Information Systems Master of Science in Computer Engineering _____ _____

January 14, 2015

Exercise 1 (9 points)

Let's consider the following relational schema of a Library:

AUTHOR(authID, AuthName, Nationality, Age) TITLE(titleID, title, Cathegory, Language, Year) REL_TITLE_AUTHOR(titleID, authID)

Primary keys are underlined. Moreover, titleID in REL_TITLE_AUTHOR is foreign key of TITLE and authID in REL_TITLE_AUTHOR is foreign key of AUTHOR. There is a many to many relations between TITLE and AUTHOR.

Assume that: $N_{AUTHOR} = 400.000$ $N_{TITLE} = 100.000$ $N_{REL_TITLE_AUTHOR} = 600.000$

V(titleID, REL_TITLE_AUTHOR) = 100.000 V(authID, REL TITLE AUTHOR) = 400.000V(Year, TITLE) = 20V(Nationality, AUTHOR) = 5

Given the query:

Title of books published in the year "YYY" by at least one author whose nationality is "XXX".

- 1) express the query as a relational-algebra expression;
- 2) show the basic steps of the query optimization process in terms of relational-algebra expression transformations
- 3) give an efficient strategy for computing the query.

Exercise 2 (6 points)

Consider the following schedule of concurrent transactions:

S:r1(z) r2(y) w3(x) w3(y) r1(y) w2(x) r3(z) w1(x)

1) Show if it is conflict serializable (CSR) or view serializable (VSR). Explain why. If serializable, show equivalent serial schedules.

2) Apply the rigorous two-phase locking protocol to the schedule. Is the schedule accepted?

3) Apply the timestamp-ordering protocol to the schedule, assuming that aborted transactions are immediately restarted. Is the schedule accepted?

Exercise 3 (6 points)

Consider an empty B+-tree with m=5.

1) Show the B+-tree after the insertion of the following values of the search key: 2 26 13 10 18 5 9 55 45 27

2) Show the form of the B+-tree after each operation of the sequence: Insert 20; Insert 25; Insert 19; Insert 22; Delete 10

Exercise 4 (9 points)

Let $r=(A,B,C)$, with A a key.	
Assume	
nr = 100.000	number of records in the relation
Lr = 50 byte	size of a record (fixed length records)
LA = 10 byte	size of attribute A
Lp = 4 byte	size of a pointer
Lb = 1024 byte	size of a block
Sequential file organization on search-key A. We assume that blocks are not chained.	

1. Show the number of blocks of a static multilevel index on search-key A.

2. Outline the steps in answering the following queries, showing **the best strategy** and **the cost** in terms of number of block transfers from disk:

1) select * from r where A=xxx;

2) select * from r where 50.000 <= A < 70.000; assuming A uniformly distributed on the interval [1; 200.000]

3) select * from R where B=xxx;