
Concurrency Control

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 16), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

Lock-Based Protocols

1.3

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item

 Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as well as

 written. X-lock is requested using lock-X instruction.

 2. shared (S) mode. Data item can only be read. S-lock is

 requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction can

proceed only after request is granted.

1.4

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,

 but if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.

 If a lock cannot be granted, the requesting transaction is made to wait till

all incompatible locks held by other transactions have been released.

The lock is then granted.

1.5

Lock-Based Protocols (Cont.)

 Example of a transaction performing locking:

 T2: lock-S(A);

 read (A);

 unlock(A);

 lock-S(B);

 read (B);

 unlock(B);

 display(A+B)

 Locking as above is not sufficient to guarantee serializability — if A and B

get updated in-between the read of A and B, the displayed sum would be

wrong.

 A locking protocol is a set of rules followed by all transactions while

requesting and releasing locks. Locking protocols restrict the set of

possible schedules.

1.6

Pitfalls of Lock-Based Protocols

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4
to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock.

 To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

1.7

Pitfalls of Lock-Based Protocols (Cont.)

 The potential for deadlock exists in most locking protocols. Deadlocks

are a necessary evil.

 Starvation is also possible if concurrency control manager is badly

designed. For example:

 A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock

on the same item.

 The same transaction is repeatedly rolled back due to deadlocks.

 Concurrency control manager can be designed to prevent starvation.

1.8

The Two-Phase Locking Protocol

 This is a protocol which ensures conflict-serializable schedules.

 Phase 1: Growing Phase

 transaction may obtain locks

 transaction may not release locks

 Phase 2: Shrinking Phase

 transaction may release locks

 transaction may not obtain locks

 The protocol assures serializability. It can be proved that the

transactions can be serialized in the order of their lock points (i.e.

the point where a transaction acquired its final lock).

1.9

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not ensure freedom from deadlocks

 Cascading roll-back is possible under two-phase locking. To avoid

this, follow a modified protocol called strict two-phase locking. Here

a transaction must hold all its exclusive locks till it commits/aborts.

 Rigorous two-phase locking is even stricter: here all locks are held

till commit/abort. In this protocol transactions can be serialized in the

order in which they commit.

1.10

The Two-Phase Locking Protocol (Cont.)

 There can be conflict serializable schedules that cannot be obtained if

two-phase locking is used.

T1 T2 T3

read(x)

write(x)

 read(x)

 write(x)

 read(y)

write(y)

1.11

Lock Conversions

 Two-phase locking with lock conversions:

 – First Phase:

 can acquire a lock-S on item

 can acquire a lock-X on item

 can convert a lock-S to a lock-X (upgrade)

 – Second Phase:

 can release a lock-S

 can release a lock-X

 can convert a lock-X to a lock-S (downgrade)

 This protocol assures serializability. But still relies on the programmer to

insert the various locking instructions.

1.12

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without

explicit locking calls.

 The operation read(D) is processed as:

 if Ti has a lock on D

 then

 read(D)

 else begin

 if necessary wait until no other

 transaction has a lock-X on D

 grant Ti a lock-S on D;

 read(D)

 end

1.13

Automatic Acquisition of Locks (Cont.)

 write(D) is processed as:

 if Ti has a lock-X on D

 then
 write(D)

 else begin

 if necessary wait until no other trans. has any lock on D,

 if Ti has a lock-S on D

 then

 upgrade lock on D to lock-X

 else

 grant Ti a lock-X on D

 write(D)
 end;

 All locks are released after commit or abort

1.14

Implementation of Locking

 A lock manager can be implemented as a separate process to which

transactions send lock and unlock requests

 The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case of

a deadlock)

 The requesting transaction waits until its request is answered

 The lock manager maintains a data-structure called a lock table to

record granted locks and pending requests

1.15

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data

granularities, where the small granularities are nested within larger

ones

 Can be represented graphically as a tree

 When a transaction locks a node in the tree explicitly, it implicitly locks

all the node's descendents in the same mode.

 Granularity of locking (level in tree where locking is done):

 fine granularity (lower in tree): high concurrency, high locking

overhead

 coarse granularity (higher in tree): low locking overhead, low

concurrency

1.16

Example of Granularity Hierarchy

 The levels, starting from the coarsest (top) level are

 database

 area

 file

 record

1.17

Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock

modes with multiple granularity:

 intention-shared (IS): indicates explicit locking at a lower level of

the tree but only with shared locks.

 intention-exclusive (IX): indicates explicit locking at a lower level

with exclusive or shared locks

 shared and intention-exclusive (SIX): the subtree rooted by that

node is locked explicitly in shared mode and explicit locking is

being done at a lower level with exclusive-mode locks.

1.18

Compatibility Matrix with

 Intention Lock Modes

 The compatibility matrix for all lock modes is:

IS IX S S IX X

IS

IX

S

S IX

X

1.19

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any

mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node
(that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

1.20

Deadlock Handling

 Consider the following two transactions:

 T1: write (X) T2: write(Y)

 write(Y) write(X)

 Schedule with deadlock

T1 T2

lock-X on X

write (X)
lock-X on Y

write (Y)

wait for lock-X on X

wait for lock-X on Y

1.21

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set.

 Deadlock prevention protocols ensure that the system will never

enter into a deadlock state. Some prevention strategies :

 Require that each transaction locks all its data items before it

begins execution (predeclaration).

 Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the

partial order (graph-based protocol).

1.22

More Deadlock Prevention Strategies

 Following schemes use transaction timestamps for the sake of deadlock

prevention alone.

 wait-die scheme — non-preemptive

 older transaction may wait for younger one to release data item.

Younger transactions never wait for older ones; they are rolled back

instead.

 a transaction may die several times before acquiring needed data

item

 wound-wait scheme — preemptive

 older transaction wounds (forces rollback) of younger transaction

instead of waiting for it. Younger transactions may wait for older

ones.

 may be fewer rollbacks than wait-die scheme.

1.23

Deadlock prevention (Cont.)

 Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older transactions

thus have precedence over newer ones, and starvation is hence

avoided.

 Timeout-Based Schemes :

 a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.

 thus deadlocks are not possible

 simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

1.24

Deadlock Detection

 Deadlocks can be described as a wait-for graph, which consists of a

pair G = (V,E),

 V is a set of vertices (all the transactions in the system)

 E is a set of edges; each element is an ordered pair Ti Tj.

 If Ti Tj is in E, then there is a directed edge from Ti to Tj, implying

that Ti is waiting for Tj to release a data item.

 When Ti requests a data item currently being held by Tj, then the edge

Ti Tj is inserted in the wait-for graph. This edge is removed only when

Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph has a

cycle. Must invoke a deadlock-detection algorithm periodically to look

for cycles.

1.25

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

1.26

Deadlock Recovery

 When deadlock is detected :

 Some transaction will have to rolled back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum

cost.

 Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 More effective to roll back transaction only as far as necessary

to break deadlock.

 Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid

starvation

Timestamp-Based protocol

1.28

Timestamp-Based Protocols

 Each transaction is issued a timestamp when it enters the system. If an old

transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-

stamp TS(Tj) such that TS(Ti) <TS(Tj).

 The protocol manages concurrent execution such that the time-stamps

determine the serializability order.

 In order to assure such behavior, the protocol maintains for each data Q two

timestamp values:

 W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.

 R-timestamp(Q) is the largest time-stamp of any transaction that

executed read(Q) successfully.

1.29

Timestamp-Based Protocols (Cont.)

 The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order.

 Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.

 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) W-timestamp(Q), then the read operation is executed,

and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

1.30

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is

producing was needed previously, and the system assumed that

that value would never be produced.

 Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an

obsolete value of Q.

 Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q)

is set to TS(Ti).

1.31

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

T1 T2 T3 T4 T5

read(Y)
read(X)

read(Y)
write(Y)
write(Z)

read(Z)
write(X)
abort

read(X)
write(Z)
abort

write(Y)

write(Z)

1.32

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the

arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph

 Timestamp protocol ensures freedom from deadlock as no transaction
ever waits.

 But the schedule may not be cascade-free, and may not even be
recoverable.

transaction

with smaller

timestamp

transaction

with larger

timestamp

1.33

Timestamp-based Protocol

 There can be two-phase locking schedules that are not timestamp schedules

T1 T2

 read(x)

 write(x)

read(x)

write(x)

1.34

Recoverability and Cascade Freedom

 Problem with timestamp-ordering protocol:

 Suppose Ti aborts, but Tj has read a data item written by Ti

 Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

 Further, any transaction that has read a data item written by Tj must
abort

 This can lead to cascading rollback --- that is, a chain of rollbacks

 Solution 1:

 A transaction is structured such that its writes are all performed at
the end of its processing

 All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

 A transaction that aborts is restarted with a new timestamp

 Solution 2: Limited form of locking: wait for data to be committed before
reading it

 Solution 3: Use commit dependencies to ensure recoverability

