
Parallel Databases

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 18), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

1.2

Parallel Databases

 Introduction

 I/O Parallelism

 Interquery Parallelism

 Intraquery Parallelism

 Intraoperation Parallelism

 Interoperation Parallelism

 Design of Parallel Systems

1.3

Introduction

 Parallel machines are becoming quite common and affordable

 Prices of microprocessors, memory and disks have dropped
sharply

 Recent desktop computers feature multiple processors and this
trend is projected to accelerate

 Databases are growing increasingly large

 large volumes of transaction data are collected and stored for later
analysis.

 multimedia objects like images are increasingly stored in
databases

 Large-scale parallel database systems increasingly used for:

 storing large volumes of data

 processing time-consuming decision-support queries

 providing high throughput for transaction processing

1.4

Parallelism in Databases

 Data can be partitioned across multiple disks for parallel I/O.

 Individual relational operations (e.g., sort, join, aggregation) can be

executed in parallel

 data can be partitioned and each processor can work

independently on its own partition.

 Queries are expressed in high level language (SQL, translated to

relational algebra)

 makes parallelization easier.

 Different queries can be run in parallel with each other.

Concurrency control takes care of conflicts.

 Thus, databases naturally lend themselves to parallelism.

1.5

Parallel Database Architectures

Basic architectural models for parallel machines

 Shared memory -- processors share a common memory

 Shared disk -- processors share a common disk

 Shared nothing -- processors share neither a common memory nor

common disk

 Hierarchical -- hybrid of the above architectures

1.6

Parallel Database Architectures

server

for the

data on the disk

1000 processors

Cost of communications

and non-local disk access

Bottleneck: memory access

limited by the bus 16-32 degree

of parallelism

(actually 4 up to 8 degree of parallelism)

DB accessible from all processors

Tolerant to processor failure

Shared nothing

1.7

Shared Memory

 Processors and disks have access to a common memory, typically via

a bus or through an interconnection network.

 Extremely efficient communication between processors — data in

shared memory can be accessed by any processor without having to

move it using software.

 Downside – architecture is not scalable beyond 32 or 64 processors

since the bus or the interconnection network becomes a bottleneck

 Widely used for lower degrees of parallelism (4 to 8).

1.8

Shared Disk

 All processors can directly access all disks via an interconnection

network, but the processors have private memories.

 The memory bus is not a bottleneck

 Architecture provides a degree of fault-tolerance — if a

processor fails, the other processors can take over its tasks

since the database is resident on disks that are accessible from

all processors.

 Examples: IBM Sysplex and DEC clusters (now part of Compaq)

running Rdb (now Oracle Rdb) were early commercial users

 Downside: bottleneck now occurs at interconnection to the disk

subsystem.

 Shared-disk systems can scale to a somewhat larger number of

processors, but communication between processors is slower.

1.9

Shared Nothing

 Node consists of a processor, memory, and one or more disks.

Processors at one node communicate with another processor at

another node using an interconnection network. A node functions as

the server for the data on the disk or disks the node owns.

 Examples: Teradata, Tandem, Oracle-n CUBE

 Data accessed from local disks (and local memory accesses) do not

pass through interconnection network, thereby minimizing the

interference of resource sharing.

 Shared-nothing multiprocessors can be scaled up to thousands of

processors without interference.

 Main drawback: cost of communication and non-local disk access;

sending data involves software interaction at both ends.

1.10

Hierarchical

 Combines characteristics of shared-memory, shared-disk, and shared-

nothing architectures.

 Top level is a shared-nothing architecture – nodes connected by an

interconnection network, and do not share disks or memory with each

other.

 Each node of the system could be a shared-memory system with a

few processors.

 Alternatively, each node could be a shared-disk system, and each of

the systems sharing a set of disks could be a shared-memory system.

1.11

I/O Parallelism

1.12

I/O Parallelism
 Reduce the time required to retrieve relations from disk by partitioning

 The relations on multiple disks.

 Horizontal partitioning – tuples of a relation are divided among many

disks such that each tuple resides on one disk.

 Partitioning techniques (number of disks = n):

Round-robin:

Send the I th tuple inserted in the relation to disk i mod n.

Hash partitioning:

 Choose one or more attributes as the partitioning attributes.

 Choose hash function h with range 0…n - 1

 Let i denote result of hash function h applied to the partitioning

attribute value of a tuple. Send tuple to disk i.

1.13

I/O Parallelism (Cont.)

 Partitioning techniques (cont.):

 Range partitioning:

 Choose an attribute as the partitioning attribute.

 A partitioning vector [vo, v1, ..., vn-2] is chosen.

 Let x be the partitioning attribute value of a tuple. Tuples such that

vi x < vi+1 go to disk i + 1. Tuples with x < v0 go to disk 0 and

tuples with x vn-2 go to disk n-1.

 E.g., with a partitioning vector [5,11], a tuple with partitioning

attribute value of 2 will go to disk 0, a tuple with value 8 will go to

disk 1, while a tuple with value 20 will go to disk2.

Example:

shared memory architecture, n=3

select *

 from R

select * select * select *

 from P0 from P1 from P2

 (Disk0) (Disk1) (Disk2)

partition P0

partition P1

partition P2

1.14

Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following types

of data access:

 1. Scanning the entire relation.

 2. Locating a tuple associatively – point queries.

 E.g., r.A = 25.

 3. Locating all tuples such that the value of a given attribute lies within

a specified range – range queries.

 E.g., 10 r.A < 25.

1.15

Comparison of Partitioning Techniques (Cont.)

Round robin:

 Advantages

 Best suited for sequential scan of entire relation on each

query.

 All disks have almost an equal number of tuples; retrieval work

is thus well balanced between disks.

 Range queries are difficult to process

 No clustering -- tuples are scattered across all disks

1.16

Hash partitioning:

 Good for sequential access

 Assuming hash function is good, and partitioning attributes form a

key, tuples will be equally distributed between disks

 Retrieval work is then well balanced between disks.

 Good for point queries on partitioning attribute

 Can lookup single disk, leaving others available for

answering other queries.

 Index on partitioning attribute can be local to disk, making

lookup and update more efficient

 No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques (Cont.)

select *

 from R H(xxx) = j

where A=xxx

 select *

 from Pj

 (Diskj)

partition P0

partition P1

partition P2

H(a)=0

H(a)=1

H(a)=2

1.17

Comparison of Partitioning Techniques (Cont.)

 Range partitioning:

 Provides data clustering by partitioning attribute value.

 Good for sequential access

 Good for point queries on partitioning attribute: only one disk needs to

be accessed.

 For range queries on partitioning attribute, one to a few disks may need

to be accessed

 Remaining disks are available for other queries.

 Good if result tuples are from one to a few blocks.

 If many blocks are to be fetched, they are still fetched from one to a

few disks, and potential parallelism in disk access is wasted

 Example of execution skew.

1.18

Partitioning a Relation across Disks

 If a relation contains only a few tuples which will fit into a single disk

block, then assign the relation to a single disk.

 Large relations are preferably partitioned across all the available

disks.

 If a relation consists of m disk blocks and there are n disks available in

the system, then the relation should be allocated min(m,n) disks.

1.19

Handling of Skew

 The distribution of tuples to disks may be skewed — that is, some

disks have many tuples, while others may have fewer tuples.

 Types of skew:

 Attribute-value skew.

 Some values appear in the partitioning attributes of many

tuples; all the tuples with the same value for the partitioning

attribute end up in the same partition.

 Can occur with range-partitioning and hash-partitioning.

 Partition skew.

 With range-partitioning, badly chosen partition vector may

assign too many tuples to some partitions and too few to

others.

 Less likely with hash-partitioning if a good hash-function is

chosen.

1.20

Handling Skew in Range-Partitioning

 To create a balanced partitioning vector (assuming partitioning

attribute forms a key of the relation):

 Sort the relation on the partitioning attribute.

 Construct the partition vector by scanning the relation in sorted

order as follows.

 After every 1/nth of the relation has been read, the value of

the partitioning attribute of the next tuple is added to the

partition vector.

 n denotes the number of partitions to be constructed.

 Duplicate entries or imbalances can result if duplicates are

present in partitioning attributes.

 Alternative technique based on histograms used in practice

1.21

Handling Skew using Histograms

 Balanced partitioning vector can be constructed from histogram in a

relatively straightforward fashion

 Assume uniform distribution within each range of the histogram

 Histogram can be constructed by scanning relation, or sampling (blocks

containing) tuples of the relation

1.22

Interquery Parallelism

1.23

Interquery Parallelism

 Each query is run sequentially

 Queries/transactions execute in parallel with one another.

 Increases transaction throughput; used primarily to scale up a

transaction processing system to support a larger number of

transactions per second.

 Easiest form of parallelism to support, particularly in a shared-memory

parallel database, because even sequential database systems

support concurrent processing.

1.24

Transaction System Processes (Sequential systems)

Sequential database systems support

concurrent processing of transactions

executed in time-shared concurrent

manner

1.25

Interquery Parallelism

 More complicated to implement on shared-disk or shared-nothing

architectures

 Locking and logging must be coordinated by passing messages

between processors (2PL, 2PC, ….).

 Data in a local buffer may have been updated at another

processor.

 Cache-coherency has to be maintained — reads and writes of

data in buffer must find latest version of data.

Two processors do not update the same

data independently at the same time.

When a processor access or update data,

the DBMS must ensure that the process has

the latest version of the data in its buffer pool.

1.26

Intraquery Parallelism

1.27

Intraquery Parallelism
 Execution of a single query in parallel on multiple processors/disks;

important for speeding up long-running queries

 Consider a query that requires a relation to be sorted on attribute A

Assume the relation has been partitioned by range-partition on the

same attribute A. We can

- sort each partition in parallel

- concatenate the sorted partitions to get the final sorted relation

We have parallelized the query by parallelizing the sort operation.

 The operator tree for a query can contain multiple operations

We can parallelize the operations that do not depend on one

another; and we may be able to pipeline the output of one

operation to another operation.

1.28

Intraquery Parallelism

 Two complementary forms of intraquery parallelism:

 Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.

 Interoperation Parallelism – execute the different operations in

a query expression in parallel.

The first form scales better with increasing parallelism because

the number of tuples processed by each operation is typically more

than the number of operations in a query.

The two forms can be used simultaneously in a query.

1.29

Parallel Processing of Relational Operations

The algorithms for parallelizing query evaluation depends on the

machine architecture.

 Our discussion of parallel algorithms assumes:

 read-only queries

 shared-nothing architecture

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,

where disk Di is associated with processor Pi.

 If a processor has multiple disks they can simply simulate

a single disk Di.

 Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.

 Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems. However, some optimizations

may be possible.

1.30

Intraoperation Parallelism

Range-Partitioning Sort

 Choose processors P0, ..., Pm, where m n -1 to do sorting.

Step 1:

 Create range-partition vector with m entries, on the sorting attribute

(each partition the same number of tuples)

 Redistribute the relation using range partitioning

 all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di.

 This step requires I/O and communication overhead.

Step 2:

 Each processor Pi sorts its partition of the relation locally.

 Each processor executes same operation (sort) in parallel with other

processors, without any interaction with the others (data parallelism).

 Final merge operation is trivial: range-partitioning ensures that,

for 1 <= i < j <= m, the key values in processor P I are all less than the key

values in Pj.

Parallel Sort

1.31

Parallel Sort (Cont.)
Parallel External Sort-Merge

 Assume the relation has already been partitioned among

disks D0, ..., Dn-1 (in whatever manner).

 Each processor Pi locally sorts the data on disk Di.

 The sorted runs on each processor are then merged to get the final

sorted output.

 Parallelize the merging of sorted runs as follows:

 The sorted partitions at each processor Pi are range-partitioned

across the processors P0, ..., Pm-1.

 Each processor Pi performs a merge on the streams as they are

received, to get a single sorted run.

 The sorted runs on processors P0,..., Pm-1 are concatenated to get

the final result.

m = 3

Sort partition P0 (run0)

Sort partition P2 (run2)

Parallelized

Merge

 range-partitioned V = [5, 20]

 P0: SRun0 x <=5 P1: SRun0 5<x<=20 P2: SRun0>=20

 SRun1 x <=5 SRun1 5<x<=20 SRun1>=20

 SRun3 x <=5 SRun2 5<x<=20 SRun2>=20

 Merge Merge Merge

Concatenation

Sort partition P1 (run1)

1.32

Parallel Join

 The join operation requires pairs of tuples to be tested to see if they

satisfy the join condition, and if they do, the pair is added to the join

output.

 Parallel join algorithms attempt to split the pairs to be tested over

several processors. Each processor then computes part of the join

locally.

 In a final step, the results from each processor can be collected

together to produce the final result.

1.33

Partitioned Join

 For equi-joins and natural joins, it is possible to partition the two input

relations across the processors, and compute the join locally at each

processor.

 Let r and s be the input relations, and we want to compute r r.A=s.B s.

 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and

s0, s1, ..., sn-1.

 Can use either range partitioning or hash partitioning.

 r and s must be partitioned on their join attributes r.A and s.B), using

the same range-partitioning vector or hash function.

 Partitions ri and si are sent to processor Pi,

 Each processor Pi locally computes ri ri.A=si.B si. Any of the

standard join methods can be used.

1.34

Partitioned Join (Cont.)

1.35

Fragment-and-Replicate Join

 Partitioning not possible for some join conditions

 E.g., non-equijoin conditions, such as r.A > s.B.

 Not easy way of partitioning r and s such that tuple
in ri join only tuples in si

 For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique

 Depicted on next slide

 Special case – asymmetric fragment-and-replicate:

 One of the relations, say r, is partitioned; any partitioning
technique can be used.

 The other relation, s, is replicated across all the processors.

 Processor Pi then locally computes the join of ri with all of s using
any join technique.

1.36

Depiction of Fragment-and-Replicate Joins

1.37

Fragment-and-Replicate Join (Cont.)

 General case: reduces the sizes of the relations at each processor.

 r is partitioned into n partitions,r0, r1, ..., r n-1;

s is partitioned into m partitions, s0, s1, ..., sm-1.

 Any partitioning technique may be used.

 There must be at least m * n processors.

 Label the processors as

 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.

 Pi,j computes the join of ri with sj. In order to do so, ri is replicated

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

 Any join technique can be used at each processor Pi,j.

1.38

Fragment-and-Replicate Join (Cont.)

 Both versions of fragment-and-replicate work with any join condition,

since every tuple in r can be tested with every tuple in s.

 Usually has a higher cost than partitioning, since one of the

relations (for asymmetric fragment-and-replicate) or both relations

(for general fragment-and-replicate) have to be replicated.

 Sometimes asymmetric fragment-and-replicate is preferable even

though partitioning could be used.

 E.g., say s is small and r is large, and already partitioned. It may

be cheaper to replicate s across all processors, rather than

repartition r and s on the join attributes.

1.39

Partitioned Parallel Hash-Join
The partitioned hash join can be parallelized:

 Assume s is smaller than r and therefore s is chosen as the build

relation.

 A hash function h1 takes the join attribute value of each tuple in s

maps this tuple to one of the n processors.

 Each processor Pi reads the tuples of s that are on its disk Di, and

sends each tuple to the appropriate processor based on hash function

h1. Let si denote the tuples of relation s that are sent to processor Pi.

 As tuples of relation s are received at the

destination processors, they are partitioned

 further using another hash function, h2,

which is used to compute the hash-

join locally.

HASH JOIN

1.40

Partitioned Parallel Hash-Join

h1 h2

h2

h2

h1

h2

Disk0

Disk3

Disk0

Disk3

h2

1.41

Partitioned Parallel Hash-Join (Cont.)

 Once the tuples of s have been distributed, the larger relation r is

redistributed across the m processors using the hash function h1

 Let ri denote the tuples of relation r that are sent to processor Pi.

 As the r tuples are received at the destination processors, they are

repartitioned using the function h2

 (just as the probe relation is partitioned in the sequential hash-join

algorithm).

 Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and si of r and s to produce a

partition of the final result of the hash-join.

1.42

Parallel Nested-Loop Join

 Assume that

 relation s is much smaller than relation r and that r is stored by

partitioning.

 there is an index on a join attribute of relation r at each of the

partitions of relation r.

 Use asymmetric fragment-and-replicate, with relation s being

replicated, and using the existing partitioning of relation r.

 Each processor Pj where a partition of relation s is stored reads the

tuples of relation s stored in Dj, and replicates the tuples to every other

processor Pi.

 At the end of this phase, relation s is replicated at all sites that

store tuples of relation r.

 Each processor Pi performs an indexed nested-loop join of relation s

with the ith partition of relation r.

1.43

Parallel Nested-Loop Join

P0 index

 s r0

P1 replica of s index

 r1

P2

 replica of s index

 r2

asymmetric fragment-and-replicate

indexed nested-loop join of s

with the ith partition of relation r

1.44

Other Relational Operations

Selection (r)

 If is of the form ai = v, where ai is an attribute and v a value.

 If r is partitioned on ai the selection is performed at a single

processor.

 If is of the form i <= ai <= u (i.e., is a range selection) and the

relation has been range-partitioned on ai

 Selection is performed at each processor whose partition overlaps

with the specified range of values.

 In all other cases: the selection is performed in parallel at all the

processors.

1.45

Other Relational Operations (Cont.)

 Duplicate elimination

 Perform by using either of the parallel sort techniques

 eliminate duplicates as soon as they are found during sorting.

 Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each

processor.

 Projection

 Projection without duplicate elimination can be performed as

tuples are read in from disk in parallel.

 If duplicate elimination is required, any of the above duplicate

elimination techniques can be used.

1.46

Cost of Parallel Evaluation of Operations

 If there is no skew in the partitioning, and there is no overhead due to

the parallel evaluation, a parallel operation using n processors will

take 1/n times as long as the same operation on a single processor

 The time cost of parallel processing would be 1/n of the time cost of

sequential processing of the operation.

 If skew and overheads are also to be taken into account, the time

taken by a parallel operation can be estimated as

 Tpart + Tasm + max (T0, T1, …, Tn-1)

 Tpart is the time for partitioning the relations

 Tasm is the time for assembling the results

 Ti is the time taken for the operation at processor Pi

 this needs to be estimated taking into account the skew

1.47

Interoperator Parallelism

 Pipelined parallelism

 Consider a join of four relations

 r1 r2 r3 r4

 Set up a pipeline that computes the three joins in parallel

 Let P1 be assigned the computation of

 temp1 = r1 r2

 And P2 be assigned the computation of temp2 = temp1 r3

 And P3 be assigned the computation of temp2 r4

 Each of these operations can execute in parallel, sending result

tuples it computes to the next operation even as it is computing

further results

 Provided a pipelineable join evaluation algorithm (e.g., indexed

nested loops join) is used

1.48

Independent Parallelism

 Independent parallelism

 Consider a join of four relations

 r1 r2 r3 r4

 Let P1 be assigned the computation of
 temp1 = r1 r2

 And P2 be assigned the computation of temp2 = r3 r4

 And P3 be assigned the computation of temp1 temp2

 P1 and P2 can work independently in parallel

 P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining
independent parallelism and pipelined parallelism

 Does not provide a high degree of parallelism

 useful with a lower degree of parallelism.

 less useful in a highly parallel system.

1.49

Query Optimization
 Query optimization in parallel databases is significantly more complex than

query optimization in sequential databases.

 Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

 When scheduling execution tree in parallel system, must decide:

 How to parallelize each operation and how many processors to use for it.

 What operations to pipeline, what operations to execute independently in
parallel, and what operations to execute sequentially, one after the other.

 Determining the amount of resources to allocate for each operation is a
problem.

 E.g., allocating more processors than optimal can result in high
communication overhead.

 Long pipelines should be avoided as the final operation may wait a lot for
inputs, while holding precious resources

 The number of parallel evaluation plans from which to choose from is much
larger than the number of sequential evaluation plans.

 Therefore heuristics are needed

1.50

Design of Parallel Systems

Some issues in the design of parallel systems:

 Parallel loading of data from external sources is needed in order to

handle large volumes of incoming data.

 Resilience to failure of some processors or disks.

 Probability of some disk or processor failing is higher in a parallel

system.

 Operation (perhaps with degraded performance) should be

possible in spite of failure.

 Redundancy achieved by storing extra copy of every data item at

another processor.

1.51

Design of Parallel Systems (Cont.)

 On-line reorganization of data and schema changes must be

supported.

 For example, index construction on terabyte databases can take

hours or days even on a parallel system.

 Need to allow other processing (insertions/deletions/updates)

to be performed on relation even as index is being constructed.

 Basic idea: index construction tracks changes and “catches up” on

changes at the end.

 Also need support for on-line repartitioning and schema changes

(executed concurrently with other processing).

