
Exercise

Let’s consider the following relational schema for a group of insurance companies located in

different cities:

CUSTOMER(Id_cust, Name, Age, City_cust)

INSURANCE_COMPANY(Id_company, Id_Director, nEmployee, City)

POLICY(Id_policy, Id_cust, Id_company, expiry_date)

Primary keys are underlined in the relations. Moreover, Id_cust in POLICY is foreign key of

CUSTOMER; Id_company in POLICY is foreign key of INSURANCE_COMPANY and

Id_Director in INSURANCE_COMPANY foreign key of CUSTOMER.

A customer can have more than one policy in the same company or in different companies.

Expiry_date in POLICY is a year.

Assume that:

nCUSTOMER =2000 V(Id_cust, POLICY) = 2000

nINSURANCE_COMPANY = 20 V(Id_company, POLICY) = 20

nPOLICY = 100.000 V(expiry_date, POLICY) = 20

 V(City, INSURANCE_COMPANY) = 5

Given the query:

“Name of customers holding policies with companies located in Pisa and with expiry date 2010”

1) express the query as a relational-algebra expression;

2) show the basic steps of the query optimization process in terms of relational-algebra

expression transformations

3) give an efficient strategy for computing the query.

Point 1

CUSTOMER.Name (INSURANCE_COMPANY. City=Pisa and POLICY.expiry_date= 2010 (

 (CUSTOMER |X| CUSTOMER.Id_cust=POLICY.Id_cust POLICY)

 |X|POLICY.Id_company=INSURANCE_COMPANY.Id_company INSURANCE_COMPANY))

Let C, IC and P denote CUSTOMER, INSURANCE_COMPANY and POLICY, respectively.

C.Name (IC. City=Pisa and P.expiry_date= 2010 ((C |X| C.Id_cust=P.Id_cust P) |X|P.Id_company=IC.Id_company IC))

Point 2

IC. City=Pisa and P.expiry_date=2010 (…..) can be rewritten as: IC. City=Pisa (P.expiry_date=2010 (…..))

C.Name (IC. City=Pisa ( P.expiry_date= 2010 ((C |X| C.Id_cust=P.Id_cust P) |X|P.Id_company=IC.Id_company IC)))

Push selection down

C.Name ((C |X| C.Id_cust=P.Id_cust ( P.expiry_date= 2010 (P))) |X|P.Id_company=IC.Id_company (IC. City=Pisa (IC)))

Push projection down

C.Name ((C.Name, C.Id_cust C) |X| C.Id_cust=P.Id_cust (P.Id_cust, P.Id_company ( P.expiry_date= 2010 P))

 |X|P.Id_company=IC.Id_company (IC.Id_company (IC. City=Pisa (IC)))

 We evaluate the size and the number of different values for the new relations.

 Let C’ = C.Name, C.Id_cust (C)

 nC’ = nCUSTOMER = 2000 Id_cust is a key

 Let P’ =  P.expiry_date= 2010 (P)

 nP’ = nPOLICY / V(expiry_date, POLICY) = (100.000/20) = 5.000

 V(Id_cust, P’) = min(nP’ , V(Id_cust, P)) = min(5.000, 2.000) = 2.000

 V(Id_company, P’) = min(nP’ , V(Id_company, P)) = min(5.000, 20) = 20

 Let P” = P.Id_cust, P.Id_company (P’)

 nP” = min(nP’ , V(Id_cust, P’) * V(Id_company, P’)) = min (5.000, 2.000 * 20) = 5.000

 V(Id_cust, P”) = 2.000

 V(Id_company, P”) = 20

 Let IC’ = IC. City=Pisa (IC)

 nIC’ = (nINSURANCE_COMPANY / V(City, INSURANCE_COMPANY) = (20/5) = 4

 V(Id_company, IC’) = nIC’ = 4

 Let IC” = IC.Id_company (IC’)

 nIC” = nIC’ = 4 (Id_company is a key)

Point 3

The query expression can be rewritten using natural join operator. Natural join is commutative.

C.Name (C’ |X| P” |X| IC”)

We estimate the size of different combinations of join.

Let T1 = (C’ |X| C’.Id_cust=P”.Id_cust P”)

Number of records in the result:

Id_cust in P” is foreign key of C’ (note that C’ and C have the same values of Id_cust)

 nT1 = nP” = 5000

Let T2 = (C’ |X| IC”) Cartesian product

Number of records in the result:

nT2 = (nC’ * nIC”) = 2000 * 4 = 8000

Let T3 = (P” |X|P”.Id_company=IC”.Id_company IC”)

Number of records in the result:

 Id_company in P” is not foreign key of IC”

 Id_company in P” is a key of IC”

 nT3 < nP” < 5.000

More precisely :

nT3 = number of policies at each insurance company * number of companies

-number of policies at each insurance company: nP” / V(Id_company, P”) = 5.000 / 20 = 250

-number of insurance companies: nIC” = 4

 nT3 = 250 * 4 = 1.000

Rule applied by the optimizer:

min(nP” * (nIC’’ / V(Id_company, IC”), nIC” * (nP’’ / V(Id_company, P”)) =

min(5000 * (4/4), 4*(5.000/ 20)) = min(5.000, 1.000) = 1.000

The best ordering of join is : (C’ |X| C’.Id_cust=P”.Id_cust (P” |X| P”.Id_company=IC”.Id_company IC”))

An efficient strategy for solving the query is:

 C.Name (C’ |X| C’.Id_cust=P”.Id_cust (P” |X| P”.Id_company=IC”.Id_company IC”))

