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Quantitative evaluation of Dependability
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➢ Faults are the cause of errors and failures. Does  the 

arrival time of faults fit a probability distribution? 

If so, what are the parameters of that distribution?

➢ Consider the time to failure of a system or component. 

It is not exactly predictable - random variable.

Quantitative evaluation of failure rate,  Mean Time To Failure 

(MTTF), Mean Time To Repair (MTTR),   Reliability function 

(R(t)),  Availability function (A(t)) and  Safety function (S(t))

Quantitative evaluation of Dependability 

probability theory
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Random variable

a random variable X is a function from a sample space (Ω)

to reals numbers 

Let us consider the random experiment of tossing a die. 

Let X  be the random variable defined as the face you obtain 

Sample space Ω : faces of the die  (1, 2, 3, 4, 5, 6)

Real numbers S: 1, 2, 3, 4, 5, 6

Any element in the sample space Ω  has a well defined probability 

distribution.

The probability assigned to each output of the experiment is 1/6.

If the set of values the variable can assume  (S)  is finite  then 

X is a discrete  random variable

Random variable
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We define the  probability distribution function of  a discrete random 

variable: a mapping of all possible values of the random variable (S)  to their

corresponfing probabilities for the given sample space Ω

f(x) = P(X=x) 

1/6   for all i=1, …, 6 P(X=1)=1/6

f(x) = P(X=2)=1/6 

0       otherwise …….

An order relation can be defined on L. The probability of the  following sets 

can be computed:

P{X <= x}  for x in S

We define the cumulative distribution function of  X

F(x ) = P {X <= x}

F is a non-decreasing function, if x1 <= x2 , then F(x1) <= F(x2)

F(3) = P{X<=3} = P{X=1}+P{X=2}+P{X=3} = 1/6 +1/6+1/6 =1/2

Random variable
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Let us consider the random experiment of the measuring the temperature in 

a region. 

Let X  be the random variable defined as the temperature you obtain. 

Sample space Ω : Real numbers

Real numbers S: Real numbers

Random variable

By definition, the probability of any real number is zero. The random variable 

can be infinitely divided into smaller parts such that the probability of 

selecting a real integer value x is zero. 

P(X=x)  = 0

Probability is compiuted as:

P(X <=x)       P(X>=x)           P(x1 <= x <= x2)
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Random variable

probability that a given output will occur at a given point

An example of probability density function :

We define the probability density function: 

Cumulative distribution function for a continuos random variable: 

which is the same as

The probability density function can be computed by the cumulative 

distribution function if the derivative exists:
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Reliability - R(t)
conditional probability that the system performs correctly 

throughout the interval of time [t0, t], given that the system was 

performing correctly at the instant of time t0 

Availability - A(t) 

the probability that the system is operating correctly and is available 

to perform its functions at the instant of time t

Safety – S(t)

the probability that the system either behaves correctly or will 

discontinue its functions in a manner that causes no harm

throughout the interval of time  [t0, t], given that the system was 

performing correctly at the instant of time t0 

Quantitative definition of dependability 
attributes 
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Reliability R(t)

Failure probability Q(t)

Q(t) = 1 – R(t)

Failure probability density function f(t)
the failure density function f(t) at time t  is the number of failures in Dt

f(t) =
dt

dQ(t)

dt

- dR(t)
=

Failure rate function λ(t) 
the failure rate λ(t) at time t is defined by the number of failures during Δt in 

relation to the number of correct components at time t

l(t) =
R(t)

f(t)
=

dt

- dR(t)

R(t)

1

Definitions
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l(t) constant > 0 in the

useful life period

Constant failure rate  l 

(usually expressed in number of failures 

for million hours)

l = 1/2000

one failure every 2000 hours 

Hardware Reliability

Early life phase: there is a higher failure rate, calleld infant mortality, due to 

the failures of weaker components.  Often these infant mortalities result 

from defetct or stress introduced in the manufacturing process.

Operational life phase: the failure rate is approximately constant.

Wear-out phase:  time and use cause the failure rate to increase.  

l(t) is a function of time 

( bathtub-shaped curve )

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992

l(t)

l



10

Constant failure rate  

l(t) = l 

Reliability function 

R(t) = e–lt

Probability density function

f(t) = le–lt

the exponential relation between  reliability and time is known as 

exponential failure law

Hardware Reliability

time

R(t)
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Time to failure of a component  
Time to failure of a component can be modeled by  a random variable  X 

fX (t)   probability density function   P[X=t ]    (X discrete)

FX (t)  cumulative distribution function   P[X<=t ]

Unreliability of the component at time t is given by 

Q (t) = P[X <= t] = FX (t)

Reliability of the component at time t is given by 

R (t) = P[X > t] = 1 – P[X <= t] = 1 –FX (t)       reliability function

R(t) is the probability of not observing any failure before time t
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Hardware Reliability

l = 1/2000 0.0005 per hour

MTTF = 2000 time to the first failure 2000 hours 

Mean time to failure (MTTF)

is the expected time that a system will operate before the 

first failure occurs (e.g., 2000 hours)

Failure in time (FIT)
measure of failure rate in 109 device hours 

1 FIT     means 1 failure in 109 device hours
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➢ Commercially available databases

- Military Handbook MIL-HDBK-217F

- Telcordia, 

- PRISM User’s Manual, 

- International Eletrotechnical Commission (IEC) Standard 61508

- …

Databases used  to obtain reliability parameters in  

‘’Traditional Probabilistic Risk Assessment Methods

for Digital Systems’’,  

U.S. Nuclear Regulatory Commission, 

NUREG/CR-6962, October 2008 

- Handbooks of failure rate data for various components are 

available from government and commercial sources.

- Reliability Data Sheet  of product

Failure Rate
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Distribution model for permanent faults

MIL-HBDK-217 (Reliability Prediction of Electronic Equipment -Department 

of Defence) is a model for chip failure. Statistics on electronic components 

failures are studied since 1965 (periodically updated).

Typical component failure rates in the range 0.01-1.0 per million hours.

Failure rate for a single chip :

l = τLτQ(C1τT τV + C2τE)

τL = learning factor, based on the maturity of the fabrication process

τQ = quality factor, based on incoming screening of components

τT = temperature factor, based on the ambient operating temperature

and the type of semiconductor process

τE = environmental factor, based on the operating environment

τV = voltage stress derating factor for CMOS devices

C1, C2 = complexity factors, based on the number of gates, or bits for

memories in the component and number of pins.

From Reliable Computer Systems.D. P. Siewiorek R.S. Swarz, Prentice Hall, 1992
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Model-based evaluation of dependability 

State space representation 

methodologies

Markov chains, Petri-nets, SANs, 

…

MODEL-BASED evaluation of dependability

(a model is an abstraction of the system that highlights the important

features for the objective of the study)

Dependability of a system is calculated in terms

of the dependability of  individual components

“divide And conquer approach”: the solution of the entire model is

constructed on the basis of the solutions of  individual sub-models

Methodologies that employ 

combinatorial models 

Reliability Block Diagrams, Fault 

tree, ….
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Model-based evaluation of dependability 

Combinatorial methods

offer simple and intuitive methods of the construction and 

solutions of models

independent components

each component is associated a failure rate

model construction is based on the structure of the systems   

(series/parallel connections of components)  

inadequate to deal with systems that exhibits complex 

dependencies among components and repairable systems
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Combinatorial models
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Combinatorial models

If the system does not contain any redundancy, that is any 

component must function properly for the system to work, 

and if component failures are independent, then 

- the system reliability is the product of the component reliability, 

and it is exponential

- the failure rate of the system is the sum of the failure rates of the 

individual components
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Combinatorial models

(  ) =
N

i

N!

(N-i)! i!

Binomial coefficient
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Combinatorial models

If the system contain redundancy, that is a subset of components 

must function properly for the system to work, and if 

component failures are independent, then 

- the system reliability is the reliability of a series/parallel 

combinatorial model 
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TMR

Simplex system

l failure rate of module m

Rm = e –lt

Rsimplex = e –lt

TMR system

RV(t) = 1

RTMR = S 1           

= (e –lt )3 + 3(e –lt )2 (1- e –lt )

RTMR > Rm if Rm > 0.5 

From www.google.com

V

m1

m2

m3

2 of 3

m

i=0
3

i
(e –lt )3-i (1- e –lt )i
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TMR: reliability function and mission time 

From: D. P. Siewiorek R.S. Swarz, Reliable Computer 

Systems, Prentice Hall, 1992 (pp 177)

Rsimplex = e –lt 

MTTFsimplex =

TMR system

RTMR = 3e –2lt -2e –3lt

MTTFTMR =

1

l

_

3

2l

- _2

3l

_ = 5

6l

_ >1

l

_

TMR worse than a simplex system !

TMR has a higher reliability for the 

first 6.000 hours of system life

TMR operates at or above 0.8 reliability 

66 percent longer than the simplex  system

- S shape curve is typical of redundant systems (there is the well known knee):

above the knee the redundant system has components 

that tolerate failures;  

after the knee there is a sharper decrease of the reliability

function in the redundant system  (the system has exhausted redundancy, there 

is more  hardware to fail than in the non redundant system )
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Hybrid redundancy with TMR

Symplex system 

l failure rate m

Rm = e –lt

Rsys = e –lt

Hybrid system

n=N+S  total number of components 

S number of spares

Let N = 3               RSDV(t) = 1

l failure rate of on line comp

l failure rate of spare comp

The first system failure occurs if 1) all the 

modules  fail; 2) all but one modules fail

RHybrid =  RSDV(1- QHybrid)

RHybrid =  (1 – ( (1-Rm)n + n(Rm)(1-Rm)n-1 ))

SDV

m1

m2

mn

...

RHybrid(n+1) – RHybrid(n) >0

adding modules increases 

the system reliability under the 

assumption RSDV
independent of n
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Figure 1. system with standby failure 

rate equal to on-line failure rate

Figure 2.  system with standby failure 

rate equal to 10% of on line failure 

rate

the TMR with one spare is more 

reliable than simplex system if 

Rm>0.23

the TMR with one spare is more 

reliable than simplex system if 

Rm>0.17

From: D. P. Siewiorek R.S. Swarz, Reliable Computer 

Systems, Prentice Hall, 1992 (pp 177)

Hybrid TMR system reliability RS vs individual module reliability Rm

Hybrid redundancy with TMR

S is the number of spares

RSDV =1

From: D. P. Siewiorek R.S. Swarz, Reliable Computer 

Systems, Prentice Hall, 1992 (pp 177)
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Non-series/nonparallel models
Succes diagram

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992

System successfully operational

for each path from X to Y

Reliability computed expanding around one module m:

Rsys =  Rm x P(system works | m works) + (1- Rm) x P(system works | m fails)

Let m = B

Rsys =  RB x P(system works | B works) + (1- RB) x P(system works | B fails)

P(system works | B fails) = 

{ RD [1 – (1- RARE) (1- RFRC)]}  

P(system works | B works)

must be further reduced

……………………………Ri=Rm

RSys <= (Rm)6 - 3 (Rm)5 +  (Rm)4 + 2(Rm)3
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Non-series/nonparallel upper-limit

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992

Reliability Block Diagram: all path in parallel  

Upper-bound:

RSys <= 1- Pi (1-Rpath i)

Upper-bound because paths are not independent, the faiure 

of a single module affects more than one path

(close approximation if  paths are small) 

Upper-bound:

RSys <= 1- (1- RARBRCRD) (1- RARERD) (1- RFRCRD)

Let Rm be the reliability of a component

RSys <= 2 (Rm)3 + (Rm)4 - (Rm)6 - 2 (Rm)7 + (Rm)10
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Non-series/nonparallel lower-limit

From: D. P. Siewiorek R.S. Swarz, Reliable 

Computer Systems, Prentice Hall, 1992

Minimal cut set : is a list of sets of 

components such that every 

operational path includes at least one 

component from each element the list

Lower-bound:

RSys >=  Pi  Rcut i reliability of the series of cut sets

where Rcut i is the reliability of cut i  (parallel of components)

Let Rm be the reliability of a component

Minimal cut sets of the system:

{D}{A,F}{E,C}{A,C}{BEF} 

Lower-bound:    

RSys >=  Rm (1- (1-Rm)2)3 (1- (1-Rm)3)

RSys >=  24 Rm
5 -60 Rm

6 +62 Rm
7 - 33 Rm

8 + 9 Rm
9 - Rm

10

R({D}) = Rm R({B,E,F})= 1–(1 - Rm)3R({A,F})= R({E,C})= R({A,C}) })= 1–(1 - Rm)2
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SHARPE tool

Reliability Blocks diagrams

source sink

C1 C2 C3Series

Parallel

source sink

C1

C2

C3

M of N

source sink

C1

C2

C3

2 of 3

➢ Blocks are components

connected among them to represent the temporal order with which 

the system uses components, or the management of redundancy schemes 

or the success critera of the system

➢ System failure occurs if there is no path from source to sink
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Example
Multiprocessor with 2 processors and three shared memories

-> analysis under different conditions

Series/Parallel


