Exercise

Let's consider the following relational schema for a company, with branches in different cities:

EMPLOYEE(<u>ENumber</u>, Name, Age, Salary, BranchCode) PROJECT(<u>ProjCode</u>, Description, Budget) BRANCH(<u>BranchCode</u>, BranchName, BranchCity) WORK(<u>ENumber</u>, <u>ProjCode</u>, PercentageOfTime)

Primary keys are underlined in the relations. Moreover, ENumber in WORK is foreign key of EMPLOYEE; ProjCode in WORK is foreign key of PROJECT and BranchCode in EMPLOYEE is foreign key of BRANCH.

An employee works at a branch. Tasks in different projects can be assigned to an employee. PercentageOfTime is the percentage of time that an employee works in a project.

Assume that:

n _{employee} 1000	V(BranchCity, BRANCH) = 10
$n_{\text{PROJECT}} = 100$	V(BranchCode, EMPLOYEE) = 20
$n_{BRANCH} = 20$	$V(\underline{ENumber}, WORK) = 1000$
$n_{WORK} = 5000$	$V(\underline{ProjCode, WORK}) = 100$

Given the query:

Codes of projects with workers in Pisa branches

- 1) express the query as a relational-algebra expression;
- 2) show the basic steps of the query optimization process in terms of relational-algebra expression transformations
- 3) give an efficient strategy for computing the query.

Point 1

 $\Pi_{WORK.ProjCode} (\sigma_{BRANCH.BrachCity=Pisa} ((EMPLOYEE |X|_{EMPLOYEE.ENumber=WORK.ENumber} WORK) \\ |X|_{EMPLOYEE.BranchCode=BRANCH.BranchCode} BRANCH))$

Let E, W and P denote EMPLOYEE, WORK and BRANCH, respectively.

 $\Pi_{W.ProjCode} \; (\sigma_{B.BranchCity=Pisa}(\; (E \; \; |X|_{E.ENumber=W.ENumber} \; W) \; |X|_{E \cdot BranchCode=B.BranchCode} \; \; B))$

Point 2

Push selection down

 $\Pi_{W.ProjCode} \left(\begin{array}{cc} (E \ |X|_{E.ENumber=W.ENumber} W) \ |X|_{E\cdot BranchCode=B.BranchCode} \ (\sigma \ {}_{BranchCity=Pisa} (B)) \right)$

Push projection down

 $\Pi_{W.ProjCode} (((\Pi_{ENumber,BranchCode} E) |X|_{E.ENumber=W.ENumber} (\Pi_{Enumber,ProjCode} W)) \\ |X|_{E.BranchCode=B.BranchCode} (\Pi_{BranchCode} (\sigma_{BranchCity=Pisa} (B)))$

Estimate of size and different values for the new relations.

Let B' = $\sigma_{\text{BranchCity=Pisa}}(B)$ $n_{B'} = n_{\text{BRANCH}} / V(\text{BranchCity}, \text{BRANCH}) = (20/10) = 2$ Let B'' = $\Pi_{\text{BranchCode}}(B')$ $n_{B''} = n_{B'} = 2$ BranchCode is a key V(BranchCode, B'') = 2Let E' = $\Pi_{\text{ENumber,BranchCode}} E$ $n_{E'} = n_{\text{EMPLOYEE}} = 1000$ ENumber is a key

V(BranchCode, E') = V(BranchCode, E) = 20

Let $W' = \Pi_{\text{Enumber, ProjCode}} W$ $n_{W'} = n_{\text{WORK}} = 5000$ ENumber, ProjCode is a key

Point 3

The query expression can be rewritten using natural join operator. Natural join is commutative. $\Pi_{W.ProjCode}$ (E' /X/ W' /X/ B")

We estimate the size of different combinations of join.

 $T1 = (E' |X|_{E'.ENumber=W'.ENumber} W')$ Number of records in the result: ENumber in W' is foreign key of E' $n_{T1} = n_{W'} = 5000$ $T2 = (E' |X|_{E'.BranchCode=B''.BranchCode} B'')$ BranchCode in E' is not foreign key of B" (B" has less values of BranchCode than B) BranchCode in E' is a key of B" $n_{T2} < n_{E'} < 1000$ More precisely: n_{T2} = number of employees for each branch * number of branches -employees for each branch: $n_{EMPLOYEE}$ / V(BranchCode, EMPLOYEE) = 1.000 / 20 = 50 -number of branches: $n_{B^{"}} = 2$ $n_{T2} = 50 * 2 = 100$ Rule applied by the optimizer: min($n_{E'}$ * ($n_{B''}$ / V(BranchCode, B''), $n_{B''}$ * ($n_{E'}$ / V(BranchCode, E')) = $\min(1.000 * (2/2), 2 * (1000/20)) = 100$

T3 = (W' | X | B'') cartesian product $N_{T3} = 5.000 * 2 = 10.000$

The best ordering of join is: ((E' |X| E'.BranchCode=B".BranchCode B") |X| E'.ENumber=W'.ENumber W')

An efficient strategy for solving the query is:

Π_{W.ProjCode} ((E' |X|_{E'.BranchCode=B".BranchCode} B") |X|_{E'.ENumber=W'.ENumber} W')