
Exercise 1

Consider the following schedule. Show if it is conflict serializable (CSR) or view serializable (VSR).

Explain why. If serializable, show equivalent serial schedules.

S: r1(x) r4(y) w1(z) r4(z) w2(y) r3(y) w1(x) w2(x) w3(z) w4(x) w3(x)

Solution

x: r1(x) w1(x) w2(x) w4(x) w3(x) Precedence constraints : t1<t2 and t1 < t4 and t1 < t3

y: r4(y) w2(y) r3(y) Precedence constraints : t4 < t2 and t2 < t3

z: w1(z) r4(z) w3(z) Precedence constraints : t1< t4 and t1 < t3 and t4 < t3

 Precedence graph for schedule S

S is not CSR. Cycle in the precedence graph for S: t2<t4<t2

Note that : w1(x), w2(x) and w4(x) are blind write on data item X.

S is VSR. S is View equivalent to the serial achedule S’ = t1 t4 t2 t3

Each read() instruction reads in both S and S’ the value written by the same transaction.

Each data item has the same final write.

Exercise 2
Consider the following schedule, where each transaction is assumed to commit.

S: r1(y) r3(y) r1(x) w2(x) r2(y) w3(x) w2(y)

1) Show if it is conflict serializable (CSR) or view serializable (VSR). Explain why. If serializable, show

equivalent serial schedules.

2) Apply the rigorous two-phase locking protocol to the schedule. Is the schedule accepted?

3) Apply the timestamp-ordering protocol to the schedule, assuming that aborted transactions are

immediately restarted. Is the schedule accepted?

Solution

Point 1)

x: r1(x) w2(x) w3(x) Precedence constraints: t1 < t2, t1<t3, t2< t3

y: r1(y) r3(y) r2(y) w2(y) Precedence constraints : t1 < t2 and t3 < t2

t1 t2

t3
t4

cycle

 Precedence graph for S

S is not CSR. Cycle in the precedence graph for S: t2<t3<t2

S is not VSR.

Consider the rule for final write() instructions : x : t2 < t3

Considere the rule for read() instructions y : t3 < t2

Point 2) rigorous 2PL

T1: lock_S(y) ok

T3: lock_S(y) ok

T1: lock_S(x) ok

T1: unlock()

T2: lock_X(x) ok

T2: lock_S(y) ok

T3: lock_X(x) T3 waits for T2

T2: lock_X(y) T2 waits for T3

Deadlock state.

The schedule is not accepted because there exists a transaction that is made to wait.

Point 3) Timestamp-ordering protocol

x: RTS=0 WTS=0 y: RTS=0 WTS=0

r1(y) x: RTS=0 WTS=0 y: RTS=1 WTS=0

r3(y) x: RTS=0 WTS=0 y: RTS=3 WTS=0

r1(x) x: RTS=1 WTS=0 y: RTS=3 WTS=0

w2(x) x: RTS=1 WTS=2 y: RTS=3 WTS=0

r2(y) x: RTS=1 WTS=2 y: RTS=3 WTS=0

w3(x) x: RTS=1 WTS=3 y: RTS=3 WTS=0

w2(y) TS(T2) < RTS(y) T2 is aborted and restarted as T4

w4(x) x: RTS=1 WTS=4 y: RTS=3 WTS=0

r4(y) x: RTS=1 WTS=4 y: RTS=4 WTS=0

w4(y) x: RTS=1 WTS=4 y: RTS=4 WTS=4

The schedule is not accepted because a transaction is aborted.

t1 t2

t3

cycle

Serializability, VSR, CSR, 2PL and TS concepts

S: r1(x) w1(x) r2(x) w2(x)

S1: r2(x) w2(x) r1(x) w1(x)

S2: w2(x) r3(x) r1(y) w2(y) w4(y) w5(y)

 S2 is not 2PL

 t2: lock_X(x) ok

 t3: lock_S(x) t3 is made to wait

 r3(x) could be executed if transaction t2 unlocked x before t3 reads x.

 Since t2 also writes y, lock_X(y) must be executed before unlock(x) (2PL rule).

 On the other hand, if t2 is holding lock_X(y), t1 can not read data item y

 before t2 writes y (t1 holds a shared lock on y when r1(y) is executed)

 2PL Serilizable
VSR CSR

 . S1

TS
 . S

 . S2

