Exercise
Let’s consider the following relational schema for a company, with branches in different cities:

EMPLOYEE(ENumber, Name, Age, Salary, BranchCode)
PROJECT (ProjCode, Description, Budget)
BRANCH(BranchCode, BranchName, BranchCity)
WORK(ENumber, ProjCode, PercentageOfTime)

Primary keys are underlined in the relations. Moreover, ENumber in WORK is foreign key of
EMPLOYEE; ProjCode in WORK is foreign key of PROJECT and BranchCode in EMPLOYEE is
foreign key of BRANCH.

An employee works at a branch. Tasks in different projects can be assigned to an employee.
PercentageOfTime is the percentage of time that an employee works in a project.

Assume that:

NempLovee 1000 V(BranchCity, BRANCH) = 10
NprojecT = 100 V(BranchCode, EMPLOYEE) = 20
NerancH = 20 V(ENumber, WORK) = 1000
Nwork = 5000 V(ProjCode, WORK) = 100

Given the query:
Codes of projects with workers in Pisa branches

1) express the query as a relational-algebra expression;
2) show the basic steps of the query optimization process in terms of relational-algebra

expression transformations
3) give an efficient strategy for computing the query.

Point 1

IwoRrk projcode (G BRANCH.Brachcity=pisa((EMPLOYEE [X| empLoYEE ENumber=woRK.ENumber WORK)
|X|EMPLOYEE.BranchCode:BRANCH.BranchCode BRANCH))

Let E, W and P denote EMPLOYEE, WORK and BRANCH, respectively.

1_[W.ProjCode (G B.BranchCity:Pisa((E |X| E.ENumber=W.ENumber W) |X|E-BranchCode:B.BranchCode B))
Point 2
Push selection down

I—IW.ProjCode ((E |X| E.ENumber=W.ENumber W) |X|E-BranchCode:B.BranchCode ((5 BranchCity:Pisa(B)))

Push projection down

I—IW.ProjCode (((HENumber,BranchCode E) |X| E.ENumber=W.ENumber (HEnumber,ProjCode W))
|X|E.BranchCode:B.BranchCode (1_IBranchCode (G BranchCity:Pisa(B)))

Estimate of size and different values for the new relations.

LetB’=0o BranchCity=Pisa(B)
N> = NBRANCH /V(BranchCity, BRANCH) = (20/10) =2

Let B” = Ilgranchcode (B’)
Ng»=Ng = 2 BranchCode is a key
V(BranchCode, B”) = 2

Let E = Ilgnumber,Branchcode E
Ne' = Nemprovee = 1000 ENumber is a key

V(BranchCode, E’) = V(BranchCode, E) =20

Let W’ = HEnumber,ProjCode w
Nw = Nwork = 5000 ENumber,ProjCode is a key

Point 3

The query expression can be rewritten using natural join operator. Natural join is commutative.
1_[W.ProjCode (E’ |X| w’ |X| B”)

We estimate the size of different combinations of join.

T1=(E [X]|e eNumber=w’ ENumber W)
Number of records in the result:
ENumber in W’ is foreign key of E’

Nt = Ny = 5000

T2= (E, |X| E’.BranchCode=B”.BranchCode B")
BranchCode in E’ is not foreign key of B" (B" has less values of BranchCode than B)

BranchCode in E’ is a key of B"
Nto < Ng- < 1000
More precisely :
nt2 = number of employees for each branch * number of branches
-employees for each branch: ngmpLovee / V(BranchCode, EMPLOYEE) = 1.000/ 20 = 50
-number of branches: ng» =2
N = 50*2 =100
Rule applied by the optimizer:
min(ng-* (ng-/ V(BranchCode, B”), ng-*(neg-/ V(BranchCode, E’)) =
min(1.000 * (2/2), 2 * (1000/20)) = 100

T3=(W’|X|B") cartesian product
Nt3=5.000 *2=10.000

The beSt 0fdering Of jOin iS: ((E’ |X| E’.BranchCode=B”.BranchCode B") |X| E’.ENumber=W’.ENumber W’)

An efficient strategy for solving the query is:
HW.ProjCode ((E’ |X| E’.BranchCode=B”.BranchCode B") |X| E’.ENumber=W’.ENumber W’)

