
1

Threats to dependability

2

Faults

3

Faults

 All different faults that may affect a system during its life cannot be
enumerated

 We can classify faults. Classifiction of faults is important because
we can identify which mechanisms protect us from a given class
of faults.

Faults are classified according to basic viewpoints

4

Classification of faults according to eight basic viewpoints
From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

5

Phase of creation

The life cycle of a system consists of two phases:

 - development phase
 from specification to development and testing. At the end of this phase the system is ready to deliver service

 The development environment of a system consists of the following elements:

 1. the physical world with its natural phenomena

 2. human developers, some possibly lacking competence or having malicious objectives

 3. development tools: software and hardware used by the developers to assist them in the developmen process

 4. production and test facilities

 - use phase
 The use phase begins when the system is accepted for use and starts the delivery of its services to the users.
 Use consists of alternating periods of
 - correct service delivery (service delivery)
 - service outage (period in which incorrect service is delivered including no service)
 - service shutdown (intentional halt of the service by a authorized entity)

 The use environment of a system consists of the following elements:

 1. the physical world with its natural phenomena

 2. Administrators including maintainers

 3. Users (receive service from the system at the interface)

 4. Providers (deliver service to the system at the interface)

 5. The infrustructure (provides specialized services to the system e.g., GPS)

 6. Intruders : malicious entities (humans or other systems) that could alter the service

this viewpoint identifies when the fault or the reason for the fault was created

Development faults:
faults occur during the system development
or maintenance during the use phase

Operational faults:
the fault occur during the service delivery
of the use phase

6

System boundary

Internal faults: originate inside the system boundary

External faults: originate outside the system boundary and propagates
 errors into the system by interaction or interference

7

Phenomenological cause

Natural faults (physical faults) relevant in hw

faults that are caused by natural phenomena without human participation.

Hw mainly breaks due to physical effects

Human-made faults (relavant in sw)

Result from human actions

Sw faults are related to programming

Prevention technologies are completely different:

Human-made faluts: rigorous development, testing, …

Natural faults: high quality material, optimize operation condition (temperature),
shield the hardware, cooling ….

This viewpoint identifies the nature of faults: caused by natural phenomena and/or humans

8

Dimension

Hardware faults: originate in or affect the hardware

Software faults: affect the software (programs or data)

9

Objective

Non-malicious faults: introduced by a human without malicious objectives

Malicoius faults: introduced by a human with the malicious objective
 of causing harm to the system

10

Intent

Deliberate faults: result of a harmful decision

Non-deliberate faults: introduced without awareness

11

Capability

Accidental faults: introduced inadvertently

Incompetence faults: result from a lack of professional competence by the
 authorized humans or by inadequacy of the development
 organization

12

Persistence

Temporary faults: a fault that can appear and disappear within a very short
period of time. Faults that go away from themselves (e.g., short power outages)

Permanent faults: a fault continuous and stable.
It remains in existence if no corrective action is taken (e.g., disk sector damage).

13

Not all viewpoints are applicable to all fault classes
(e.g. natural faults cannot be classified by Intent)

31 identified combinations
 that belong to three major partially overlapping groupings

Development faults
that include all fault classes occurring during development

Physical faults
that include all fault classes that affect hardware

Interaction faults
that include all external faults.

Classes of combined faults

14

names of some illustrative fault

Classification schema

15

Natural faults

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

16

Natural faults

 Natural faults (11-15) are hardware faults

originate during development originate during operation

production defects (11)

 internal faults
 due to natural processes
 that cause physical
 deterioration (12-13)

external faults due to natural
processes that originate outside
the system boundaries and cause
physical interference by penetrating
the hardware boundary of the system
(radiation,..) or by entering via use
interfaces (power transients, noisy
input lines, etc.) (14-15)

17

Human-Made Faults

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

18

Human-Made Faults

 result from human actions

Non-malicious faults introduced without
malicious objectives (1-4, 7-21, 26-31)

Malicious faults,

introduced during either

system development with

the objective to cause

harm to the system during

its use (5-6), or directly

during use (22-25).
Non-deliberate faults that are
due to mistakes, that is,
unintended actions of which
the developer, operator,
maintainer, etc. is not aware
(1, 2, 7, 8, 16-18, 26-28);

Deliberate faults:
faults that are due to
bad decisions, that is,
intended actions that
are wrong and cause
faults (3, 4, 9, 10, 19-
21, 29-31).

Development faults (3, 4, 9, 10)

result generally from tradeoffs,

either aimed at preserving acceptable

performance, at facilitating system

utilization, or induced by economic

considerations

 Interaction faults (19-21, 29-31) may result
from the action of an operator either aimed at
overcoming an unforeseen situation, or
deliberately violating an operating procedure
without having realized the possibly damaging
consequences of this action.

19

Deliberate, nonmalicious faults are often recognized as faults only after an
unacceptable system behavior (failure).

The developer(s) or operator(s) did not realize at the time that the consequence
of their decision was a fault.

Malicious faults are all DELIBERATE faults

Development physical (hardware) faults: microprocessor faults discovered after

production (named Errata). They are listed in specification updates

20

Human-Made Deliberate Non-malicious Faults

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

Not all mistakes and bad decisions by nonmalicious persons are accidentals.

A further partitioning is introduced (Capability viewpoint):

How to recognize incompetence faults? Important when consequences that lead to

economic losses, injuries or loss of human life.

accidental faults
incompetence faults
result from lack of professional competence

or inadequacy of the development organization

21

Malicious faults

Malicious human-made faults are introduced with the malicious objective
to alter the functioning of the system during use.

The goals of such faults are:

- to disrupt or halt service, causing denials of service;

- to access confidential information; or

- to improperly modify the system.

Developent faults (5,6)

 |

 Internal

 |

 Permanent

(5) SW

(6) HW

Trojan horses, logic bombs,

trapdoors, ….

Operational faults (22-24)

 |

 External

 | |

 Permanent Transient
(22) intr attempts (HW) (23) intr attempts HW

(25) Viruses or worms (SW) (24) intr attempts SW

intrusion attempts:

- may be performed by system operators or

administrators who are exceeding their rights

- may use physical means to cause faults: power

fluctuation, radiation, wire-tapping, heating/cooling,

etc.

Malicious logic faults: (5,6) + (25)

Intrusion attempts: (22,23,24)

22

Human-Made Malicious faults

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

23

Examples

An “exploit” is a software script that will exercise a system vulnerability and allow an
intruder to gain access to, and sometimes control of, a system. Invoking the exploit is
an operational, external, human-made, software, malicious interaction fault (24-25).

The vulnerability that an exploit takes advantage of is typically a
software flaw (e.g., an unchecked buffer) that could be
characterized as a developmental, internal, human-made,
software, nonmalicious, nondeliberate, permanent fault (1-2).

Heating the RAM with a hairdryer to cause memory errors that permit software security
violations would be an external, human-made, hardware, malicious interaction
fault (22-23).

24

Interaction Faults

 occur during the use phase, therefore they are all operational faults. They
are caused by elements of the use environment interacting with the system;
therefore, they are all external.

Configuration faults (i.e., wrong setting of parameters that can affect security,

networking, storage, middleware, etc.): a broad class of human-made operational

faults. Such faults can occur during configuration changes performed during

adaptive or augmentative maintenance performed concurrently with system

operation

Human-made (16-31)

most classes originate due to some

human action in the use environment

External natural faults (14-15)

caused by cosmic rays, solar flares, etc.

nature interacts with the system without

human participation.

25

Interaction faults

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

26

A common feature of interaction faults is that, in order to be “successful,” they
usually necessitate the prior presence of a vulnerability, i.e., an internal fault
that enables an external fault to harm the system.

Vulnerabilities can be development or operational faults; they can be malicious or
nonmalicious, as can be the external faults that exploit them.

A vulnerability can result from a deliberate development fault, for economic or for
usability reasons, thus resulting in limited protections, or even in their absence.

27

Failures

28

Failures
A service failure (failure) is defined as an event that occurs when the delivered

service deviates from correct service.

The failure modes characterize the deviation of the incorrect service according to four
viewpoints:

1. the failure domain,

2. the detectability of failures,

3. the consistency of failures, and

4. the consequences of failures on the environment.

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

29

Failures

1. Failure domain viewpoint:

 content failures
the content of the information delivered at the service interface deviates from
implementing the system function.

 timing failures
the time of arrival or the duration of the information delivered at the service interface
deviates from implementing the system function.

 halt failure, or simply halt,

 when the service is halted (the external state becomes constant,
i.e., system activity, if there is any, is no longer perceptible to the users);
a special case of halt is silent failure, or simply silence, when no service at all is
delivered at the service interface (e.g., no messages are sent in
a distributed system).

 erratic failures
when a service is delivered (not halted), but is erratic (e.g., babbling - the system
repeatedly fails).

30

2. Detectability viewpoint:

signaled failures: when the failures are detected and signaled by a warning signal to the
users (based on a detecting mechanisms in the system that check the correctness of
the delivered service).

unsignaled failures: otherwise.

The failure detecting mechanism may fail!! Two possible failure modes:
- false alarm (signaling a loss of function when no failure has actually occurred)

 - unsignaled failure (not signaling a function loss).

When the occurrence of service failures result in reduced modes of service, the system
signals a degraded mode of service to the user(s).

3. Consistency viewpoint (when a system has two or more users):

consistent failures.
the incorrect service is perceived identically by all system users.

inconsistent failures.
some or all system users perceive differently incorrect service (some users may
actually perceive correct service); inconsistent failures are usually called, Byzantine
failures.

31

Failures

4. Consequences viewpoint:

grading the consequences of the failures upon the system environment enables failure
severities to be defined.

 Two limiting levels can be defined according to the relation between the benefit
provided by the service delivered in the absence of failure, and the consequences
of failures:

minor failures
the harmful consequences are of similar cost to the benefits provided by correct service
delivery

catastrophic failures
the cost of harmful consequences is orders of magnitude, or even incommensurably,
higher than the benefit provided by correct service delivery

32

Errors

33

Errors

An error can be:

 - detected if its presence is indicated by an error message or error signal.

 - latent if it is present but not detected

Whether or not an error will actually lead to a failure depends on two factors:

1. The structure of the system, and especially the nature of any redundancy that exists
in it: protective redundancy, introduced to provide fault tolerance, that is explicitly
intended to prevent an error from leading to service failure. Unintentional
redundancy (it is in practice difficult if not impossible to build a system without any
form of redundancy) that may have the same presumably unexpected result as
intentional redundancy.

2. The behavior of the system: the part of the state that contains an error may never be
needed for service, or an error may be eliminated (e.g., when overwritten) before it
leads to a failure.

Some faults (e.g., a burst of electromagnetic radiation) can simultaneously cause

errors in more than one component. Such errors are called multiple related errors.

Single errors are errors that affect one component only.

34

Chain of threats: Faults-Errors-Failures

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

35

Chain of threats

A fault is active when it produces an error; otherwise, it is dormant.

An active fault is either

 - an internal fault that was previously dormant and that has been activated by the
 computation process or environmental conditions, or

 - an external fault.

Fault activation:
 is the application of an input (the activation pattern) to a component that
 causes a dormant fault to become active.

Most internal faults cycle between their dormant and active states.

Code is full of unactivated faults (faults are named bugs)

Testing can check the presence of faults, not the absence of faults.

We are interested in faults that may be activated.

We use the control flow and test coverage.

36

Chain of threats

Error propagation within a given component (i.e., internal propagation) is caused by the
computation process.

An error is successively transformed into other errors.

Error propagation from component A to component B that receives service from A (i.e.,
external propagation) occurs when, through internal propagation, an error reaches the
service interface of component A.

At this time, service delivered by A to B becomes incorrect, and the ensuing service failure
of A appears as an external fault to B and propagates the error into B via its use
interface.

37

Chain of threats

A service failure occurs when an error is propagated to the service interface and
causes the service delivered by the system to deviate from correct service.

The failure of a component causes a permanent or transient fault in the system
that contains the component.

Service failure of a system causes a permanent or transient external fault for the
other system(s) that receive service from the given system.

38

Chain of threats

Given a system with defined boundaries, a single fault is a fault caused by one adverse
physical event or one harmful human action.

Multiple faults are two or more concurrent, overlapping, or sequential single faults whose
errors overlap in time, that is, the errors due to these faults are concurrently present in
the system.

Consideration of multiple faults leads one to distinguish independent faults, that are
attributed to different causes, and related faults, that are attributed to a common
cause.

Related faults generally cause similar errors, i.e., errors that cannot be distinguished by
whatever detection mechanisms are being employed

Independent faults usually cause distinct errors.

However, it may happen that independent faults (especially omissions) lead to similar
errors, or that related faults lead to distinct errors.

39

Dependable system
Point 1)

Assumptions on how the system is used: very important

External faults during normal operation, caused by wrong assumptions on
the operational conditions

Sometimes operational conditions are underspecified.

Point 2)

Faults are unexpected events. Something is happening in the system that we did
not plan before.

How can we build a system that tolerates faults if we do not know faults?

 «information from literature (knowledge of fault classes) and from experience
allows the user to decide which faults should be included in the dependability
specification»

Specification of the fault free system + fault assumption

40

Point 3)
Fault classes are relevant to choose the dependability mean.

Example: temporary/permanent faults

How can you deal wih temporary faults?

In the case of short power outages: extra battery can be used as fault
tolerance mechanism

In case of network connections problems (network and connectivity are
assumed temporary problem): retry can be used as fault tolerant
mechanism.

Additional problem: if the net is partitioned, retry does not help.

How can you deal wih permanent faults?
Redundancy (you need to have a spare sw or hw component)

Exceptions in programs

How can you deal wih exceptions?
Catch is used as fault tolerant mechanism.

