
1

Software Reliability

2

Software Reliability

sw

input output

 What is software reliability?

the probability of failure-free software operation for a specified

period of time in a specified environment

Software is subject to

 design flaws:

- mistakes in the interpretation of the specification

that the software is supposed to satisfy (ambiguities)

- mistakes in the implementation of the specification:

carelessness or incompetence in writing code,

inadequate testing

 operational faults

incorrect or unexpected usage faults (operational profile)

3

Design Faults

Given a design flaw, only some type of inputs will exercise that

fault to cause failures. Number of failures depend on how

often these inputs exercise the sw flaw

Apparent reliability of a piece of software is correlated to how

frequently design faults are exercised as opposed to number

of design faults present

hard to visualize, classify, detect, and correct.

 closely related to human factors and the design

process, of which we don't have a solid understanding

4

Software reliability

5

6

We assume that programs will not be fault free

7

Software faults and Failure regions

The input to the software is a set of variables, defining a Cartesian
space, e.g. x and y

x

y

The software contains bugs if some inputs are processed erroneously

Failure regions

We assume that programs will not be fault-free

Effcacy of software fault tolerance techniques depends on how
disjoint the failure regions of the versions are

8

 Software reliability is not a direct function of time.

Electronical and mechanical parts may become old, and

wear-out with time and usage.

Software DOES NOT wear-out during its life.

Software DOES NOT change over time unless

intentionally changed or upgraded

 As a software is used, design faults are discovered and

corrected. Consequently, the reliability should improve,

and the failure rate should decrease BUT corrections could

cause new faults

Software Reliability

9

SOFTWARE RELIABILITY EVOLUTION

identify periods of reliability growth and decrease

 upgrades imply feature upgrades, not upgrades for reliability.

From “Software Reliability”,

J. Pan, Carnegie Mellon University, 1999

10

 in the last phase, software does not have an

increasing failure rate as hardware does. In this phase,

software is approaching obsolescence; there are no

motivations for any upgrades or changes to the software.

Therefore, the failure rate will not change.

 in the useful-life phase, software will experience a

drastic increase in failure rate each time an upgrade is made.

The failure rate levels off gradually, partly because of the defects

found and fixed after the upgrades.

 Even bug fixes may be a reason for more software failures,

if the bug fix induces other defects into software

SOFTWARE RELIABILTY EVOLUTION

11

From “Software Reliability”, J. Pan, Carnegie Mellon University, 1999

 Reliability upgrades drop in software failure rate, if redesign or

reimplementation of some modules with better engineering

approaches

12

13

Removal of implementation errors should increse MTTF, and

correlation of bug-removal history with the time evolution of the

MTTF value may allow the prediction of when a given MTTF

value will be reached.

Software Reliability Growth Models

Disadvantages:

Do not consider that correct a bug may introduce new bugs

Do not consider specification errors (only implementation faults)

14

 Time between failure: the time between failure is increasing

Random Variables T1, ..., Tn

Ti = time between failure i-1 and failure i

Reliability growth: Ti <=st Tk for all i < k

Prob {Ti < x} >= Prob {Tk <= x} -> FTi(x) >= FTk(x) forall i < k and for all x

0

T1 T2 Tk

Tk = time between failure k-1 and k

Reliability growth characterization

fault fault
fault fault

15

 Number of failure: the number of failure is decreasing

Cumulative number of failure law: the number of failure events in an interval

of the form [0, tk] is larger than the number of events taking place in an interval

of the same length beginning later

Random Variables N(t1), ..., N(tn)

N(ti) = cumulative number of failures between 0 and ti

N(1) N(2)
N(k)

0

Reliability growth characterization

x x x xxx xxx

16

Jelinski and Moranda Model
(the earliest and the most commonly used model)

N faults at the beginning of the testing process

- each fault is independent of others and
- equally likely to cause a failure during testing
- detected fault is removed in a negligible time and no new faults are introduced

the fault manisfestation rate

Ti time between the failure (i-1) and the failure i
depends on the fault manifestation rate and the number of faults in the system

l(i) = [N-(i-1)] failure rate of the i-th failure

P(Ti < ti)

17

Schick and Wolver ton Model

Software failure rate is proportional to the current fault content of the

program as well as to the time elapsed since the last failure

Goel and Okumoto Imperfet Debbugging Model

The number of faults in the system at time t is treated as a Markov

process whose transition probabilities are governed by the

probability of imperfect debugging.

Other models ….

18

Dependency analysis

 Workload/failure dependency

workload appers to act as a stress factor: the failure rate increases as

the workload increases

 Correlation among failures on different components

- exists significantly in distributed systems

- for example, disk and network errors are strongly correlated,

because the processors in the system heavily use and share

the disk and the network concurrently

- generally the error correlation is high (0.62), the failure correlationis

low (0.06)

Common Cause Failure

a failure of two or more structures, systems or components due to a

single specific event or cause

19

• The software development process is robust and of high quality,

• The OS platform and its software development life cycle process are mature,

• Rigorous V&V methodology is used,

• Configuration management after deployment is robust (including control of software

versions, setpoint changes, spares),

• Standardized software development tools and function libraries,

• Exclusive use of pre-defined and rigorously qualified function block libraries for

application programming,

• Clearly defined rules for use of the software functional blocks (including exception

handling),

• Thorough coverage of pre-operational testing,

• Comprehensive exception handling,

• Deterministic program execution,

• Strictly cyclic operation, and

• OS defensive measures

DEFENSE against application sw CCF

From: B. Enzinna, L. Shi, S. Yang, Software Common-Cause Failure Probability Assessment,

NPIC&HMIT 2009

20

Software Reliability Engineering

Software Reliability Engineering (SRE) is the

quantitative study of the operational behavior of

software-based systems with respect to user

requirements concerning reliability.

21

A global software reliability analysis method

(In Karama Kanoun, ReSIST network of Excellence Courseware “Software Reliability

Engineering”, 2008 http://www.resist-noe.org/)

22

 Data collection process

- includes data relative to product itself (software size, language,

workload, ...), usage environment: verification & validation

methods and failures

- Failure reports (FR) and correction reports (CR) are generated

 Data validation process

data elaborated to eliminate FR reporting of the same failure, FR

proposing a correction related to an already existing FR, FR

signalling a false or non identified problem, incomplete FRs or

FRs containing inconsistent data (Unusable) …

Data extracted from FRs and CRs are:

Time to failures (or between failures)

Number of failures per unit of time

Cumulative number of failures

23

 Trend tests

Control the efficiency of test activities

- Reliability decrease at the beginning of a new activity: OK

- Reliability grow after reliability decrese: OK

- Sudden reliability grow CAUTION!

-

 Model application

Trend in accordance with model assumptions

 Descriptive statistics

make syntheses of the observed phenomena

Analyses Fault typology, Fault density of components, Failure /

fault distribution among software components (new, modified,

reused)

Analyses Relationships Fault density / size / complexity;

Nature of faults / components; Number of components affected by

changes made to resolve an FR .

…….

24

 Due to the nature of software, no general accepted mechanisms

exist to predict software reliability

 Important empirical observation and experience

 Good engineering methods can largely improve software reliability

 Software testing serves as a way to measure and improve

software reliability

 Unfeasibility of completely testing a software module:

defect-free software products cannot be assured

 Databases with software failure rates are available but numbers

should be used with caution and adjusted based on observation

and experience

Software Reliability

