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Lock-Based Protocols 



1.3 

Lock-Based Protocols 

 A lock is a mechanism to control concurrent access to a data item 

 Data items can be locked in two modes : 

    1.  exclusive (X) mode. Data item can be both read as well as    

         written. X-lock is requested using  lock-X instruction. 

    2.  shared (S) mode. Data item can only be read. S-lock is           

         requested using  lock-S instruction. 

 Lock requests are made to concurrency-control manager. Transaction can 

proceed only after request is granted. 
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Lock-Based Protocols (Cont.) 

 Lock-compatibility matrix 

 

 

 

 

 A transaction may be granted a lock on an item if the requested lock is 

compatible with locks already held on the item by other transactions 

 Any number of transactions can hold shared locks on an item,  

 but if any transaction holds an exclusive on the item no other 

transaction may hold any lock on the item. 

 If a lock cannot be granted, the requesting transaction is made to wait till 

all incompatible locks held by other transactions have been released.  

The lock is then granted. 
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Lock-Based Protocols (Cont.) 

 Example of a transaction performing locking: 

                       T2: lock-S(A); 

                             read (A); 

                             unlock(A); 

                             lock-S(B); 

                             read (B); 

                             unlock(B); 

                             display(A+B) 

 Locking as above is not sufficient to guarantee serializability — if A and B 

get updated in-between the read of A and B, the displayed sum would be 

wrong. 

 A  locking protocol is a set of rules followed by all transactions while 

requesting and releasing locks. Locking protocols restrict the set of 

possible schedules. 
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Pitfalls of Lock-Based Protocols 

 Consider the partial schedule 

 

 

 

 
 

 

 

 
 

 Neither T3 nor T4 can make progress — executing  lock-S(B) causes T4 
to wait for T3 to release its lock on B, while executing  lock-X(A) causes 
T3  to wait for T4 to release its lock on A. 

 Such a situation is called a deadlock.  

 To handle a deadlock one of T3 or T4 must be rolled back  
and its locks released. 
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Pitfalls of Lock-Based Protocols (Cont.) 

 The potential for deadlock exists in most locking protocols. Deadlocks 

are a necessary evil. 

 

 Starvation is also possible if concurrency control manager is badly 

designed. For example: 

 A transaction may be waiting for an X-lock on an item, while a 

sequence of other transactions request and are granted an S-lock 

on the same item.   

 The same transaction is repeatedly rolled back due to deadlocks. 

 

 Concurrency control manager can be designed to prevent starvation. 
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The Two-Phase Locking Protocol 

 This is a protocol which ensures conflict-serializable schedules. 

 Phase 1: Growing Phase 

 transaction may obtain locks  

 transaction may not release locks 

 Phase 2: Shrinking Phase 

 transaction may release locks 

 transaction may not obtain locks 

 The protocol assures serializability. It can be proved that the 

transactions can be serialized in the order of their lock points  (i.e. 

the point where a transaction acquired its final lock).  
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The Two-Phase Locking Protocol (Cont.) 

 Two-phase locking does not ensure freedom from deadlocks 

 Cascading roll-back is possible under two-phase locking. To avoid 

this, follow a modified protocol called strict two-phase locking. Here 

a transaction must hold all its exclusive locks till it commits/aborts. 

 Rigorous two-phase locking is even stricter: here all locks are held 

till commit/abort. In this protocol transactions can be serialized in the 

order in which they commit. 
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The Two-Phase Locking Protocol (Cont.) 

 There can be conflict serializable schedules that cannot be obtained if 

two-phase locking is used.   

 

T1   T2  T3 

read(x)  

write(x)  

   read(x)  

   write(x)  

     read(y)  

 

write(y) 
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Lock Conversions 

 Two-phase locking with lock conversions: 

     –   First Phase:         

 can acquire a lock-S on item 

 can acquire a lock-X on item 

 can convert a lock-S to a lock-X (upgrade) 

     –   Second Phase: 

 can release a lock-S 

 can release a lock-X 

 can convert a lock-X to a lock-S  (downgrade) 

 This protocol assures serializability. But still relies on the programmer to 

insert the various  locking instructions. 
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Automatic Acquisition of Locks 

 A transaction Ti issues the standard read/write instruction, without 

explicit locking calls. 

 The operation read(D) is processed as: 

                      if Ti has a lock on D 

                         then 

                                read(D)  

                         else begin  

                                   if necessary wait until no other   

                                       transaction has a lock-X on D 

                                   grant Ti a  lock-S on D; 

                                   read(D) 

                                end 
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Automatic Acquisition of Locks (Cont.) 

 write(D) is processed as: 

     if Ti has a  lock-X on D  

        then  
          write(D) 

       else begin 

            if necessary wait until no other trans. has any lock on D, 

            if Ti has a lock-S on D 

                 then 

                    upgrade lock on D  to lock-X 

                else 

                    grant Ti a lock-X on D 

                write(D) 
         end; 

 All locks are released after commit or abort 
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Implementation of Locking 

 A lock manager can be implemented as a separate process to which 

transactions send lock and unlock requests 

 The lock manager replies to a lock request by sending a lock grant 

messages (or a message asking the transaction to roll back, in case of  

a deadlock) 

 The requesting transaction waits until its request is answered 

 The lock manager maintains a data-structure called a lock table to 

record granted locks and pending requests 
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Multiple Granularity 

 Allow  data items to be of various sizes and define a hierarchy of data 

granularities, where the small granularities are nested within larger 

ones 

 Can be represented graphically as a tree  

 

 When a transaction locks a node in the tree explicitly, it implicitly locks 

all the node's descendents in the same mode. 

 

 Granularity of locking (level in tree where locking is done): 

 fine granularity (lower in tree): high concurrency, high locking 

overhead 

 coarse granularity  (higher in tree): low locking overhead, low 

concurrency 
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Example of Granularity Hierarchy 

 

 

 

 

 

 

 

 

 

      The levels, starting from the coarsest (top) level are 

 database 

 area 

 file 

 record  
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Intention Lock Modes 

 In addition to S and X lock modes, there are three additional lock 

modes with multiple granularity: 

 intention-shared (IS): indicates explicit locking at a lower level of 

the tree but only with shared locks. 

 intention-exclusive (IX): indicates explicit locking at a lower level 

with exclusive or shared locks 

 shared and intention-exclusive (SIX): the subtree rooted by that 

node is locked explicitly in shared mode and explicit locking is 

being done at a lower level with exclusive-mode locks. 
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Compatibility Matrix with 

 Intention Lock Modes 

 The compatibility matrix for all lock modes is:  
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Multiple Granularity Locking Scheme 

 Transaction Ti can lock a node Q, using the following rules: 

1. The lock compatibility matrix must be observed. 

2. The root of the tree must be locked first, and may be locked in any 

mode. 

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q 

is currently locked by Ti in either IX or IS mode. 

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent 
of Q is currently locked by Ti in either IX or SIX mode. 

5. Ti can lock a node only if it has not previously unlocked any node 
(that is, Ti is two-phase). 

6. Ti can unlock a node Q only if none of the children of Q are currently 

locked by Ti. 

 Observe that locks are acquired in root-to-leaf order, whereas they are 
released in leaf-to-root order. 
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Deadlock Handling 

 Consider the following two transactions: 

             T1:     write (X)               T2:    write(Y) 

                      write(Y)                         write(X) 

 Schedule with deadlock 

T1 T2 

lock-X on X 

write (X)  
lock-X on Y 

write (Y)   

wait for lock-X on X 

wait for lock-X on Y 
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Deadlock Handling 

 System is deadlocked if there is a set of transactions such that every 

transaction in the set is waiting for another transaction in the set. 

 Deadlock prevention protocols ensure that the system will never 

enter into a deadlock state. Some prevention strategies : 

 Require that each transaction locks all its data items before it 

begins execution (predeclaration). 

 Impose partial ordering of all data items and require that a 

transaction can lock data items only in the order specified by the 

partial order (graph-based protocol). 
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More Deadlock Prevention Strategies 

 Following schemes use transaction timestamps for the sake of deadlock 

prevention alone. 

 wait-die scheme — non-preemptive 

 older transaction may wait for younger one to release data item. 

Younger transactions never wait for older ones; they are rolled back 

instead. 

 a transaction may die several times before acquiring needed data 

item 

 wound-wait scheme — preemptive 

 older transaction wounds (forces rollback) of younger transaction 

instead of waiting for it. Younger transactions may wait for older 

ones. 

 may be fewer rollbacks than wait-die scheme. 
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Deadlock prevention (Cont.) 

 Both in wait-die and in wound-wait schemes, a rolled back 

transactions is restarted with its original timestamp. Older transactions 

thus have precedence over newer ones, and starvation is hence 

avoided. 

 Timeout-Based Schemes : 

 a transaction waits for a lock only for a specified amount of time. 

After that, the wait times out and the transaction is rolled back. 

 thus deadlocks are not possible 

 simple to implement; but starvation is possible. Also difficult to 

determine good value of the timeout interval. 
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Deadlock Detection 

 Deadlocks can be described as a wait-for graph, which consists of a 

pair G = (V,E),  

 V is a set of vertices (all the transactions in the system) 

 E is a set of edges; each element is an ordered pair Ti Tj.   

 If Ti   Tj is in E, then there is a directed edge from Ti to Tj, implying 

that Ti is waiting for Tj to release a data item. 

 When Ti requests a data item currently being held by Tj, then the edge 

Ti  Tj is inserted in the wait-for graph. This edge is removed only when 

Tj is no longer holding a data item needed by Ti. 

 The system is in a deadlock state if and only if the wait-for graph has a 

cycle.  Must invoke a deadlock-detection algorithm periodically to look 

for cycles. 
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Deadlock Detection (Cont.) 

Wait-for graph without a cycle Wait-for graph with a cycle 
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Deadlock Recovery 

 When deadlock is  detected : 

 Some transaction will have to rolled back (made a victim) to break 

deadlock.  Select that transaction as victim that will incur minimum 

cost. 

 Rollback -- determine how far to roll back transaction 

 Total rollback: Abort the transaction and then restart it. 

 More effective to roll back transaction only as far as necessary 

to break deadlock. 

 Starvation happens if same transaction is always chosen as 

victim. Include the number of rollbacks in the cost factor to avoid 

starvation 



Timestamp-Based protocol 
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Timestamp-Based Protocols 

 Each transaction is issued a timestamp when it enters the system. If an old 

transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-

stamp TS(Tj) such that TS(Ti) <TS(Tj).  

 The protocol manages concurrent execution such that the time-stamps 

determine the serializability order. 

 In order to assure such behavior, the protocol maintains for each data Q two 

timestamp values: 

 W-timestamp(Q) is the largest time-stamp of any transaction that 

executed write(Q) successfully. 

 R-timestamp(Q) is the largest time-stamp of any transaction that 

executed read(Q) successfully. 
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Timestamp-Based Protocols (Cont.) 

 The timestamp ordering protocol ensures that any conflicting  read 

and write operations are executed in timestamp order. 

 Suppose a transaction Ti issues a read(Q) 

1. If TS(Ti)  W-timestamp(Q), then Ti needs to read a value of Q        

that was already overwritten. 

 Hence, the read operation is rejected, and Ti  is rolled back. 

2. If TS(Ti) W-timestamp(Q), then the read operation is executed, 

and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)). 
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Timestamp-Based Protocols (Cont.) 

 Suppose that transaction Ti issues write(Q). 

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is 

producing was needed previously, and the system assumed that 

that value would never be produced.  

 Hence, the write operation is rejected, and Ti is rolled back. 

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 

obsolete value of Q.  

 Hence, this write operation is rejected, and Ti is rolled back. 

3. Otherwise, the  write operation is executed, and W-timestamp(Q) 

is set to TS(Ti). 
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Example Use of the Protocol 

A partial schedule for several data items for transactions with 
timestamps 1, 2, 3, 4, 5 

    

T1 T2 T3 T4 T5 

read(Y) 
read(X)  

read(Y) 
write(Y)  
write(Z)  

read(Z)  
write(X)  
abort   

read(X)  
write(Z)  
abort   

write(Y)  

write(Z)   
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Correctness of Timestamp-Ordering Protocol 

 The timestamp-ordering protocol guarantees serializability since all the 

arcs in the precedence graph are of the form: 

     

 

 

 

 

    Thus, there will be no cycles in the precedence graph 

 Timestamp protocol ensures freedom from deadlock as no transaction 
ever waits.   

 But the schedule may not be cascade-free, and may  not even be 
recoverable. 

transaction 

with smaller 

timestamp 

transaction 

with larger 

timestamp  
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Timestamp-based Protocol 

 There can be two-phase locking schedules that are not  timestamp schedules 

 

T1   T2   

   read(x)  

   write(x)  

read(x)  

write(x)  
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Recoverability and Cascade Freedom 

 Problem with timestamp-ordering protocol: 

 Suppose Ti aborts, but Tj has read a data item written by  Ti 

 Then Tj must abort; if Tj had been allowed to commit earlier, the 
schedule is not recoverable. 

 Further, any transaction that has read a data item written by Tj must 
abort 

 This can lead to cascading rollback --- that is, a chain of rollbacks  

  Solution 1: 

 A transaction is structured such that its writes are all performed at 
the end of its processing 

 All writes of a transaction form an atomic action; no transaction may 
execute while a transaction is being written 

 A transaction that aborts is restarted with a new timestamp 

 Solution 2: Limited form of locking: wait for data to be committed before 
reading it 

 Solution 3: Use commit dependencies to ensure recoverability 

 


