation

do not communicate

with outside

5

The operation of a conversation is: (i) on entry to a conversation a process

establishes a checkpoint; (ii) if an error is detected by any process then all the

participating processes must restore their checkpoints; (iii) after restoration all

processes use their next alternates; and (iv) all processes leave the conversation

together.

Real-time applications may suffer from the possibility of deserters in a

conversation — if a deadline is to be met then a process that fails to reach its

acceptance test could cause all the processes in the conversation to miss that

deadline

6

Single-version software fault tolerance techniques

(redundancy applied to a single version of software to detect errors and recover)

Heisenbugs
temporary internal faults (intermittent faults)
They are essentially permanent faults whose
conditions of activation occur rarely or are not
easily reproducible.
For example faults at boundaries between various
software components with timinig dependences.
They are state dependent and input dependent
faults. (extremely difficult to identify through
testing)

Bohrbugs
permanent design faults, deterministic in nature

identified during the testing and debugging phase

Software faults

Basis principles to implement fault tolerance

- modular software architecture

- system closure principle

- self-checking and self-protection principle

7

Modular software architecture

“Modular software architecture helps us view the system, not just in layers or services, but as

composition of small modules.”

“A software module is a deployable, manageable, natively reusable, composable, stateless unit

of software that provides a concise interface to consumers.”

Best practices:

1) add error detection capability to modules

2) use the hierarchy and connectivity of modules

to analyse error propagation

3) partitioning of module into

- functional independent modules

- control modules (that coordinate the execution)

and provide isolation between functionally independent modules for error confinement

4) structuring of the activity between

interacting components into

atomic actions

Error dectection and recovery

in programs:

Exception handlers

8

Atomic action:

activity in which the components interact with each other and

there is no interaction with the rest of the system for the

duration of the activity

Atomic action: provides a framework for error confinement

and recovery (if a failure is detected during an atomic action,

only the participating components can be affetcted)

Example: transactions in databases

9

System closure principle

no action is permissible unless explicitly authorized (mutual suspicion)

1. Each component is only granted the capabilities needed to execute its function

2. Each component examines each request or data item from other components

before acting on it

For example, each software module checks legality and reasonableness of

each request received

3. A capability disabled by an error does not result in an undesirable action,

only disables a valid action

10

Self-protection and self-checking principles

Software system: a set of communicating components

Component (self-protection): protect itself by detecting errors in the information

received by other interacting components

Component (self-checking): able to detect internal errors and take appropriate

actions to prevent the propagation to other components

11

Checkpointing and restart recovery mechanism

Most of the faults at this stage are Heisenbugs, hence

these faults result in transient failures, i.e., failures

which may not recur if the software is restarted.

Restart is usually enough to successful completion of

the execution of the module

Checkpointing and restart recovery mechanism

- Static

restart from predetermined states

(initial state or intermediate state, ..)

- Dynamic

restart from checkpoints created during

the execution of the module (backword error recovery)

W. Torres-Pomales

Software fault tolerance: A tutorial

NASA,/TM-2000-210616, 2000

12

Error detection checks

Reasonableness checks: use known sematic properties of data (acceptable

range of variables, rate of change, acceptable transitions, probable results…)

Based on the design requirements of a module.

Reversal checks: inverse computation use the output to compute the

corresponding inputs

assume the specified function of the system is to compute a mathemathical

function, output = F(input) if the function has an inverse function F’, such that

F’(F(x))=x, we can compute F’(output) and verify that F’(output) = input

Coding checks: use coding in the representation of information technique

developed for hardware can be used for software (the content of the data is

not changed)

13

Error detection checks

Structural checks: use known properties of data structures lists, trees, queues

can be inspected for a number of elements (redundant data structure could

be added, extra pointers, embedded counts, …)

Timing checks: watchdog timers check deviations from the acceptable module

behaviour

Run-time checks:

error detection mechanism provided in hardware (dived by 0, overflow,

underflow, …) can be used to detect design errors

14

Error Recovery

Forward recovery transform the erroneous state in a new state from

which the system can operate

Backward recovery bring the system back to a state prior to the error

occurrence - Checkpointing

Backward and forward recovery are not exclusive they can be combined

if the error persists

15

Forward error recovery

Requires to assess the damage caused by the detected error or by errors

propagated before detection

Usually ad hoc

Example of application:

real-time control systems, an occasional missed response to a sensor input is

tolerable

The system can recover by skipping its response to the missed sensor input.

16

Backward error recovery: Checkpointing

A copy of the current state for possible use in rollback is called checkpoint.

Checkpoints

- may be taken automatically (periodically) or upon request by program

- need to be correct

- need eventually to be discarded

- survival of checkpoint data

Backward error recovery: Checkpointing

Checkpointing/rollback (resetting the system and process state to the state

stored at the latest checkpoint) need mechanisms in run-time support

17

Organisation of fault tolerance
From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

