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Quantitative evaluation of Dependability
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 Faults are the cause of errors and failures. Does  the 

arrival time of faults fit a probability distribution? 

If so, what are the parameters of that distribution?

 Consider the time to failure of a system or component. 

It is not exactly predictable - random variable.

Quantitative evaluation of failure rate,  Mean Time To Failure 

(MTTF), Mean Time To Repair (MTTR),   Reliability function 

(R(t)),  Availability function (A(t)) and  Safety function (S(t))

Quantitative evaluation of Dependability 

probability theory
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Reliability - R(t)
conditional probability that the system performs correctly 

throughout the interval of time [t0, t], given that the system was 

performing correctly at the instant of time t0 

Availability - A(t) 

the probability that the system is operating correctly and is available 

to perform its functions at the instant of time t

Safety – S(t)

the probability that the system either behaves correctly or will 

discontinue its functions in a manner that causes no harm

throughout the interval of time  [t0, t], given that the system was 

performing correctly at the instant of time t0 

Quantitative definition of dependability 
attributes 
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Reliability R(t)

Failure probability Q(t)

Q(t) = 1 – R(t)

Failure probability density function f(t)
the failure density function f(t) at time t  is the number of failures in Dt

f(t) =
dt

dQ(t)

dt

- dR(t)
=

Failure rate function λ(t) 
the failure rate λ(t) at time t is defined by the number of failures during Δt in 

relation to the number of correct components at time t

l(t) =
R(t)

f(t)
=

dt

- dR(t)

R(t)

1

Definitions
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l(t) constant > 0 in the

useful life period

Constant failure rate  l 

(usually expressed in number of failures 

for million hours)

l = 1/2000

one failure every 2000 hours 

Hardware Reliability

Early life phase: there is a higher failure rate, calleld infant mortality, due to 

the failures of weaker components.  Often these infant mortalities result 

from defetct or stress introduced in the manufacturing process.

Operational life phase: the failure rate is approximately constant.

Wear-out phase:  time and use cause the failure rate to increase.  

l(t) is a function of time 

( bathtub-shaped curve )

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992

l(t)

l
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Constant failure rate  

l(t) = l 

Reliability function 

R(t) = e–lt

Probability density function

f(t) = le–lt

the exponential relation between  reliability and time is known as 

exponential failure law

Hardware Reliability

time

R(t)

l(t) =
R(t)

f(t)
=

dt

- dR(t)

R(t)

1
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Time to failure of a component  

Time to failure of a component can be modeled by  a random 

variable  X 

FX (t)  = P[X<=t ] (cumulative distribution function)

FX (t)  unreliability of the component at time t

Reliability of the component at time t is given by 

R (t) = P[X > t] = 1 – P[X <= t] = 1 – FX (t)       

R(t) is the probability of not observing any failure before time t

reliability function
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Hardware Reliability

l = 1/2000 0.0005 per hour

MTTF = 2000 time to the first failure 2000 hours 

Mean time to failure (MTTF)

is the expected time that a system will operate before the 

first failure occurs (e.g., 2000 hours)

Failure in time (FIT)
measure of failure rate in 109 device hours 

1 FIT     means 1 failure in 109 device hours
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 Commercially available databases

- Military Handbook MIL-HDBK-217F

- Telcordia, 

- PRISM User’s Manual, 

- International Eletrotechnical Commission (IEC) Standard 61508

- …

Databases used  to obtain reliability parameters in  

‘’Traditional Probabilistic Risk Assessment Methods 

for Digital Systems’’,  

U.S. Nuclear Regulatory Commission, 

NUREG/CR-6962, October 2008 

- Handbooks of failure rate data for various components are 

available from government and commercial sources.

- Reliability Data Sheet  of product

Failure Rate
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Distribution model for permanent faults

MIL-HBDK-217 (Reliability Prediction of Electronic Equipment -Department 

of Defence) is a model for chip failure. Statistics on electronic components 

failures are studied since 1965 (periodically updated).

Typical component failure rates in the range 0.01-1.0 per million hours.

Failure rate for a single chip :

l = τLτQ(C1τT τV + C2τE)

τL = learning factor, based on the maturity of the fabrication process

τQ = quality factor, based on incoming screening of components

τT = temperature factor, based on the ambient operating temperature

and the type of semiconductor process

τE = environmental factor, based on the operating environment

τV = voltage stress derating factor for CMOS devices

C1, C2 = complexity factors, based on the number of gates, or bits for

memories in the component and number of pins.

From Reliable Computer Systems.D. P. Siewiorek R.S. Swarz, Prentice Hall, 1992
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Model-based evaluation of dependability 

State space representation 

methodologies

Markov chains, Petri-nets, SANs, 

…

a model is an abstraction of the system that highlights the important

features for the objective of the study

Methodologies that employ 

combinatorial models 

Reliability Block Diagrams, Fault 

tree, ….
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Model-based evaluation of dependability 

Combinatorial methods

offer simple and intuitive methods of the construction and 

solutions of models

independent components

each component is associated a failure rate

model construction is based on the structure of the systems   

(series/parallel connections of components)  

inadequate to deal with systems that exhibits complex 

dependencies among components and repairable systems
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Combinatorial models
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Combinatorial models

If the system does not contain any redundancy, that is any 

component must function properly for the system to work, 

and if component failures are independent, then 

- the system reliability is the product of the component reliability, 

and it is exponential

- the failure rate of the system is the sum of the failure rates of the 

individual components
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Combinatorial models

(  ) =
N

i

N!

(N-i)! i!

Binomial coefficient
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Combinatorial models

If the system contain redundancy, that is a subset of components 

must function properly for the system to work, and if 

component failures are independent, then 

- the system reliability is the reliability of a series/parallel 

combinatorial model 
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Multiprocessor with 2 processors and three shared memories

-> analysis under different conditions

Series/Parallel models
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TMR

Simplex system

l failure rate of module m

Rm = e –lt

Rsimplex = e –lt

TMR system

RV(t) = 1

RTMR = S 1           

= (e –lt )3 + 3(e –lt )2 (1- e –lt )

RTMR > Rm if Rm > 0.5 

From www.google.com

V

m1

m2

m3

2 of 3

m

i=0
3

i
(e –lt )3-i (1- e –lt )i
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TMR: reliability function and mission time 

From: D. P. Siewiorek R.S. Swarz, Reliable Computer 

Systems, Prentice Hall, 1992 (pp 177)

Rsimplex = e –lt 

MTTFsimplex =

TMR system

RTMR = 3e –2lt -2e –3lt

MTTFTMR =

1

l

_

3

2l

- _2

3l

_ = 5

6l

_ >1

l

_

TMR worse than a simplex system !

TMR has a higher reliability for the 

first 6.000 hours of system life

TMR operates at or above 0.8 reliability 

66 percent longer than the simplex  system

- S shape curve is typical of redundant systems (there is the well known knee):

above the knee the redundant system has components 

that tolerate failures;  

after the knee there is a sharper decrease of the reliability

function in the redundant system  (the system has exhausted redundancy, there 

is more  hardware to fail than in the non redundant system )
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Hybrid redundancy with TMR

Symplex system 

l failure rate m

Rm = e –lt 

Rsys = e –lt 

Hybrid system

n=N+S  total number of components 

S number of spares

Let N = 3               RSDV(t) = 1

l failure rate of on line comp

l failure rate of spare comp

The first system failure occurs if 1) all the 

modules  fail; 2) all but one modules fail

RHybrid =  RSDV(1- QHybrid)

RHybrid =  (1 – ( (1-Rm)n + n(Rm)(1-Rm)n-1 ))

SDV

m1

m2

mn

...

RHybrid(n+1) – RHybrid(n) >0

adding modules increases 

the system reliability under the 

assumption RSDV
independent of n
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Figure 1. system with standby failure 

rate equal to on-line failure rate

Figure 2.  system with standby failure 

rate equal to 10% of on line failure 

rate

the TMR with one spare is more 

reliable than simplex system if 

Rm>0.23

the TMR with one spare is more 

reliable than simplex system if 

Rm>0.17

From: D. P. Siewiorek R.S. Swarz, Reliable Computer 

Systems, Prentice Hall, 1992 (pp 177)

Hybrid TMR system reliability RS vs individual module reliability Rm

Hybrid redundancy with TMR

S is the number of spares

RSDV =1

From: D. P. Siewiorek R.S. Swarz, Reliable Computer 

Systems, Prentice Hall, 1992 (pp 177)
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Fault Trees
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Fault Trees

 FT considers the combination of events that may lead to an 

unsdesirable situation of the system 

(the delivery of improper service for a Reliability study, 

catastrophic failures for a Safety study)

 Describe the scenarios of occurrence of events  at abstract level 

 Hierarchy of levels of events linked by logical operators

 The analysis of the fault tree evaluates the probability of occurrence of 

the root event, in terms of the status of the leaves (faulty/non faulty)

 Applicable both at design phase and operational phase
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Fault Trees

Describes the Top Event (status of the system) in terms of the status 

(faulty/non faulty) of the Basic events (system’s components)

G0

G3

E1 E2

G2

AND

E4

E3G4

E5

TOP EVENT

GATE SYMBOL

EVENT SYMBOL

OR

OR

OR
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Fault Trees
 Components are leaves in the tree

 Component faulty corresponds to logical value true, otherwise false

 Nodes in the tree are boolen AND, OR and k of N gates

 The system fails if the root is true

AND

OR

2 of 3

AND gate

OR gate

K of N  gate

 True if all the components are true (faulty)

 True if at least k of the components are true (two or three 

components) (faulty)

 True if at least one of the components is true (faulty)

C1 C2 C3

C1 C2 C3

C1 C2 C3
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Top event

System failure

OR

AND AND

M1 M3
M2

P1 P2

Example:
Multiprocessor with 2 processors and three shared memories

-> the computer fail if all the memories fail or all the processors fail

A cut is defined as a set of elementary events that, according  to the 

logic expressed by the FT, leads to the occurrence of the root event.

To estimate the probability of the root event, compute the probability of 

occurrence for each of the cuts and combine these probabilities
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 Example

Multiprocessor with 2 processors and three memories: M1 private memory of P1

M2 private memory of P2, M3 shared memory.

AND

AND

OR

AND

OR

Top event

system  Assume every process has its own private memory 

plus a shared memory.

 Operational condition: at least one processor is active 

and can access to its private or shared memory.

 repeat instruction:given a component C whether or 

not the component is input to more than one gate, the 

component is unique

M3 is a shared memory 

Conditioning Fault Trees

 If the same component appears more than once in a fault tree,  

it violates the independent failure assumption (conditioned fault tree)
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If a component C appears multiple times in the FT

Qs(t) = QS|C Fails(t) QC(t) + QS|C not Fails(t) (1-QC(t)) 

where 

S|C Fails is the system given that C fails

and

S|C not Fails is the system given that C has not failed

Conditioning Fault Trees
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Minimal cut sets

Cut Sets

Top =   {1}, {2} , {G1} , {5} = {1}, {2} , {3, 4} , {5} 

Minimal Cut Sets

Top = {1}, {2} , {3, 4} , {5} 

TOP

G1

AND

1 2

3 4

5

OR

A cut is defined as a set of elementary 

events  that, according  to the logic 

expressed by  the FT, leads to the 

occurrence of the root event.
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QSi(t) = probability that all components in the minimal cut set Si are 

faulty

QSi (t) = q1(t) q2(t) … qni(t)   with Si ={1, 2, …, ni }

The numerical solution of the FT is performed by computing the 

probability of occurrence for each of the cuts, and by combining 

those probabilities to estimate the probability of the root event

Minimal Cut Sets

Top = {1}, {2} , {3, 4} , {5} 

TOP

G1

AND

1 2

3 4

5

OR

independent faults of the components
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QTop (t) = QS1 (t) + …  + QSn (t) 

n number of mininal cut sets

Minimal Cut Sets

Top = {1}, {2} , {3, 4} , {5} 

TOP

G1

AND

1 2

3 4

5

OR

S1 = {1}

S2 = {2}

S3 = {3, 4}

S4 = {5}
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 Definition of the Top event

 Analysis of failure models of components 

 Minimal cut set

minimal set of events that leads to the top event 

-> critical path of the system 

Analysis:

- Failure probability of Basic events

- Failure probability of minimal cut sets

- Failure probability of Top event

- Single point of failure of the system: minimal cuts with a single event

Fault Trees
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State-based models: Markov models 

Model-based evaluation of dependability 

Characterize the state of the system at time t:

- identification of system states

- identification of transitions that govern the changes of state 

within a system

Each state represents a distinct combination of failed and working 

modules

The system goes from state to state as modules fail and repair. 

The state transitions are characterized by the probability of failure 

and the probability of repair
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Reliability/Availability  modelling

Markov model: 

graph where nodes are all the possible states and arcs are the possible 

transitions between states (labeled with a probability function) 

Each state represents a distinct combination of working and failed 

components

As time passes, the system goes from state to state as modules fails and 

are repaired

1-p
p
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Main points:

- systems with arbitrary structures  and complex   

dependencies  can be modeled

- assumption of independent failures no longer necessary

- can be used for both reliability and availability modeling

Model-based evaluation of dependability 

Markov models (a special type of random process) :

Basic assumption: the system behavior at any time 

instant depends  only on the current state

(independent of past values)
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In a general random process {Xt },  the value of the random variable 

Xt+1 may depend on the values of the previous random variables

Xt0 Xt1 ............Xt.  

Random process

Markov process
the state of a process at time t+1 depends only on the state at 

time t, and is  independent on any state before t.

Markov property: “the current state is enough to determine 
the future state”
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Markov chain

A Markov chain is a Markov process X with discrete state space S. 

We consider only homogeneous Markov chains

Discrete-time Markov chains (DTMC)

Continuous-time Markov chains (CTMC)

The probability of transition from state i to state j does not depend 

by the  time.   This probability is called pij

A Markov chain is homogeneous  if  it has steady-state transition 

probabilities:
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Discrete-time Markov model of a simplex 
system with repair

0 1

1-pf
pf

1-pr

pr

{Xt }  t=0, 1, 2, ….    S={0, 1}

- all state transitions occur at fixed intervals

- probabilities assigned to each transition

The probability of state transition depends only on the current state

Graph model
Transition Probability Matrix

State 0 : working

State 1: failed 

- Pij = probability of a transition from state i to state j

- Pij >=0

- the sum of each row must be one

1-pf
pf

pr 1- pr

P = 

current state

new state

0

0

1

1

pf

pr Repair probability

Failure probability
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Continuous-time Markov model  of a 
simplex system with repair

l failure rate, m repair rate                                    state 0: working

state 1: failed 

Graph model

Transition Matrix P

derived from the discrete time model, taking the limit as 

the time-step interval approaches zero 
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Matrix form:

Continuous-time Markov models

The set of equations can be written by inspection of a transition diagram 

without self-loops and Dt’s:

T matrix

Continuous time Markov model graph

The change in state 0 is minus the flow out of state 0 times the probability 

of being in state 0 at time t, plus the flow into state 0 from state 1 times 

the probability of being in state 1.
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Markov model making the system-failed state 

a trapping state  

Continuous-time Markov models: 
Reliability

Single system without repair

T matrix
Continuous time Markov model graph

lDt = state transition probability

l = failure rate

T matrix can be built by 

inspection



42

X random process that represents the  number of operational memories and the 

number of  operational processors at time t

Given a state (i, j): 

i is the number of operational memories; 

j is the number of operational processors

An example of modeling (CTMC)

lm failure rate for memory

lp failure rate for processor

Multiprocessor system with  2 processors and 3 shared memories system.

System is operational if at least one processor and  one memory are 

operational.

S = {(3,2), (3,1), (3,0), (2,2), (2,1), (2,0), (1,2), (1,1), (1,0), (0,2), (0,1)}
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(3, 2) -> (2,2)  failure of one memory

(3,0), (2,0), (1,0), (0,2), (0,1)  are absorbent states

lm failure rate for memory

lp failure rate for processor

Reliability modeling
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 Assume that faulty components are replaced and we evaluate the 

probability that the system is operational at time t

 Constant repair rate m (number of expected repairs in a unit of time)

 Strategy of repair:

only one processor or one memory at a time can be substituted

 The behaviour of components (with respect of being operational or failed) 

is not independent:  it depends on whether or not other components are 

in a failure state.  

Availability modeling
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 Strategy of repair:

only one component can be substituted at a time

lm failure rate for memory

lp failure rate for processor

mm repair rate for memory 

mp repair rate for processor
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 An alternative strategy of repair:

only one component can be substituted at a time  and processors have  

higher priority

 exclude the lines mm representing memory repair in the case where there 

has been a process failure
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Transient analysis

p(t) = [p0
(t), p1

(t), p2
(t) , …] state occupancy vector

State occupacy vector

pj
(t)

prob of being in state j at time t

Steady-state behaviour

prob of being in state j at time t

Many solution methods exist
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Moebius tool

Instructions to obtain the Moebius tool:

1. visit http://www.mobius.illinois.edu/ .

2. Click "Login" in the menu bar.

3. In the login page, click "Create an account".

4. Follow instructions to obtain a license. IN PARTICULAR:

a) use an unipi.it email address if possible (not commercial

addresses like gmail);

b) in a comment field, say that you attend a course on the Mobius

tool held by Cinzia Bernardeschi (owner of an academic licence).

5. Within 48 hours, you should receive a confirmation letter with the

link to download the tool.

6. Versions are available for Ubuntu Linux, Mac OSX, and Windows,

either 32 or 64 bit.


