
Exercise

Let’s consider the following relational schema for a company, with branches in different cities:

EMPLOYEE(ENumber, Name, Age, Salary, BranchCode)

PROJECT(ProjCode, Description, Budget)

BRANCH(BranchCode, BranchName, BranchCity)

WORK(ENumber, ProjCode, PercentageOfTime)

Primary keys are underlined in the relations. Moreover, ENumber in WORK is foreign key of

EMPLOYEE; ProjCode in WORK is foreign key of PROJECT and BranchCode in EMPLOYEE is

foreign key of BRANCH.

An employee works at a branch. Tasks in different projects can be assigned to an employee.

PercentageOfTime is the percentage of time that an employee works in a project.

Assume that:

nEMPLOYEE 1000 V(BranchCity, BRANCH) = 10

nPROJECT = 100 V(BranchCode, EMPLOYEE) = 20

nBRANCH = 20 V(ENumber, WORK) = 1000

nWORK = 5000 V(ProjCode, WORK) = 100

Given the query:

 Codes of projects with workers in Pisa branches

1) express the query as a relational-algebra expression;

2) show the basic steps of the query optimization process in terms of relational-algebra

expression transformations

3) give an efficient strategy for computing the query.

Point 1

WORK.ProjCode (BRANCH.BrachCity=Pisa((EMPLOYEE |X| EMPLOYEE.ENumber=WORK.ENumber WORK)

 |X|EMPLOYEE.BranchCode=BRANCH.BranchCode BRANCH))

Let E, W and P denote EMPLOYEE, WORK and BRANCH, respectively.

W.ProjCode (B.BranchCity=Pisa((E |X| E.ENumber=W.ENumber W) |X|E.BranchCode=B.BranchCode B))

Point 2

Push selection down

W.ProjCode ((E |X| E.ENumber=W.ENumber W) |X|E.BranchCode=B.BranchCode (BranchCity=Pisa(B)))

Push projection down

W.ProjCode (((ENumber,BranchCode E) |X| E.ENumber=W.ENumber (Enumber,ProjCode W))

 |X|E.BranchCode=B.BranchCode (BranchCode (BranchCity=Pisa(B)))

 Estimate of size and different values for the new relations.

 Let B’ =BranchCity=Pisa(B)

 nB’ = nBRANCH / V(BranchCity, BRANCH) = (20/10) = 2

 Let B” = BranchCode (B’)

 nB” = nB’ = 2 BranchCode is a key

 V(BranchCode, B”) = 2

 Let E’ = ENumber,BranchCode E

 nE’ = nEMPLOYEE = 1000 ENumber is a key

 V(BranchCode, E’) = V(BranchCode, E) = 20

 Let W’ = Enumber,ProjCode W

 nW’ = nWORK = 5000 ENumber,ProjCode is a key

Point 3

The query expression can be rewritten using natural join operator. Natural join is commutative.

W.ProjCode (E’ |X| W’ |X| ”)

We estimate the size of different combinations of join.

T1 = (E’ |X| E’.ENumber=W’.ENumber W’)

 Number of records in the result:

 ENumber in W’ is foreign key of E’

 nT1 = nW’ = 5000

T2 = (E’ |X| E’.BranchCode=B”.BranchCode ")

 BranchCode in E’ is not foreign key of " (" has less values of BranchCode than B)

 BranchCode in E’ is a key of "

 nT2 < nE’ < 1000

More precisely :

 nT2 = number of employees for each branch * number of branches

-employees for each branch: nEMPLOYEE / V(BranchCode, EMPLOYEE) = 1.000 / 20 = 50

-number of branches: nB” = 2

 nT2 = 50 * 2 = 100

Rule applied by the optimizer:

min(nE’ * (nB” / V(BranchCode, B”), nB” * (nE’ / V(BranchCode, E’)) =

min(1.000 * (2/2), 2 * (1000/20)) = 100

T3 = (W’ |X | ") cartesian product

 NT3 = 5.000 * 2 = 10.000

The best ordering of join is: ((E’ |X| E’.BranchCode=B”.BranchCode ") |X| E’.ENumber=W’.ENumber W’)

An efficient strategy for solving the query is:

 W.ProjCode ((E’ |X| E’.BranchCode=B”.BranchCode ") |X| E’.ENumber=W’.ENumber W’)

