
Advanced Data Types and

New Applications

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 24), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Temporal Databases

1.3

Time In Databases

 Databases model the current state of the world, reality at the current time.

 Temporal databases model the states of the real world across time.

 In many applications it is important to store and retrieve information about
past states (patient data base: medical history of a patient, factory
monitoring system: past and current reading from sensors)

 Databases that store information about states of the real world across
time are called temporal databases.

 Facts in temporal relations have associated times

 Valid time: denotes the time period during which a fact is true with
respect to the real world

 The transaction time for a fact is the time interval during which the fact
is stored within the database system.

 In a temporal relation, each tuple has an associated time when it is
true; the time may be either valid time or transaction time.

 A bi-temporal relation stores both valid and transaction time.

1.4

We record not only changes in what happened at different times, but also

changes in what was officially recorded at different times.

 Only the transaction time is system dependent and is generated by

the database system.

Oracle, DB2, ..

1.5

Time In Databases (Cont.)

 Example of a temporal relation:

 A tuple has only one time interval. A tuple is represented once for every

disjoint time interval in which it is true.

 * in the to column means the tuple is true until the time in the column is

changed

 Temporal query languages have been proposed to simplify modeling of time

as well as time related queries.

1.6

Account table

Account-number branch-name balance

A-101 Downtown 100

B-215 Mianus 700

1.7

BiTemporal Account table

Account- branch-name

number

balance VT_from VT_to TT_from TT_to

A-101 Downtown 500 1999/1/1 1999/1/24 1999/1/1 1999/2/1

A-101 Downtown 100 1999/1/25

* 1999/3/1 *

A-215 Mianus 700 2000/6/2 2000/8/8 2000/6/5 2000/8/2

A-215 Mianus 900 2000/8/8

2000/9/5 2000/8/2

2000/9/5

A-215 Mianus 700 2000/9/5 * 2000/9/9

*

1.8

 Suppose we consider our sample bank database to be bi-temporal.

Only the concept of valid time allows the system to answer queries

such as - “What was Smith’s balance two days ago?”.

 On the other hand, queries such as - “What did we record as Smith’s

balance two days ago?” can be answered based on the transaction

time.

 The difference between the two times is important. For example,

suppose, three days ago the teller made a mistake in entering Smith’s

balance and corrected the error only yesterday. This error means that

there is a difference between the results of the two queries (if both of

them are executed today).

1.9

Time Specification in SQL-92

 date: four digits for the year (1--9999), two digits for the month (1--12),

and two digits for the date (1--31).

 time: two digits for the hour, two digits for the minute, and two digits

for the second, plus optional fractional digits.

 timestamp: the fields of date and time, with six fractional digits for the

seconds field.

 Times are specified in the Universal Coordinated Time, abbreviated

UTC (from the French); supports time with time zone (time as local

time plus the offset of the local time from UTC).

 interval: refers to a period of time (e.g., 2 days and 5 hours), without

specifying a particular time when this period starts; could more

accurately be termed a span.

1.10

Temporal Query Languages

 Predicates on time intervals

 precedes, overlaps, and contains.

 Intersect can be applied on two intervals, to give a single (possibly

empty) interval;

 the union of two intervals may or may not be a single interval.

 A snapshot of a temporal relation at time t consists of the tuples that

are valid at time t, with the time-interval attributes projected out.

 Temporal selection: involves time attributes

 Temporal projection: the tuples in the projection inherit their time-

intervals from the tuples in the original relation.

 Temporal join: the time-interval of a tuple in the result is the

intersection of the time-intervals of the tuples from which it is derived.

If intersection is empty, tuple is discarded from join.

1.11

VT_from VT_to

VT_from VT_to
1999/1/1

1990/1/1 1990/1/21
* A-101

A-101

Temporal join

A-101 not belongs to the output

A-215

A-215

…. ….

A-215

A-215
A-215

1.12

Temporal Query Languages (Cont.)

 Functional dependencies must be used with care: adding a time field

may invalidate functional dependency

 A temporal functional dependency x  Y holds on a relation

schema R if, all snapshots of r satisfy the

functional dependency X Y.

 SQL:1999 Part 7 (SQL/Temporal) is a proposed extension to

SQL:1999 to improve support of temporal data.



Spatial and Geographic Data

1.14

Spatial Databases

 Spatial databases store information related to spatial locations, and
support efficient storage, indexing and querying of spatial data.

 Special purpose index structures are important for accessing spatial
data, and for processing spatial join queries.

 Computer Aided Design (CAD) databases store design information
about how objects are constructed

 E.g.: designs of buildings, aircraft, layouts of integrated-circuits

 Geographic databases store geographic information (e.g., maps).
Database for geographic information systems (GIS).

(INITIALLY store & retrieve data as files in the file system)

(Ability to store and query large amount of data efficiently)

1.15

Represented of Geometric Information

 Various geometric constructs can be represented in a database in a normalized

fashion.

 Represent a line segment by the coordinates of its endpoints.

 Approximate a curve by partitioning it into a sequence of segments

 Create a list of vertices in order, or

 Represent each segment as a separate tuple that also carries with it the

identifier of the curve (2D features such as roads).

 Closed polygons

 List of vertices in order, starting vertex is the same as the ending vertex, or

 Represent boundary edges as separate tuples, with each containing

identifier of the polygon, or

 Use triangulation — divide polygon into triangles

 Note the polygon identifier with each of its triangles.

1.16

Representation of Geometric Constructs

1.17

Representation of Geometric Information (Cont.)

 Representation of points and line segment in 3-D similar to 2-D, except

that points have an extra z component

 Represent arbitrary polyhedra by dividing them into tetrahedrons, like

triangulating polygons.

 Alternative: ……

1.18

Design Databases

 Represent design components as objects (generally geometric objects);

the connections between the objects indicate how the design is

structured.

 Simple two-dimensional objects: points, lines, triangles, rectangles,

polygons.

 Complex two-dimensional objects: formed from simple objects via union,

intersection, and difference operations.

 Complex three-dimensional objects: formed from simpler objects such as

spheres, cylinders, and cuboids, by union, intersection, and difference

operations.

 Wireframe models represent three-dimensional surfaces as a set of

simpler objects.

Wireframing is one of the method of geometric modelling system. A

wireframe model represents shape of solid object by its characteristics

links and points

1.19

Representation of Geometric Constructs

 Design databases also store non-spatial information about objects (e.g.,
construction material, color, etc.)

 Spatial integrity constraints are important.

 E.g., pipes should not intersect, wires should not be too close to
each other, etc.

(a) Difference of cylinders (b) Union of cylinders

Geographic Data

1.21

Applications of Geographic Data

 Geographic data
Examples of geographic data

 map data for vehicle navigation

 distribution network information for power, telephones,
water supply, and sewage

 Vehicle navigation systems store information about roads and
services for the use of drivers:

 Spatial data: e.g, road/restaurant/gas-station coordinates

 Non-spatial data: e.g., one-way streets, speed limits, traffic
congestion

 Global Positioning System (GPS) unit - utilizes information
broadcast from GPS satellites to find the current location of user
with an accuracy of tens of meters.

 increasingly used in vehicle navigation systems as well as
utility maintenance applications.

1.22

A geographic information system (GIS) is a system designed to capture, store,

manipulate, analyze, manage, and present all types of geographic information

for decision making

In developing a digital topographic data base for a GIS, topographical maps are

the main source, and aerial photography and satellite images are extra sources

 for collecting data and identifying attributes which can be mapped in layers.

GIS applications are tools that allow users to create interactive queries

(user-created searches), analyze spatial information, edit data in maps,

and present the results of all these operations.

Geographic Information System

http://it.wikipedia.org/wiki/File:GvSIG_-_GIS.jpg
http://en.wikipedia.org/wiki/Georeference
http://en.wikipedia.org/wiki/Decision_making
http://en.wikipedia.org/wiki/Decision_making
http://en.wikipedia.org/wiki/Decision_making
http://en.wikipedia.org/wiki/Aerial_photography
http://en.wikipedia.org/wiki/Aerial_photography
http://en.wikipedia.org/wiki/Aerial_photography
http://en.wikipedia.org/wiki/GIS_applications

1.23

 Each point is an earthquake area

 Each point is a record in tha table with different attributes:

 - earthquake deph

 - earthquake magnitude

 - some attributes that denote properties of the object: colour, shape, symbol

 Sometimes table analysis not allow to find correlations
 between phisycal phenomena

Example

Geographical

distribution of

earthquakes

1.24

There are two broad methods used to store data in a GIS :

raster images and vectors.

GIS organize information in individual

data themes that describe the

distribution of a phenomenon across

a geographic extent.

This organizing principle of geographic

layers became one of the universal

GIS principles that provided the

foundation for how GIS systems

represent, operate on, manage, and

apply geographic information.

Thematic layers

http://en.wikipedia.org/wiki/Raster_images

1.25

Geographic Data

 Raster data consist of bit maps or pixel maps, in two or more

dimensions.

 Example 2-D raster image: satellite image of cloud cover,

where each pixel stores the cloud visibility in a particular area.

 Additional dimensions might include the temperature at

different altitudes at different regions, or measurements taken

at different points in time.

 Design databases generally do not store raster data.

1.26

Raster data
 a matrix of cells (or pixels) organized into rows and columns (a grid), as shown

in the graphic below, where each cell contains a value representing information
of the geographic feature at the cell location, such as land-use.

Raster image: digital aerial photographs, imagery from satellites,

digital pictures, or even scanned maps.

1.27

There is a row for each distinct value in the data set.

A column contains the count of the number of cells with each value.

This table may also have a column that provides a textual description of each of the

values in the data set.

There are three default fields created in the table:

- ObjectID (OID) is a unique system-defined object identifier number for each row

- VALUE is a value in the raster data set.

- COUNT represents the number of cells in the raster data set with the cell value in

the VALUE column.

Cell values represented by NoData are not in the raster attribute table.

Raster attribute table
Raster data set

1.28

1.29

 The cell size determines how coarse or fine the patterns or features in the
raster will appear. The smaller the cell size, the smoother or more detailed the
raster will be. However, the greater the number of cells, the longer it will take to
process, and it will increase the demand for storage space. If a cell size is too
large, information may be lost or subtle patterns may be obscured.

1.30

Geographic Data (Cont.)

 Vector data are constructed from basic geometric objects: points,

line segments, triangles, and other polygons in two dimensions, and

cylinders, spheres, cuboids, and other polyhedrons in three

dimensions.

 Vector format are often used to represent map data.

 Roads can be considered as two-dimensional and represented

by lines and curves (multiple line segments).

 Some features, such as rivers, may be represented either as

complex curves or as complex polygons, depending on whether

their width is relevant.

 Features such as regions and lakes can be depicted as

polygons.

 Topological information , such as height, may be represented

by a surface divided into polygons covering regions of

equal height (a height value associated with each polygon)

1.31

Vector data

 Point

Each point is stored by its location (X, Y) together with the table
attribute of this point. For example, 4 points below have their
coordinate location in (X, Y) and each point has attributes of deep
and amount of water contamination.

1.32

 Line

Each line is stored by the sequence of first and last point together
with the associated table attribute of this line. For example, three
lines below (a, b and c) have their first and last node to
distinguish their location and each line has attributes of flow and
capacity of the sewerage pipe. Notice that each node has
coordinate (X, Y) that is stored in another table.

1.33

 Polygon

Polygon is represented by a closed sequence of lines. Unlike line or poly-line
(sequence of line), polygon always closed. That is, the first point is equal to the
last point. A polygon can be represented by a sequence of nodes where the
last node is equal to the first node. For example, polygon A below has its first
and last node in node number 1 to settle its location. Aside from location
attributes, the polygon has associated attributes of area and population.

 Notice that each node has coordinate (X, Y) that is stored in another table.

1.34

Spatial Queries

A number of types of query involve spatial locations

 Nearness queries request objects that lie near a specified location.
Find all restaurants that lie within a given distance

 Nearest neighbor queries, given a point or an object, find the
nearest object that satisfies given conditions.
The nearest gasoline station

 Region queries deal with spatial regions. e.g., ask for objects that
lie partially or fully inside a specified region.
All markets within the boundaries of a given town.

 Queries that compute intersections or unions of regions.
All regions with a low annual rainfall and a high population density.
They use

 Spatial join of two spatial relations with the location playing the
role of join attribute (one relation representing rainfall, the other
relation population density).

1.35

Spatial Queries (Cont.)

 Spatial data is typically queried using a graphical query language;

results are also displayed in a graphical manner.

 Graphical interface constitutes the front-end

 Extensions of SQL with abstract data types, such as lines,

polygons and bit maps, have been proposed to interface with back-

end.

 allows relational databases to store and retrieve spatial

information

 Queries can use spatial conditions (e.g. contains or overlaps).

 queries can mix spatial and nonspatial conditions

(the nearest restaurant that has vegetarian selection and that

charges less than $10 for a meal)

1.36

 Indices are required for efficient access to spatial

data.

 Queries often access data in a region of the space

 The problem is: how the space can be partitioned

into regions such that all records in the region can

be stored in a block?

Traditional index structures such as hash indices and B-trees are not

suitable, since they deal only with one-dimensional data, where spatial

data are typically of two or more dimensions

1.37

Indexing of Spatial Data

 k-d tree - early structure used for indexing in multiple dimensions

(balanced binary tree).

 Each level of a k-d tree partitions the space into two.

 choose one dimension for partitioning at the root level of the tree.

 choose another dimensions for partitioning in nodes at the next level

and so on, cycling through the dimensions.

 In each node, approximately half of the points stored in the sub-tree

fall on one side and half on the other.

 Partitioning stops when a node has less than a given maximum number

of points.

 The k-d-B tree extends the k-d tree to allow multiple child nodes for

each internal node; well-suited for secondary storage.

1.38

Division of Space by a k-d Tree

 Each line in the figure (other than the outside box) corresponds to a node
in the k-d tree

 the maximum number of points in a leaf node has been set to 1.

 The numbering of the lines in the figure indicates the level of the tree at
which the corresponding node appears.

 K-d-B tree extends the number of children (to reduce the high of the tree)
of internal nodes

Cities

(Name, Latitude, Longitude)

A … …

B … …

C … …

D … …

E … …

F … …

G … …

H … …

A
B

C

D E
F

G H

1.39

Division of Space by a k-d Tree

A
B

C

D E
F

G H

1

2 2

3 3 3 3

A B D E C F G H

Latitude

Latitude

Longitude

• number of cities

in a block set to 1

• half of the

cities

on one side

and

half on the

other

1.40

Division of Space by a k-d Tree

A
B

C

D E
F

G H

1

2 2

A,B D,E G,H C,F

Latitude

Longitude

• number of cities

in a block set to 2

• half of the

cities

on one side

and

half on the

other

Block

Cities located in the same region are stored in the same block

1.41

Division of Space by Quadtrees

Quadtrees

 Each node of a quadtree is associated with a rectangular region of space; the top
node is associated with the entire target space.

 Each non-leaf nodes divides its region into four equal sized quadrants

 correspondingly each such node has four child nodes corresponding to the four
quadrants and so on

 Leaf nodes have between zero and some fixed maximum number of points (set to 1
in example).

This type of quadtree is called
Point Region quadtree (PR quadtree)

B

C

D

E

F

G H

A

PR quadtree: stores points; space is divided
based on regions, rather than on the actual set
of points stored (four equal sized quadrants).

1.42

PR quadtree

B

C

D

E

F

G
H

A NO NE

SO SE

quadrants are named

according to the geographycal

position and are listed in the

order NE, NO, SO and SE

SO
NE

SE NO

SO
NE

SE NO
SO

NE
SE NO SO

NE
SE NO

SO
NE

SE NO
SO

NE
SE NO

A

B C

D E F

G H

PR quadtree

1.43

Quadtrees (Cont.)

 Region quadtrees store raster information.

 A node is a leaf node if all the values in the cells that it covers are
the same. Otherwise, it is subdivided further into four children of
equal area, and is therefore an internal node.

 Each node corresponds to a matrix of cells.

 The matrix corresponding to leaves either contain just a single
element (cell), or have multiple elements (cells), all of which have
the same value.

We can use Region quadtree to store raster information

1.44

Raster data

< to be done>

1.45

Quadtrees (Cont.)

 Indexing of line segments and polygons presents new problems

 Extensions of k-d trees and PR quadtrees have been proposed to
index line segments and polygons

 However, a line segment or polygon may cross a partitioning line

 This requires splitting segments/polygons into pieces at
partitioning boundaries and they must be represented in each of
the sub-trees in which its pieces occur.

 Same segment/polygon may be represented at several leaf
nodes-> inefficiencies in storage and inefficiencies in queries

1.46

R-Trees
Indexing of objects such as line segments, rectangles, and other polygons

 R-trees (Rectangle-trees) are a N-dimensional extension of B+-trees.

 Basic idea: generalize the notion of a one-dimensional interval

associated with each B+ -tree node to an

N-dimensional interval, that is, an N-dimensional rectangle.

 Balanced tree structure with indexed objects in leaf nodes.

 The storage efficiency of R-trees is better than that of k-d trees or

quadtrees since a polygon is stored only once

 Will consider only the two-dimensional case (N = 2)

 generalization for N > 2 is straightforward,

although R-trees work well only for relatively small N

Example

of B+-tree

 file

1.47

R Trees (Cont.)

 A rectangular bounding box is associated with each tree node.

 Bounding box of a leaf node is a minimum sized rectangle parallel

to the axes that contains all objects (lines, rectangles, polygons)

associated with the leaf node.

 The bounding box associated with a non-leaf node is the smallest

rectangle parallel to the axes that contains the bounding box

associated with all its children.

 Bounding box of a node serves as its key in its parent node (if any)

 Bounding boxes of children of a node are allowed to overlap

 A polygon is stored only in one node, and the bounding box of the

node must contain the polygon

1.48

Example R-Tree
 A set of rectangles (solid line) and the bounding boxes (dashed line)

 of the nodes of an R-tree for a set of rectangles.

The R-tree is shown on the right.

leaf nodes

Bounding boxes are shown with extra space inside them, to make them stand out

We shall see how to implement search, insert and delete operations on an R-tree

If indexed objects are not rectangles, we can store bounding boxes of objects in

leaves. This helps to speed up checks for overlaps in a query.

1.49

Queries

 Point queries

 select * from …
 where latitude = …. AND longitude = ….

 Region queries

 select * from …
 where v1 <= latitude <= v2 AND w1 <= longitude <= w2

 Nearest-neighbor queries

 nearest point to a specific location

 Partial match queries

 select * from …
 where v1 <= latitude <= v2

1.50

Search in R-Trees

A search for objects containing a point has to follow all child nodes

whose associated bounding boxes contain the point.

 To find data items (rectangles/polygons) intersecting (overlaps) a

given query object (point/region), do the following, starting from the

root node:

 If the node is a leaf node, output the data items whose keys

intersect the given query object (point/region).

 Else, for each child of the current node whose bounding box

overlaps the query object (point/region), recursively search the

child

 Can be very inefficient in worst case since multiple paths may need

to be searched

 but works acceptably in practice.

1.51

Insertion in R-Trees

 To insert a data item (single traversal down from the root):

 Find a leaf to store it, and add it to the leaf

 To find leaf, follow a child (if any) whose bounding box
contains bounding box of data item

– At each internal node, we may find multiple children whose
bounding boxes contain the bounding box of the object

– The R-tree algorithm chooses one of them arbitrarily

 In none of the children satisfy this condition, chooses a child
whose overlap with data item bounding box is maximum for
continuing the traversal of the tree

 Once the leaf node has been reached, if the node is already full,
the algorithm performs node splitting

1.52

Insertion in R-Trees

 Handle overflows by splitting and propagates splitting upwards if
required (as in B+ -trees)

 The R-tree insertion ensures that the tree remains balanced

 Adjust bounding boxes such that they remain consistent:
bounding boxes of leaves contains all the bounding boxes of the
objects stored at the leaf;
bounding boxes of internal nodes contain all bounding boxes of
the children nodes

The main difference with B+-tree is in how the node is split:

in B+-tree it is possible to find a value such that half entries are less and
half entries are greater than the value.

in two dimensions, it is not always possible to split the entries into two
sets so that their bounding boxes do not overlap

1.53

Split procedure

 Split procedure:

 Goal: divide the set S of entries of an overfull node into two sets
S1 and S2 such that the bounding boxes of S1 and S2 have
minimum total area. This is a heuristic.

 Alternative: divide the set S of entries of an overfull node into two
sets S1 and S2 such that the bounding boxes of S1 and S2 have
the minimum overlap

 Finding the “best” split (minimum total area or minimum overlap) is
expensive

 Cheaper heuristics such as quadratic split are used

1.54

Splitting an R-Tree Node

 Quadratic split divides the entries in a node as follows

1. Find pair of entries in S with “maximum separation”

 that is, the pair such that the bounding box of the two would

has the maximum wasted space (area of bounding box – sum

of areas of two entries)

2. Place these entries in the two new sets S1 and S2, respectively

3. Then to add the remaining entries: repeatedly find the entry with

“maximum preference” for one of the two new sets, and assign the

entry to that set.

For each entry e, let e1 be the increase in size of the bounding box

of S1 and e2 the increase in size of the bounding box of S2 if e is

added to S1 or S2; choose one of the entries with maximum

difference of e1 and e2 and add it to S1 if e1 is less than e2

4. Stop when half the entries have been added to one set

 Then assign remaining entries to the other set

 Nodes are constructed from S1 and S2

1.55

R-Trees

 Deletion of an entry in an R-tree done much like a B+-tree deletion.

 In case of underfull node, borrow entries from a sibling if possible,

else merging sibling nodes

 Alternative approach removes all entries from the underfull node,

deletes the node, then reinserts all entries

 Each node at least half full.

R-trees are supported in many modern database systems, along with

variants like R+ -trees and R*-trees

Deleting in R-Trees

