Exercise

Let’s consider the following relational schema for a group of insurance companies located in
different cities:

CUSTOMER(Id_cust, Name, Age, City_cust)
INSURANCE_COMPANY (Id_company, Id_Director, nEmployee, City)
POLICY(Id_policy, Id_cust, Id_company, expiry_date)

Primary keys are underlined in the relations. Moreover, Id_cust in POLICY is foreign key of
CUSTOMER; Id_company in POLICY is foreign key of INSURANCE_COMPANY and
Id_Director in INSURANCE_COMPANY foreign key of CUSTOMER.

A customer can have more than one policy in the same company or in different companies.
Expiry_date in POLICY is a year.

Assume that:

Ncustomer =2000 V(Id_cust, POLICY) = 2000
NINSURANCE_compPANY = 20 V(Id_company, POL|CY) =20
NpoLicy = 100.000 V(expiry_date, POLICY) =20

V(City, INSURANCE_COMPANY) =5
Given the query:
“Name of customers holding policies with companies located in Pisa and with expiry date 2010”

1) express the query as a relational-algebra expression;

2) show the basic steps of the query optimization process in terms of relational-algebra
expression transformations

3) give an efficient strategy for computing the query.

Let C, IC and P denote CUSTOMER, INSURANCE_COMPANY and POLICY, respectively.
Let |X| be the natural join

Point 1
Ic.Name (G IC. City=Pisa and P.expiry_date= 2010 ((C |X| P) |X| |C))

Point 2
G IC. City=Pisa and P.expiry_date=2010 (....) Can be rewritten as: o ic. city=pisa (O P.expiry_date=2010(.....))

Ic.Name (G IC. City=Pisa (G P.expiry_date= 2010 ((C |X| P) |X| |C)))

Push selection down
Ie.Name ((C [X] (o p.expiry_date=2010 (P))) |X]| (o 1c. city=pisa (IC)))

Push projection down

ITc.Name ((HC.Name, C.ld_cust C) |X| (HP.Id_cust, P.Id_company (G P.expiry_date= 2010 P))
|X| (HIC.Id_company (G IC. City=Pisa (|C)))

We evaluate the size and the number of different values for the new relations.

Let C’ = Ilc.Name, C.1d_cust (C)
Nc: = Ncustomer = 2000 Id_cust is a key

LetP’=¢o P.expiry_date= 2010 (P)

np> = npoLicy / V(expiry_date, POLICY) = (100.000/20) = 5.000
V(Id_cust, P”) =min(np-, V(Id_cust, P)) = min(5.000, 2.000) = 2.000
V(Id_company, P’) = min(ne:, V(Id_company, P)) = min(5.000, 20) = 20

Let P” = Tlp.id_cust, P.1d_company (P”)
ne> = min(np-, V(Id_cust, P”) * V(Id_company, P’)) =min (5.000, 2.000 * 20) = 5.000
V(ld_cust, P”) =2.000
V(Id_company, P”’) =20

Let IC” = G ic. city=risa (IC)
nic' = (- ninsurance_company / V(City, INSURANCE_COMPANY) = (20/5) = 4
V(Id_company, IC’) =nic- =4

Let IC” = ITic.id_company (IC”)
nic-=nmc =4 (ld_company is a key)

Point 3
Natural join is commutative.
Ic.Name ((O |X| p” |X| IC”)

We estimate the size of different combinations of join.

Let T1=(C’ |X| P”) Aittribute of the join: 4 cust

Number of records in the result:

Id_cust in P” is foreign key of C* (note that C” and C have the same values of Id_cust)
N1 = np»= 5000

Let T2 =(C’ |X| IC”) Cartesian product
Number of records in the result:
nr2=(nco~ nic’)= 2000 * 4 = 8000

Let T3 =(P” |X| IC”) Attribute of the join: 1d_company
Number of records in the result:
Id_company in P” is not foreign key of IC”
Id _company in P” is a key of IC”
nt3 < np» <5.000

More precisely (rule applied by the optimizer):

min(np» * (nic»/ V(Id_company, 1C”), nicc * (np»/ V(Id_company, P”)) =
min(5000 * (4/4), 4*(5.000/ 20)) = min(5.000, 1.000) = 1.000

The best ordering of joinis : (C” |X| (P [X] IC”))

An efficient strategy for solving the query is:
Iename (C” [X] (P [X] 1C”))

