Software Reliability

Software Reliability

What is software reliability?

the probability of failure-free software operation for a specified
period of time in a specified environment

input output
—» SW

v

We assume that programs will not be fault-free

One of the weakest links in systems reliability is software reliability.
Even for control applications which usually have less complex
software, it is well established that many failures are results of
software bugs.

Software Reliability

Software is subject to input output

1. design flaws

- mistakes in the interpretation of the specification
that the software is supposed to satisfy (ambiguities)

- mistakes in the implementation of the specification:
carelessness or incompetence in writing code, or
Inadequate testing

2. operational faults
Incorrect or unexpected usage faults
- operational profile

operational profile: a set of alternatives of system operational scenarios
and their associated probabilities of occurrence

Design Faults

- hard to visualize, classify, detect, and correct
- closely related to human factors and the design process

- a design flaw not discovered and corrected during testing,
may possibly lead to a failure during system operation

Given a design flaw, only some type of inputs will exercise that fault
to cause failures. Number of failures depend on how often these
Inputs exercise the sw flaw

Apparent reliability of a piece of software is correlated to how
frequently design faults are exercised as opposed to number

Software faults and Failure regions

The input to the software is a set of variables, defining a Cartesian
space, e.g. x and y

Failure regions x» H
y \

X

I

The software contains bugs if some inputs are processed erroneously

(efficacy of software fault tolerance techniques depends on how
disjoint the failure regions of the versions are)

Faults tends to produce errors that are grouped
together

Points in the input space that cause a fault to produce errors can tend to cluster and form
regions called error crystals [Results of software error-data experiments, Finelli, NASA
Langley Research Center, 1998]

.......... OERXXXNK < 555 e ieie T v A oors o050 9 v e s
........ XXX L < s a)isaiara’s ain o/a o)8'e/a8/a'e s us
....... 0 $,8.4,2,0 0.0 248 ¢ 4 4 S e X R R ALY

RID $.9.09 0460008659698 0 0 QA
« o+ OOOOOOOOCOOOXKXXXXX . 4 s e e i iiiaainaaa,
D .0, 8 £ 000009988600 0 8 S & G
o o141+ XXOOOTOOOKXXXXXXXXX < s 41550 14 (a10 s/ 570 0/s sis e sls's
+ '+ + OO XXXXXXXX 5 o s« o6 siais0's 968 60 0sa4s
RETD 0 ¢ e e e b 000000000800 G R S
R 3380000099880 6 6 6 0 0 5 SN
..... XOOOOXXXXXXXXXXXX s 2 s svnncnnsnnnroananns
.....) 2988008 0000600 Y RS ERE R R SR RS
...... XXOOOOCXXXXXXXXXXX . o cvvvnnnnnnnnssssananns
....... XXXXXXXXXXXXXXX '« o'0's 6030 0i6snseossseess
s osies e KHXXXMAXXXXXXX S o o s a0asossvocsnssssannoe
R PP, %, 2, 0. 0.0, 8, 0, 0,0, ¥, P S e R R SN b e
.......... XOOXXMXXX 2 = = (s ‘a'mia'aaa's'alnlaa’a a'a'aiaia'ais’ssna s

X: an input value that caused a single fault to produce an erroneous output
. . inputs that produced correct outputs

These regions are a particular concern in real-time applications where the input
variables may be slowly varying and thus triggering multiple failures because of a single fault

Error rates for faults in two programs

NASA studies observed widely varying error rates for the faults identified

An experiment in software reliability:Life-critical applictions, Dunham J.R, Trans. On Soft.

Engineering,1986

Three versions of a lunch interceptor condition were generated: 11 faults discovered in the
first version, 1 fault in the second version, and 19 faults in the third version

Program 1
Fault Number of
Number Runs Found Error Rate
Error rate: > =
1 10 :
the frequency of erroneous outputs 5 o B
3 100 0.030
15.250.000 program executions 4 100 0.00259
5 100 0.0155
6 100 0.00922
The error rate for individual faults Z b 0.00456
. 8 95 0.000314
varies over several order of 9 9 0.00000940
magnitude 10 1 0.00000101
1 2 0.00000202

Program 3
Fault Number of
Number Runs Found Error Rate
1 100 0.794
2 78 0.000352
5 100 0.0126
6 100 0.0213
8 100 0.0126
9 100 0.0213
10 100 0.0213
1 100 0.0213
12 100 0.0503
13 100 0.0126
14 100 0.0213
15 100 0.0213
16 100 0.0198
17 96 0.000383
18 100 0.000935
19 5 0.00000511

Source: Dunham, 1986; ©1986 IEEE.

Many software reliability models assume that faults contribute equally to the rate at
which a program generate erroneous outputs

Interaction between faults

Interaction between faults: sometimes the probability of failures is increased and at other
time faults are masked

[An experiment in software reliability, Dunham, NASA Langley Research Center, 1986]

Faults 7 Number
Fault 7 Fault 8 and 8 of

interaction Present Present Present Cases
betwgen S S S 1,714 177
two different S S F 4,990
faults: 7 and 8 S f S 349
S F F 19
F S S 473
F S F 0
F F S 1,122
F f F 12

S: success of the program
F: failure of the program
Last column: number of parallel executions of the three versions of the program

Code coverage

Code coverage, a metric used by code testers, indicating how
completely a test set executes a software system, influences the
reliability measure

Several models have been proposed to determine the relationship
between the number of faults/failures and the test coverage achieved
with various distributions

Software reliability process overview

-
Determine Reliability Develop
Obiective '*.l COperational Profile
“1 |

vy

—— | Perform Software Testing
¥
Collect Failure Data - CO”eCtion Of data

v
Apply Software Reliability
Tools

Continue
Testing

¥

Select Appropriate Software
Reliability Models

¥
Use Software Reliability Models
to Calculate Current Reliabiality

Reliability
Objective
met?

v
Start to Deploy

¥
WValidate Reliability in the Field

h
[Feedback to Next Release J

Software Reliability Engineering: A Roadmap, Michael R. Lyu, Future of Software Engineering(FOSE'07), 2007

Data to be collected

= Background information
» Product itself: software size, language, functions, current version, workload
» Usage environment: verification and validation methods, tools, etc.
= Data relative to failures and corrections
» Date of occurrence, nature of failures, consequences
» Type of faults, fault location
= Usually, recorded through

» Failure Reports (FR)
» Correction Reports (CR)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

11

= Failure Report (FR)

Required Information
« Serial number (for identification)
» Report editor
» Product reference, version affected (or prototype)

e Date and time of failure occurrence

Desirable Information
 Failure occurrence condition
 Failure criticality or consequences
» Affected function or task

» Action proposed (if any)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

12

= Correction Report (CR)

Required information
» Serial number (for identification)
» Report editor
» Date of correction
» Correction nature
» Product reference

» Reference to the FR

Desirable Information

+ |dentification of the modified components
= |ntegration with already existing data collection programs

== |mportance of training

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

13

Data pre-processing for reliability analysis

= TWO Kinds of data sets can be extracted from FRs and CRs

» Time to failures (or between failures)

ot L A b L R

5}»\{ e i e

failure t, = time between failure k-1 and k

» Grouped data
= Number of failures per unit of time, n(k)

= Cumulative number of failures N(k)

1 2

Dl—n-n—c]
n(1);

e
iy S

1
ReSIST courseware — Karama Kanoun — Software Reliability Engineering

SOFTWARE RELIABILITY EVOLUTION

As a software is used, design faults are discovered and corrected.
Consequently, the reliability should improve, and the failure rate should
decrease BUT corrections could cause new faults

Test/Debug Useful Life Olsclescence

upgrades imply feature upgrades,
not upgrades for reliability.

Failure Rate

-

Time From “Software Reliability”,
J. Pan, Carnegie Mellon University, 1999

identify periods of reliability growth and decrease

15

SOFTWARE RELTABILTY EVOLUTION

» In the useful-life phase, software will experience a
drastic increase in failure rate each time an upgrade is made.
The failure rate levels off gradually, partly because of the defects
found and fixed after the upgrades.

» Even bug fixes may be a reason for more software failures,
If the bug fix induces other defects into software

» in the last phase, software does not have an
increasing failure rate as hardware does. In this phase,
software is approaching obsolescence; there are no
motivations for any upgrades or changes to the software.
Therefore, the failure rate will not change.

16

Sometimes redesign or reimplementation of some modules with better
engineering approaches in a new version of the product

Nomnalized Failure Rate of 15 O5 Versions

QNX 422

QNX 4.24]

0 I T
.E o | NetBSI? 1.3] O AL 4 1
g L LynxOS 2.4.0 | 5 5 @ Digital Unix 4.0
> 3 [INUX20.18| | ; @ Digital Unix 3.2
3 g | OFreeBSD 2.2.5
x et ! ! O HP-UXB.10 20
O E HP-UX A09.05 | | g O HP-UX A.09 05
0 HP-UX B.10.20] ; MIRIXE 2

FreeBsD225] |BRX=3

OLNUX2018
: E OMetBSD 13

. AlX 41 i i B QNX 424
0% 5% 1094 15%; 209 O QN 4 272
BsSunos 55
Robusthess Failure Rate BSOS 413

From “Software Reliability”, J. Pan, Carnegie Mellon University, 1999

Software Reliability models

There are basically two types of software reliability models:

1) "defect density" models
attempt to predict software reliability from design parameters
use code characteristics such as code complexity in terms of
lines of code, number of operators, nesting loops,
number of input/output, the software development process, etc

2) "software reliability growth" models
- attempts to predict software reliability from test data
- statistically correlates failure detection data with known
probability distributions

18

Defect density models

Fault density: number of faults for KLOC (thousands of lines of code)

Fault density ranges from 10 to 50 for “good” software and
from 1 to 5 after intensive testing using automated tools

[Miller 1981]
Miller E.F, et al. “Application of structural quality standards to Software”,
Softw. Eng. Standard Appl. Workshop, IEEE, 1981

Fault density:
10-200 faults / KLOC created during development

- static analysis

- proof

- model-checking
- testing

0.01-10 faults / KLOC residual in operation

PhD Program Univ. Pisa — Héiéne Waeselynck — Introduction to software testing 4

19

Software Reliability Growth Models

Based on the idea of an iterative improvement process of software.
Software is tested, the times between successive failures are
recorded, and faults are removed.

testing -> correction ->testing

Based on the assumption that the failure rate is proportional to the
number of bugs in the code.

Each time a bug Is repaired, there are fewer total bugs in the code, the
failure rate decreases as the number of faults detected (and removed)
Increases, and the total number of faults detected asymptotically
approaches a finite value.

Number
of
Defects

Concave

Test Time 20

Software Reliability Growth Models

Software failures are random events, because they are result
of two processes:

- the introduction of faults
- and then activation through selection of input values

These processes are random in nature:
- we do not know which bugs are in the software
- we do not know when inputs will activate those bugs

Software reliability growth models
are developed in general by probability distribution of failure times

21

Reliability growth characterization

continuous time reliability growth

Assume times between successive failures are modeled
by random variables T1, ..., Tn

T1, time to the first failure
Ti, i>1, time between failure i-1 and failure i

| | | | |
0 | | |

| |
1st 2nd n-th failure
failure failure

Reliability growth: Ti <=, Tk for all i<k

Prob {Ti < x} >= Prob {Tk <= x} forall i < k and for all x

v

22

Reliability growth characterization
Number of failures: the number of failures is decreasing

Cumulative number of failure law:

the number of failure events in an interval of the form [0, tk]
Is larger than the number of failure events taking place in an interval
of the same length beginning later

Random Variables N(tl1), ..., N(tn)
N(ti) = cumulative number of failures between 0 and ti

v

) N(tk)

23

RELIABILITY GROWTH MODELS

= Failure rate models
(Failure rate equations & relationship between successive failure rates)

» Deterministic, piecewise Poisson Process models: Jelinski Moranda, Musa

» Stochastic, doubly stochastic process model: Littlewood-Verrall

= Failure intensity models: succession of failures
(based on Non-Homogeneous Poisson Process (NHPP))

» Exponential model (Goel Okumoto)
» Hyperexponential model (Kanoun-Laprie)

» S-Shaped model (Yamada et al)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

24

<o

2

Jelinski Moranda model: equations

Parameters
Ny = total number of faults
@ = fault manifestation rate
»(i) = failure rate of the i-th failure

Ti = random variable: time between failures i-1 and i (observation = ti)

Relations

Mi)=® [Ng-(i-1)]=di/dt =12, ... N,

Prob. (Ti <ti) =@ (Ng - i + 1]. exp { @ (Ng - i + 1).ti}

MTTF,=_ 1 = _ 1 —
M) D [Ng-(i-1)]

N(t) = Ny [1-exp (-® t)] = number of faults detected at t

Parameters to be estimated: N, , @

ReSIST courseware — Karama Kanoun — Software Reliability Engineeting

Jelinski-Moranda model: A(t)

e= the failure rate is constant and tends to O when t tends to

No-D o | —

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

26

Measures of reliability name

Measures of reliability formula

The probability density function

f(t;) = [N — (i — 1)]e~eN-(-DIt

The software reliability function

R(t;) = e~ ?MN-(-1)4

The failure rate function

A(t) = @[N — (i —1)]

The mean time to failure function

1

MITFS) = oI — G- D)

27

Most models assume that the software failure rate will be proportional to the
number of bugs or design errors present in the system, and they do not take into
account that different kinds of errors may contribute differently to the total failure
rate. Eliminating one significant design error may double the mean time to failure,
whereas eliminating ten minor implementation errors (bugs) may have no noticeable
effect.

Even assuming that the failure rate is proportional to the number of bugs and
design errors in the system, no model considers the fact that the failure rate will then
be related to the workload of the system. For example, doubling the workload without
changing the distribution of input data to the system may double the failure rate.

Siewiorek, et al
Reliable Computer Systems, Prentice Hall,1992

28

Software Reliability Engineering

Software Reliability Engineering (SRE) Is the
guantitative study of the operational behavior of
software-based systems with respect to user
requirements concerning reliability.

29

A global software reliability analysis method

data collectio Collected data

Data Validation

Development
VEUGEU] .3
Operation

2,

Objectives

of the analysis 2,

Data related to
similar previous
projects

T~

Types of
faults

~

Impact
of failures

Validatea
data
T\

Data set partition

| \

Phase Components

P

Feedback to software
development process

. 1
Descriptive Analyses Trend Analyses

YY Y ¥ vV v ¥ Yy VvV ¥

[Descriptive Statistics Reliability Evolution][Reliability Measures]

. i

Capitalize experience ‘

Model Application

(In Karama Kanoun, ReSIST network of Excellence Courseware “Software Reliability
Engineering”, 2008 http://www.resist-noe.org/)

30

» Data collection process

- includes data relative to product itself (software size, language,
workload, ...), usage environment: verification & validation
methods and failures

- Failure reports (FR) and correction reports (CR) are generated

» Data validation process

data elaborated to eliminate FR reporting of the same failure, FR
proposing a correction related to an already existing FR, FR
signalling a false or non identified problem, incomplete FRs or
FRs containing inconsistent data (Unusable)

»Data extracted from FRs and CRs
Time to failures (or between failures)
Number of failures per unit of time
Cumulative number of failures

31

» Descriptive statistics
»make syntheses of the observed phenomena

»Analyses Fault typology, Fault density of components, Failure /
fault distribution among software components (new, modified,
reused)

»Analyses Relationships Fault density / size / complexity;
Nature of faults / components; Number of components affected by

changes made to resolve an FR .

» Trend tests
» Control the efficiency of test activities
- Reliability decrease at the beginning of a new activity: OK
- Reliability row after reliability decrese: OK
- Sudden reliability grow CAUTION!

» Model application
»Trend in accordance with model assumptions

32

Software Reliability

Due to the nature of software, no general accepted mechanisms
exist to predict software reliability

Important empirical observation and experience
Good engineering methods can largely improve software reliability
Software testing serves as a way to measure and improve software reliability

Unfeasibility of completely testing a software module:
defect-free software products cannot be assured

Databases with software failure rates are available but numbers should be
used with caution and adjusted based on observation and experience

33

