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Introduction 

 Parallel machines are becoming quite common and affordable 

 Prices of microprocessors, memory and disks have dropped 
sharply 

 Recent desktop computers feature multiple processors and this 
trend is projected to accelerate 

 Databases are growing increasingly large 

 large volumes of transaction data are collected and stored for later 
analysis. 

 multimedia objects like images are increasingly stored in 
databases 

 Large-scale parallel database systems increasingly used for: 

 storing large volumes of data 

 processing time-consuming decision-support queries 

 providing high throughput for transaction processing  
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Parallelism in Databases 

 Data can be partitioned across multiple disks for parallel I/O. 

 Individual relational operations (e.g., sort, join, aggregation) can be 

executed in parallel 

 data can be partitioned and each processor can work 

independently on its own partition. 

 Queries are expressed in high level language (SQL, translated to 

relational algebra) 

 makes parallelization easier. 

 Different queries can be run in parallel with each other.     

Concurrency control takes care of conflicts.  

 Thus, databases naturally lend themselves to parallelism. 
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Parallel Database Architectures 

Basic architectural models for parallel machines 

 

 Shared memory -- processors share a common memory 

 Shared disk -- processors share a common disk 

 Shared nothing -- processors share neither a common memory nor 

common disk 

 Hierarchical -- hybrid of the above architectures 
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Parallel Database Architectures 

server  

for the  

data on the disk 

1000 processors 

Cost of communications 

and non-local disk access 

  

Bottleneck: memory access 

 

limited by the bus 16-32 degree 

of parallelism  

(actually 4 up to 8 degree of parallelism) 

DB accessible from all processors  

Tolerant to processor failure  

Shared  nothing 
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Shared Memory 

 Processors and disks have access to a common memory, typically via 

a bus or through an interconnection network. 

 Extremely efficient communication between processors — data in 

shared memory can be accessed by any processor without having to 

move it using software. 

 Downside – architecture is not scalable beyond 32 or 64 processors 

since the bus or the interconnection network becomes a bottleneck 

 Widely used for lower degrees of parallelism (4 to 8). 
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Shared Disk 

 All processors can directly access all disks via an interconnection 

network, but the processors have private memories. 

 The memory bus is not a bottleneck 

 Architecture provides a degree of fault-tolerance — if a 

processor fails, the other processors can take over its tasks 

since the database is resident on disks that are accessible from 

all processors. 

 Examples:  IBM Sysplex and DEC clusters (now part of Compaq) 

running Rdb (now Oracle Rdb) were early commercial users  

 Downside: bottleneck now occurs at interconnection to the disk 

subsystem. 

 Shared-disk systems can scale to a somewhat larger number of 

processors, but communication between processors is slower. 
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Shared Nothing 

 Node consists of a processor, memory, and one or more disks. 

Processors at one node  communicate with another processor at 

another node using an interconnection network. A node functions as 

the server for the data on the disk or disks the node owns. 

 Examples: Teradata, Tandem, Oracle-n CUBE 

 Data accessed from local disks (and local memory accesses)  do not 

pass through interconnection network, thereby minimizing the 

interference of resource sharing. 

 Shared-nothing multiprocessors can be scaled up to thousands of 

processors without interference. 

 Main drawback: cost of communication and non-local disk access; 

sending data involves software interaction at both ends. 
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Hierarchical 

 Combines characteristics of shared-memory, shared-disk, and shared-

nothing architectures. 

 Top level is a shared-nothing architecture –  nodes connected by an 

interconnection network, and do not share disks or memory with each 

other. 

 Each node of the system could be a shared-memory system with a 

few processors. 

 Alternatively, each node could be a shared-disk system, and each of 

the systems sharing a set of disks could be a shared-memory system. 
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I/O Parallelism 
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I/O Parallelism 
 Reduce the time required to retrieve relations from disk by partitioning 

 The relations on multiple disks. 

 Horizontal partitioning – tuples of a relation are divided among many 

disks such that each tuple resides on one disk. 

 Partitioning techniques (number of disks = n): 

Round-robin:  

Send the I th tuple inserted in the relation to disk i mod n.   

Hash partitioning:   

 Choose one or more attributes as the partitioning attributes.    

  Choose hash function h with range 0…n - 1 

 Let i denote result of hash function h applied to the partitioning 

attribute value of a tuple. Send tuple to disk i. 
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I/O Parallelism (Cont.) 

 Partitioning techniques (cont.): 

 Range partitioning:  

 Choose an attribute as the partitioning attribute. 

 A partitioning vector [vo, v1, ..., vn-2]  is chosen. 

 Let x be the partitioning attribute value of a tuple. Tuples such that 

vi  x < vi+1 go to disk i + 1. Tuples with x < v0 go to disk 0 and 

tuples with x  vn-2 go to disk n-1. 

     E.g., with a partitioning vector [5,11], a tuple with partitioning 

attribute value of 2 will go to disk 0, a tuple with value 8 will go to 

disk 1, while a  tuple with value 20 will go to disk2. 

 
Example: 

shared memory architecture, n=3 

 

select  *   

   from  R 

 

select   * select  * select  * 

  from P0   from P1   from P2 

 (Disk0)  (Disk1)  (Disk2) 

partition P0 

partition P1 

partition P2 
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Comparison of Partitioning Techniques 

 Evaluate how well partitioning techniques support the following types 

of data access: 

     1.  Scanning the entire relation. 

     2.  Locating a tuple associatively – point queries. 

 E.g., r.A = 25. 

     3.  Locating all tuples such that the value of a given attribute lies within  

a specified range – range queries. 

 E.g.,  10  r.A < 25. 
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Comparison of Partitioning Techniques (Cont.) 

Round robin: 

 Advantages 

  Best suited for sequential scan of entire relation on each 

query. 

 All disks have almost an equal number of tuples; retrieval work 

is thus well balanced between disks. 

 Range queries are difficult to process 

 No clustering -- tuples are scattered across all disks 
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Hash partitioning: 

  Good for sequential access  

 Assuming hash function is good, and partitioning attributes form a 

key, tuples will be equally distributed between disks 

 Retrieval work is then well balanced between disks. 

 Good for point queries on partitioning attribute 

 Can lookup single disk, leaving others available for 

answering other queries.  

 Index on partitioning attribute can be local to disk, making 

lookup and update more efficient 

 No clustering, so difficult to answer range queries 

 

Comparison of Partitioning Techniques (Cont.) 

 

select  *   

 from  R  H(xxx) = j 

where A=xxx 

   

   select   *  

                          from Pj 

      (Diskj)  

partition P0 

partition P1 

partition P2 

H(a)=0 

H(a)=1 

H(a)=2 
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Comparison of Partitioning Techniques (Cont.) 

 Range partitioning: 

 Provides data clustering by partitioning attribute value. 

 Good for sequential access 

 Good for point queries on partitioning attribute: only one disk needs to 

be accessed. 

 For range queries on partitioning attribute, one to a few disks may need 

to be accessed 

 Remaining disks are available for other queries. 

 Good if result tuples are from one to a few blocks.  

 If many blocks are to be fetched, they are still fetched from one to a 

few disks, and potential parallelism  in disk access is wasted 

 Example of execution skew. 
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Partitioning a Relation across Disks 

 If a relation contains only a few tuples which will fit into a single disk 

block, then assign the relation to a single disk. 

 Large relations are preferably partitioned across all the available 

disks. 

 If a relation consists of m disk blocks and there are n disks available in 

the system, then the relation should be allocated min(m,n) disks. 
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Handling of Skew 

 The distribution of tuples to disks may be skewed — that is, some 

disks have many tuples, while others may have fewer tuples. 

 Types of skew: 

 Attribute-value skew. 

 Some values appear in the partitioning attributes of many 

tuples; all the tuples with the same value for the partitioning 

attribute end up in the same partition. 

 Can occur with range-partitioning and hash-partitioning. 

 Partition skew. 

 With range-partitioning, badly chosen partition vector may 

assign too many tuples to some partitions and too few to 

others. 

 Less likely with hash-partitioning if a good hash-function is 

chosen. 
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Handling Skew in Range-Partitioning 

 To create a balanced partitioning vector (assuming partitioning 

attribute forms a key of the relation): 

 Sort the relation on the partitioning attribute. 

 Construct the partition vector by scanning the relation in sorted 

order as follows. 

 After every 1/nth of the relation has been read, the value of  

the partitioning attribute of the next tuple is added to the 

partition vector. 

 n denotes the number of partitions to be constructed. 

 Duplicate entries or imbalances can result if duplicates are 

present in partitioning attributes. 

 Alternative technique based on histograms used in practice 
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Handling Skew using Histograms 

 Balanced partitioning vector can be constructed from histogram in a 

relatively straightforward fashion 

 Assume uniform distribution within each range of the histogram 

 Histogram can be constructed by scanning relation, or sampling (blocks 

containing) tuples of the relation 
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Interquery Parallelism 
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Interquery Parallelism 

 Each query is run sequentially 

 Queries/transactions execute in parallel with one another. 

 Increases transaction throughput; used primarily to scale up a 

transaction processing system to support a larger number of 

transactions per second. 

 Easiest form of parallelism to support, particularly in a shared-memory 

parallel database, because even sequential database systems 

support concurrent processing. 
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Transaction System Processes (Sequential systems) 

Sequential database systems support  

concurrent  processing of transactions  

executed in time-shared concurrent  

manner 
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Interquery Parallelism 

 More complicated to implement on shared-disk or shared-nothing 

architectures 

 Locking and logging must be coordinated by passing messages 

between processors (2PL, 2PC, ….). 

 Data in a local buffer may have been updated at another 

processor. 

 Cache-coherency has to be maintained — reads and writes of 

data in buffer must find latest version of data. 

 

Two processors do not update the same  

data independently at the same time. 

 

When a processor access or update data,  

the DBMS must ensure that the process has  

the latest version of the data in its buffer pool. 
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Intraquery Parallelism 



1.27 

Intraquery Parallelism 
 Execution of a single query in parallel on multiple processors/disks; 

important for speeding up long-running queries 

 

  Consider a query that requires a relation to be sorted on attribute A 

Assume the relation has been partitioned by range-partition on the 

same attribute A. We can  

- sort each partition in parallel 

- concatenate the sorted partitions to get the final sorted relation  

We have parallelized the query by parallelizing the sort operation. 

 

 The operator tree for a query can contain multiple operations  

We can parallelize the operations that do not depend on one 

another; and we may be able to pipeline the output of one 

operation to another operation. 
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Intraquery Parallelism 

 Two complementary forms of intraquery parallelism: 

 Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query. 

 Interoperation Parallelism – execute the different operations in 

a query expression in parallel. 

 

The first form scales better with increasing parallelism because 

the number of tuples processed by each operation is typically more 

than the number of operations in a query. 

 

The two forms can be used simultaneously in a query. 
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Parallel Processing of Relational Operations 

The algorithms for parallelizing query evaluation depends on the 

machine architecture. 

 Our discussion of parallel algorithms assumes: 

 read-only queries 

 shared-nothing architecture 

 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,   

where disk Di is associated with processor Pi. 

 

 If a processor has multiple disks they can simply simulate  

a single disk Di. 

 

 Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.    

 Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.  However, some optimizations 

may be possible. 
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Intraoperation Parallelism 

Range-Partitioning Sort 

 Choose processors P0, ..., Pm, where m  n -1 to do sorting. 

Step 1:  

 Create range-partition vector with m entries, on the sorting attribute 

(each partition the same number of tuples) 

 Redistribute the relation using range partitioning 

  all tuples that lie in the ith range are sent to processor Pi 

 Pi stores the tuples it received temporarily on disk Di.  

 This step requires I/O and communication overhead. 

Step 2: 

 Each processor Pi sorts its partition of the relation locally. 

 Each processor executes same operation (sort) in parallel with other 

processors, without any interaction with the others (data parallelism). 

 Final merge operation is trivial: range-partitioning ensures that,  

for 1 <= i < j  <= m, the key values in processor P I  are all less than the key 

values in Pj. 

 

Parallel Sort 
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Parallel Sort (Cont.) 
Parallel External Sort-Merge 

 Assume the relation has already been partitioned among  

disks  D0, ..., Dn-1 (in whatever manner). 

 Each processor Pi locally sorts the data on disk Di. 

 The sorted runs on each processor are then merged to get the final 

sorted output. 

 Parallelize the merging of sorted runs as follows: 

 The sorted partitions at each processor Pi are range-partitioned 

across the processors P0, ..., Pm-1. 

 Each processor Pi performs a merge on the streams as they are 

received, to get a single sorted run. 

 The sorted runs on processors P0,..., Pm-1 are concatenated to get 

the final result. 

m = 3 

Sort partition P0 (run0) 

Sort partition P2 (run2) 

Parallelized 

Merge 

 range-partitioned V = [5, 20 ] 

 P0: SRun0  x <=5     P1: SRun0 5<x<=20  P2: SRun0>=20 

        SRun1 x <=5            SRun1 5<x<=20        SRun1>=20 

        SRun3 x <=5            SRun2 5<x<=20        SRun2>=20 

 Merge                Merge                     Merge 

Concatenation 

Sort partition P1 (run1) 
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Parallel Join  

 The join operation requires pairs of tuples to be tested to see if they 

satisfy the join condition, and if they do, the pair is added to the join 

output. 

 Parallel join algorithms attempt to split the pairs to be tested over 

several processors.  Each processor then computes part of the join 

locally.   

 In a final step, the results from each processor can be collected 

together to produce the final result. 
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Partitioned Join 

 For equi-joins and natural joins, it is possible to partition the two input 

relations across the processors, and compute the join locally at each 

processor. 

 Let r and s be the input relations, and we want to compute r      r.A=s.B s. 

 r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and 

s0, s1, ..., sn-1. 

 Can use either range partitioning or hash partitioning. 

 r and s must be partitioned on their join attributes r.A and s.B), using 

the same range-partitioning vector or hash function. 

 Partitions ri and si are sent to processor Pi, 

 Each processor Pi locally computes ri        ri.A=si.B si. Any of the 

standard join methods can be used. 
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Partitioned Join (Cont.) 
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Fragment-and-Replicate Join 

 Partitioning not possible for some join conditions  

 E.g., non-equijoin conditions, such as r.A > s.B. 

 Not easy way of partitioning r and s such that tuple  
in ri join only tuples in si  

 

 For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique 

 Depicted on next slide 

 Special case – asymmetric fragment-and-replicate: 

 One of the relations, say r, is partitioned; any partitioning 
technique can be used. 

 The other relation, s, is replicated across all the processors. 

 Processor Pi then locally computes the join of ri with all of s using 
any join technique. 
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Depiction of Fragment-and-Replicate Joins 
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Fragment-and-Replicate Join (Cont.) 

 General case: reduces the sizes of the relations at each processor. 

 r is partitioned into n partitions,r0, r1, ..., r n-1; 

s is partitioned into m partitions, s0, s1, ..., sm-1. 

 Any partitioning technique may be used. 

 There must be at least m * n processors. 

 Label the processors as 

 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1. 

 Pi,j computes the join of ri with sj. In order to do so, ri is replicated 

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i 

 Any join technique can be used at each processor Pi,j. 
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Fragment-and-Replicate Join (Cont.) 

 Both versions of fragment-and-replicate work with any join condition, 

since every tuple in r can be tested with every tuple in s. 

 Usually has a higher cost than partitioning, since one of the 

relations (for asymmetric fragment-and-replicate) or both relations 

(for general fragment-and-replicate) have to be replicated. 

 Sometimes asymmetric fragment-and-replicate is preferable even 

though partitioning could be used. 

 E.g., say s is small and r is large, and already partitioned. It may 

be cheaper to replicate s across all processors, rather than 

repartition r and s on the join attributes. 
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Partitioned Parallel Hash-Join 
The partitioned hash join can be parallelized: 

 Assume s is smaller than r and therefore s is chosen as the build 

relation. 

 A hash function h1 takes the join attribute value of each tuple in s 

maps this tuple to one of the n processors.  

 Each processor Pi reads the tuples of s that are on its disk Di, and 

sends each tuple to the appropriate processor based on hash function 

h1. Let si denote the tuples of relation s that are sent to processor Pi.  

 As tuples of relation s are received at the  

destination processors, they are partitioned 

 further using another hash function, h2,  

which is used to compute the hash- 

join locally.  

HASH JOIN 
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Partitioned Parallel Hash-Join 

h1 h2 

h2 

h2 

h1 

h2 

Disk0 

Disk3 

Disk0 

Disk3 

h2 
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Partitioned Parallel Hash-Join (Cont.) 

 Once the tuples of s have been distributed, the larger relation r is 

redistributed across the m processors using the hash function h1 

   Let ri denote the tuples of relation r  that are sent to processor Pi. 

 As the r tuples are received at the destination processors, they are 

repartitioned using the function h2  

 (just as the probe relation is partitioned in the sequential hash-join 

algorithm). 

 Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and si of  r and s to produce a 

partition of the final result of the hash-join. 
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Parallel Nested-Loop Join 

 Assume that 

 relation s is much smaller than relation r and that r is stored by 

partitioning. 

 there is an index on a join attribute of relation r at each of the 

partitions of relation r. 

 Use asymmetric fragment-and-replicate, with relation s being 

replicated, and using the existing partitioning of relation r. 

 Each processor Pj where a partition of relation s is stored reads the 

tuples of relation s stored in Dj, and replicates the tuples to every other 

processor Pi.  

 At the end of this phase, relation s is replicated at all sites that 

store tuples of relation r.  

 Each processor Pi performs an indexed nested-loop join of relation s 

with the ith partition of relation r. 
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Parallel Nested-Loop Join 

 

P0                                     index 

   s                                        r0 

 

P1       replica of s             index 

                                                                   r1 

 

P2        

         replica of s                index               

                                                                   r2 

asymmetric fragment-and-replicate 

indexed nested-loop join of s  

with the ith partition of relation r 
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Other Relational Operations 

Selection (r) 

 If  is of the form ai = v, where ai is an attribute and v a value. 

 If r is partitioned on ai the selection is performed at a single 

processor. 

 If  is of the form i <= ai <= u  (i.e.,  is a range selection) and the 

relation has been range-partitioned on ai 

 Selection is performed at each processor whose partition overlaps 

with the specified range of values. 

 In all other cases: the selection is performed in parallel at all the 

processors. 
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Other Relational Operations (Cont.) 

 Duplicate elimination 

 Perform by using either of the parallel sort techniques 

  eliminate duplicates as soon as they are found during sorting. 

 Can also partition the tuples (using either range- or hash- 

partitioning) and perform duplicate elimination locally at each 

processor. 

 

 Projection 

 Projection without duplicate elimination can be performed as 

tuples are read in from disk in parallel. 

 If duplicate elimination is required, any of the above duplicate 

elimination techniques can be used. 
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Cost of Parallel Evaluation of Operations  

 If there is no skew in the partitioning, and there is no overhead due to 

the parallel evaluation, a parallel operation using n processors will 

take 1/n times as long as the same operation on a single processor 

 The time cost of parallel processing would be 1/n of the time cost of 

sequential processing of the operation. 

 

 If skew and overheads are also to be taken into account, the time 

taken by a parallel operation can be estimated as  

            Tpart + Tasm + max (T0, T1, …, Tn-1) 

 Tpart is the time for partitioning the relations 

 Tasm is the time for assembling the results 

 Ti is the time taken for the operation at processor Pi 

 this needs to be estimated taking into account the skew 
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Interoperator Parallelism 

 Pipelined parallelism 

 Consider a join of four relations  

 r1      r2       r3     r4 

 Set up a pipeline that computes the three joins in parallel 

 Let P1 be assigned the computation of  

 temp1 = r1     r2 

 And P2 be assigned the computation of temp2 = temp1     r3 

 And P3 be assigned the computation of temp2      r4 

 Each of these operations can execute in parallel, sending result 

tuples it computes to the next operation even as it is computing 

further results 

 Provided a pipelineable join evaluation algorithm (e.g., indexed 

nested loops join) is used 
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Independent Parallelism 

 Independent parallelism 

 Consider a join of four relations  

     r1     r2      r3      r4 

 Let P1 be assigned the computation of  
 temp1 = r1      r2 

 And P2 be assigned the computation of temp2 = r3     r4 

 And P3 be assigned the computation of temp1     temp2 

 P1 and P2 can work independently in parallel 

 P3 has to wait for input from P1 and P2 

– Can pipeline output of P1 and P2 to P3, combining 
independent parallelism and pipelined parallelism 

 Does not provide a high degree of parallelism 

 useful with a lower degree of parallelism. 

 less useful in a highly parallel system.  
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Query Optimization 
 Query optimization in parallel databases is significantly more complex than 

query optimization in sequential databases. 

 Cost models are more complicated, since we must take into account 
partitioning costs and issues such as skew and resource contention. 

 

 When scheduling execution tree in parallel system, must decide: 

 How to parallelize  each operation and how many processors  to use for it. 

 What operations to pipeline, what operations to execute independently in 
parallel, and what operations to execute sequentially, one after the other.  

   

 Determining the amount of resources to allocate for each operation is a 
problem. 

  E.g., allocating more processors than optimal can result in high 
communication overhead. 

 Long pipelines should be avoided as the final operation may wait a lot for 
inputs, while holding precious resources 

 The number of parallel evaluation plans from which to choose from is much 
larger than the number of sequential evaluation plans. 

  Therefore heuristics are needed 



1.50 

Design of Parallel Systems 

Some issues in the design of parallel systems: 

 Parallel loading of data from external sources is needed in order to 

handle large volumes of incoming data. 

 Resilience to failure of some processors or disks. 

 Probability of some disk or processor failing is higher in a parallel 

system.   

 Operation (perhaps with degraded performance) should be 

possible in spite of failure.  

 Redundancy achieved by storing extra copy of every data item at 

another processor. 
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Design of Parallel Systems (Cont.) 

 On-line reorganization of data and schema changes must be 

supported. 

 For example, index construction on terabyte databases can take 

hours or days even on a parallel system. 

 Need to allow other processing (insertions/deletions/updates) 

to be performed on relation even as index is being constructed. 

 Basic idea: index construction tracks changes and “catches up” on 

changes at the end. 

 Also need support for on-line repartitioning and schema changes 

(executed concurrently with other processing). 

 


