
Concurrency Control

These slides are a modified version of the slides of the book

“Database System Concepts” (Chapter 16), 5th Ed., McGraw-Hill,

by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

Lock-Based Protocols

1.3

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item

 Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as well as

 written. X-lock is requested using lock-X instruction.

 2. shared (S) mode. Data item can only be read. S-lock is

 requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction can

proceed only after request is granted.

1.4

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,

 but if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.

 If a lock cannot be granted, the requesting transaction is made to wait till

all incompatible locks held by other transactions have been released.

The lock is then granted.

1.5

Lock-Based Protocols (Cont.)

 Example of a transaction performing locking:

 T2: lock-S(A);

 read (A);

 unlock(A);

 lock-S(B);

 read (B);

 unlock(B);

 display(A+B)

 Locking as above is not sufficient to guarantee serializability — if A and B

get updated in-between the read of A and B, the displayed sum would be

wrong.

 A locking protocol is a set of rules followed by all transactions while

requesting and releasing locks. Locking protocols restrict the set of

possible schedules.

1.6

Pitfalls of Lock-Based Protocols

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4
to wait for T3 to release its lock on B, while executing lock-X(A) causes
T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock.

 To handle a deadlock one of T3 or T4 must be rolled back
and its locks released.

1.7

Pitfalls of Lock-Based Protocols (Cont.)

 The potential for deadlock exists in most locking protocols. Deadlocks

are a necessary evil.

 Starvation is also possible if concurrency control manager is badly

designed. For example:

 A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock

on the same item.

 The same transaction is repeatedly rolled back due to deadlocks.

 Concurrency control manager can be designed to prevent starvation.

1.8

The Two-Phase Locking Protocol

 This is a protocol which ensures conflict-serializable schedules.

 Phase 1: Growing Phase

 transaction may obtain locks

 transaction may not release locks

 Phase 2: Shrinking Phase

 transaction may release locks

 transaction may not obtain locks

 The protocol assures serializability. It can be proved that the

transactions can be serialized in the order of their lock points (i.e.

the point where a transaction acquired its final lock).

1.9

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not ensure freedom from deadlocks

 Cascading roll-back is possible under two-phase locking. To avoid

this, follow a modified protocol called strict two-phase locking. Here

a transaction must hold all its exclusive locks till it commits/aborts.

 Rigorous two-phase locking is even stricter: here all locks are held

till commit/abort. In this protocol transactions can be serialized in the

order in which they commit.

1.10

The Two-Phase Locking Protocol (Cont.)

 There can be conflict serializable schedules that cannot be obtained if

two-phase locking is used.

T1 T2 T3

read(x)

write(x)

 read(x)

 write(x)

 read(y)

write(y)

1.11

Lock Conversions

 Two-phase locking with lock conversions:

 – First Phase:

 can acquire a lock-S on item

 can acquire a lock-X on item

 can convert a lock-S to a lock-X (upgrade)

 – Second Phase:

 can release a lock-S

 can release a lock-X

 can convert a lock-X to a lock-S (downgrade)

 This protocol assures serializability. But still relies on the programmer to

insert the various locking instructions.

1.12

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without

explicit locking calls.

 The operation read(D) is processed as:

 if Ti has a lock on D

 then

 read(D)

 else begin

 if necessary wait until no other

 transaction has a lock-X on D

 grant Ti a lock-S on D;

 read(D)

 end

1.13

Automatic Acquisition of Locks (Cont.)

 write(D) is processed as:

 if Ti has a lock-X on D

 then
 write(D)

 else begin

 if necessary wait until no other trans. has any lock on D,

 if Ti has a lock-S on D

 then

 upgrade lock on D to lock-X

 else

 grant Ti a lock-X on D

 write(D)
 end;

 All locks are released after commit or abort

1.14

Implementation of Locking

 A lock manager can be implemented as a separate process to which

transactions send lock and unlock requests

 The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case of

a deadlock)

 The requesting transaction waits until its request is answered

 The lock manager maintains a data-structure called a lock table to

record granted locks and pending requests

1.15

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data

granularities, where the small granularities are nested within larger

ones

 Can be represented graphically as a tree

 When a transaction locks a node in the tree explicitly, it implicitly locks

all the node's descendents in the same mode.

 Granularity of locking (level in tree where locking is done):

 fine granularity (lower in tree): high concurrency, high locking

overhead

 coarse granularity (higher in tree): low locking overhead, low

concurrency

1.16

Example of Granularity Hierarchy

 The levels, starting from the coarsest (top) level are

 database

 area

 file

 record

1.17

Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock

modes with multiple granularity:

 intention-shared (IS): indicates explicit locking at a lower level of

the tree but only with shared locks.

 intention-exclusive (IX): indicates explicit locking at a lower level

with exclusive or shared locks

 shared and intention-exclusive (SIX): the subtree rooted by that

node is locked explicitly in shared mode and explicit locking is

being done at a lower level with exclusive-mode locks.

1.18

Compatibility Matrix with

 Intention Lock Modes

 The compatibility matrix for all lock modes is:

IS IX S S IX X

IS

IX

S

S IX

X











  



 



   

  

 





 

1.19

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any

mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q

is currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node
(that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti.

 Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

1.20

Deadlock Handling

 Consider the following two transactions:

 T1: write (X) T2: write(Y)

 write(Y) write(X)

 Schedule with deadlock

T1 T2

lock-X on X

write (X)
lock-X on Y

write (Y)

wait for lock-X on X

wait for lock-X on Y

1.21

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every

transaction in the set is waiting for another transaction in the set.

 Deadlock prevention protocols ensure that the system will never

enter into a deadlock state. Some prevention strategies :

 Require that each transaction locks all its data items before it

begins execution (predeclaration).

 Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the

partial order (graph-based protocol).

1.22

More Deadlock Prevention Strategies

 Following schemes use transaction timestamps for the sake of deadlock

prevention alone.

 wait-die scheme — non-preemptive

 older transaction may wait for younger one to release data item.

Younger transactions never wait for older ones; they are rolled back

instead.

 a transaction may die several times before acquiring needed data

item

 wound-wait scheme — preemptive

 older transaction wounds (forces rollback) of younger transaction

instead of waiting for it. Younger transactions may wait for older

ones.

 may be fewer rollbacks than wait-die scheme.

1.23

Deadlock prevention (Cont.)

 Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older transactions

thus have precedence over newer ones, and starvation is hence

avoided.

 Timeout-Based Schemes :

 a transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.

 thus deadlocks are not possible

 simple to implement; but starvation is possible. Also difficult to

determine good value of the timeout interval.

1.24

Deadlock Detection

 Deadlocks can be described as a wait-for graph, which consists of a

pair G = (V,E),

 V is a set of vertices (all the transactions in the system)

 E is a set of edges; each element is an ordered pair Ti Tj.

 If Ti  Tj is in E, then there is a directed edge from Ti to Tj, implying

that Ti is waiting for Tj to release a data item.

 When Ti requests a data item currently being held by Tj, then the edge

Ti Tj is inserted in the wait-for graph. This edge is removed only when

Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph has a

cycle. Must invoke a deadlock-detection algorithm periodically to look

for cycles.

1.25

Deadlock Detection (Cont.)

Wait-for graph without a cycle Wait-for graph with a cycle

1.26

Deadlock Recovery

 When deadlock is detected :

 Some transaction will have to rolled back (made a victim) to break

deadlock. Select that transaction as victim that will incur minimum

cost.

 Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 More effective to roll back transaction only as far as necessary

to break deadlock.

 Starvation happens if same transaction is always chosen as

victim. Include the number of rollbacks in the cost factor to avoid

starvation

Timestamp-Based protocol

1.28

Timestamp-Based Protocols

 Each transaction is issued a timestamp when it enters the system. If an old

transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-

stamp TS(Tj) such that TS(Ti) <TS(Tj).

 The protocol manages concurrent execution such that the time-stamps

determine the serializability order.

 In order to assure such behavior, the protocol maintains for each data Q two

timestamp values:

 W-timestamp(Q) is the largest time-stamp of any transaction that

executed write(Q) successfully.

 R-timestamp(Q) is the largest time-stamp of any transaction that

executed read(Q) successfully.

1.29

Timestamp-Based Protocols (Cont.)

 The timestamp ordering protocol ensures that any conflicting read

and write operations are executed in timestamp order.

 Suppose a transaction Ti issues a read(Q)

1. If TS(Ti)  W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.

 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) W-timestamp(Q), then the read operation is executed,

and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

1.30

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is

producing was needed previously, and the system assumed that

that value would never be produced.

 Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an

obsolete value of Q.

 Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q)

is set to TS(Ti).

1.31

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

T1 T2 T3 T4 T5

read(Y)
read(X)

read(Y)
write(Y)
write(Z)

read(Z)
write(X)
abort

read(X)
write(Z)
abort

write(Y)

write(Z)

1.32

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the

arcs in the precedence graph are of the form:

 Thus, there will be no cycles in the precedence graph

 Timestamp protocol ensures freedom from deadlock as no transaction
ever waits.

 But the schedule may not be cascade-free, and may not even be
recoverable.

transaction

with smaller

timestamp

transaction

with larger

timestamp

1.33

Timestamp-based Protocol

 There can be two-phase locking schedules that are not timestamp schedules

T1 T2

 read(x)

 write(x)

read(x)

write(x)

1.34

Recoverability and Cascade Freedom

 Problem with timestamp-ordering protocol:

 Suppose Ti aborts, but Tj has read a data item written by Ti

 Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

 Further, any transaction that has read a data item written by Tj must
abort

 This can lead to cascading rollback --- that is, a chain of rollbacks

 Solution 1:

 A transaction is structured such that its writes are all performed at
the end of its processing

 All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

 A transaction that aborts is restarted with a new timestamp

 Solution 2: Limited form of locking: wait for data to be committed before
reading it

 Solution 3: Use commit dependencies to ensure recoverability

