Concurrency Control

These slides are a modified version of the slides of the book
“Database System Concepts” (Chapter 16), 5th Ed.,

by Silberschatz, Korth and Sudarshan.

Original slides are available at

http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.mhcollege.com/
http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

Lock-Based Protocols

Lock-Based Protocols

® A lock is a mechanism to control concurrent access to a data item
m Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

® Lock requests are made to concurrency-control manager. Transaction can
proceed only after request is granted.

13

Lock-Based Protocols (Cont.)

Lock-compatibility matrix

S X
S | true | false
X | false | false

A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

Any number of transactions can hold shared locks on an item,

but if any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made to wait till
all incompatible locks held by other transactions have been released.
The lock is then granted.

14

Lock-Based Protocols (Cont.)

m Example of a transaction performing locking:
T,: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

® Locking as above is not sufficient to guarantee serializability — if A and B

get updated in-between the read of A and B, the displayed sum would be
wrong.

m A locking protocol is a set of rules followed by all transactions while

requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

15

Pitfalls of Lock-Based Protocols

®m Consider the partial schedule

T3
lock-X (B)
read(B)
B:=B - 50
write (B)

lock-S(A)
read(A)
lock-S(B)

®m Neither T; nor T, can make progress — executing lock-S(B) causes T,
to wait for T, to release its lock on B, while executing lock-X(A) causes
T, to wait for T, to release its lock on A.

B Such a situation is called a deadlock.

To handle a deadlock one of T; or T, must be rolled back
and its locks released.

1.6

Pitfalls of Lock-Based Protocols (Cont.)

® The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

m Starvation is also possible if concurrency control manager is badly
designed. For example:

A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock
on the same item.

The same transaction is repeatedly rolled back due to deadlocks.

m Concurrency control manager can be designed to prevent starvation.

1.7

The Two-Phase Locking Protocol

This is a protocol which ensures conflict-serializable schedules.
Phase 1: Growing Phase

transaction may obtain locks

transaction may not release locks
Phase 2: Shrinking Phase

transaction may release locks

transaction may not obtain locks

The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points (i.e.
the point where a transaction acquired its final lock).

1.8

The Two-Phase Locking Protocol (Cont.)

® Two-phase locking does not ensure freedom from deadlocks

m Cascading roll-back is possible under two-phase locking. To avoid
this, follow a modified protocol called strict two-phase locking. Here
a transaction must hold all its exclusive locks till it commits/aborts.

® Rigorous two-phase locking is even stricter: here all locks are held
till commit/abort. In this protocol transactions can be serialized in the
order in which they commit.

1.9

The Two-Phase Locking Protocol (Cont.)

B There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used.

T1 T2 T3
read(x)
write(X)
read(x)
write(X)
read(y)

write(y)

1.10

Lock Conversions

® Two-phase locking with lock conversions:

— First Phase:
can acquire a lock-S on item
can acquire a lock-X on item
can convert a lock-S to a lock-X (upgrade)

— Second Phase:
can release a lock-S
can release a lock-X
can convert a lock-X to a lock-S (downgrade)

®m This protocol assures serializability. But still relies on the programmer to
insert the various locking instructions.

1.11

Automatic Acquisition of Locks

®m A transaction T, issues the standard read/write instruction, without
explicit locking calls.

B The operation read(D) is processed as:
If T, has a lock on D
then
read(D)

else begin

if necessary wait until no other
transaction has a lock-X on D

grant T; a lock-S on D;

read(D)
end

1.12

Automatic Acquisition of Locks (Cont.)

m write(D) is processed as:

if T, has a lock-X on D
then
write(D)
else begin
if necessary wait until no other trans. has any lock on D,
iIf T, has a lock-S on D
then
upgrade lock on D to lock-X
else
grant T, a lock-X on D
write(D)
end,;

m All locks are released after commit or abort

1.13

Implementation of Locking

A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests

The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock)

The requesting transaction waits until its request is answered

The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

1.14

Multiple Granularity

Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones

Can be represented graphically as a tree

When a transaction locks a node in the tree explicitly, it implicitly locks
all the node's descendents in the same mode.

Granularity of locking (level in tree where locking is done):

fine granularity (lower in tree): high concurrency, high locking
overhead

coarse granularity (higher in tree): low locking overhead, low
concurrency

1.15

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
database
area
file
record

Intention Lock Modes

® |n addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

intention-shared (1S): indicates explicit locking at a lower level of
the tree but only with shared locks.

Intention-exclusive (IX): indicates explicit locking at a lower level
with exclusive or shared locks

shared and intention-exclusive (SIX): the subtree rooted by that
node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.

1.17

Compatibility Matrix with
Intention Lock Modes

® The compatibility matrix for all lock modes is:

IS IX S SIX | X

1S 4 v v v X
IX v’ v X X R
S v X v X X
S IX v X X X X

1.18

Multiple Granularity Locking Scheme

® Transaction T, can lock a node Q, using the following rules:
The lock compatibility matrix must be observed.

The root of the tree must be locked first, and may be locked in any
mode.

A node Q can be locked by T, in S or IS mode only if the parent of Q
Is currently locked by T, in either IX or IS mode.

A node Q can be locked by T, in X, SIX, or X mode only if the parent
of Q is currently locked by T, in either IX or SIX mode.

T, can lock a node only if it has not previously unlocked any node
(that is, T, is two-phase).

T, can unlock a node Q only if none of the children of Q are currently
locked by T..

m Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

1.19

Deadlock Handling

®m Consider the following two transactions:
T.: write (X) T,: write(Y)
write(Y) write(X)
m Schedule with deadlock

Tl T2
lock-X on X
write (X)
lock-X onY
write (YY)
wait for lock-X on X
wait for lock-X on Y

1.20

Deadlock Handling

System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies :

Require that each transaction locks all its data items before it
begins execution (predeclaration).

Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

1.21

More Deadlock Prevention Strategies

Following schemes use transaction timestamps for the sake of deadlock
prevention alone.

wait-die scheme — non-preemptive

older transaction may wait for younger one to release data item.
Younger transactions never wait for older ones; they are rolled back
instead.

a transaction may die several times before acquiring needed data
item

wound-wait scheme — preemptive

older transaction wounds (forces rollback) of younger transaction
Instead of waiting for it. Younger transactions may wait for older
ones.

may be fewer rollbacks than wait-die scheme.

1.22

Deadlock prevention (Cont.)

® Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older transactions
thus have precedence over newer ones, and starvation is hence
avoided.

B Timeout-Based Schemes :

a transaction waits for a lock only for a specified amount of time.
After that, the wait times out and the transaction is rolled back.

thus deadlocks are not possible

simple to implement; but starvation is possible. Also difficult to
determine good value of the timeout interval.

1.23

Deadlock Detection

Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E),

V is a set of vertices (all the transactions in the system)
E is a set of edges; each element is an ordered pair T; >T;.

If T, > T;is in E, then there is a directed edge from T; to T;, implying
that T; Is waiting for T; to release a data item.

When T, requests a data item currently being held by T;, then the edge
T; T;is Inserted in the wait-for graph. This edge is removed only when
T; is no longer holding a data item needed by T,

The system is in a deadlock state if and only if the wait-for graph has a
cycle. Must invoke a deadlock-detection algorithm periodically to look
for cycles.

1.24

Deadlock Detection (Cont.)

Iy Ty

Wait-for graph without a cycle Wait-for graph with a cycle

1.25

Deadlock Recovery

®m When deadlock is detected :

Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum
Cost.

Rollback -- determine how far to roll back transaction
Total rollback: Abort the transaction and then restart it.

More effective to roll back transaction only as far as necessary
to break deadlock.

Starvation happens if same transaction is always chosen as
victim. Include the number of rollbacks in the cost factor to avoid
starvation

1.26

Timestamp-Based protocol

Timestamp-Based Protocols

® Each transaction is issued a timestamp when it enters the system. If an old
transaction T; has time-stamp TS(T;), a new transaction T; is assigned time-
stamp TS(T;) such that TS(T;) <TS(T)).

® The protocol manages concurrent execution such that the time-stamps
determine the serializability order.

® |n order to assure such behavior, the protocol maintains for each data Q two
timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successftully.

R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

1.28

Timestamp-Based Protocols (Cont.)

® The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

B Suppose a transaction T, issues a read(Q)

If TS(T;) < W-timestamp(Q), then T, needs to read a value of Q
that was already overwritten.

Hence, the read operation is rejected, and T, is rolled back.

If TS(T,)> W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(T))).

1.29

Timestamp-Based Protocols (Cont.)

®m Suppose that transaction T; issues write(Q).

If TS(T;) < R-timestamp(Q), then the value of Q that T, is
producing was needed previously, and the system assumed that
that value would never be produced.

Hence, the write operation is rejected, and T, is rolled back.

If TS(T;) < W-timestamp(Q), then T, is attempting to write an
obsolete value of Q.

Hence, this write operation is rejected, and T, is rolled back.

Otherwise, the write operation is executed, and W-timestamp(Q)
Is set to TS(T)).

1.30

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3,4, 5

T, T, T, T, T
read(Y) read(X)
read(Y)
write(Y)
write(2)
read(Z)
write(X)
read(X) Ao _
write(2)
abort _
write(Y)
write(Z)

1.31

Correctness of Timestamp-Ordering Protocol

® The timestamp-ordering protocol guarantees serializability since all the
arcs in the precedence graph are of the form:

transaction
with larger
timestamp

transaction
with smaller
timestamp

A 4

Thus, there will be no cycles in the precedence graph

® Timestamp protocol ensures freedom from deadlock as no transaction
ever waits.

m But the schedule may not be cascade-free, and may not even be
recoverable.

1.32

Timestamp-based Protocol

m There can be two-phase locking schedules that are not timestamp schedules

T1 T2
read(x)
write(X)

read(x)

write(X)

1.33

Recoverability and Cascade Freedom

® Problem with timestamp-ordering protocol:
Suppose T, aborts, but T; has read a data item written by T,

Then TJ- must abort; If TJ- had been allowed to commit earlier, the
schedule is not recoverable.

Further, any transaction that has read a data item written by T; must
abort

This can lead to cascading rollback --- that is, a chain of rollbacks
m Solution 1:

A transaction is structured such that its writes are all performed at
the end of its processing

All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

A transaction that aborts is restarted with a new timestamp

® Solution 2: Limited form of locking: wait for data to be committed before
reading it

m Solution 3: Use commit dependencies to ensure recoverability

1.34

