Exercise

Let's consider the following relational schema for a group of insurance companies located in different cities:

CUSTOMER(<u>Id_cust</u>, Name, Age, City_cust) INSURANCE_COMPANY(<u>Id_company</u>, Id_Director, nEmployee, City) POLICY(<u>Id_policy</u>, Id_cust, Id_company, expiry_date)

Primary keys are underlined in the relations. Moreover, Id_cust in POLICY is foreign key of CUSTOMER; Id_company in POLICY is foreign key of INSURANCE_COMPANY and Id_Director in INSURANCE_COMPANY foreign key of CUSTOMER. A customer can have more than one policy in the same company or in different companies. Expiry_date in POLICY is a year.

Assume that:	
$n_{\text{CUSTOMER}} = 2000$	$V(Id_cust, POLICY) = 2000$
$n_{\text{INSURANCE}_\text{COMPANY}} = 20$	$V(Id_company, POLICY) = 20$
$n_{POLICY} = 100.000$	$V(expiry_date, POLICY) = 20$
	V(City, INSURANCE_COMPANY) = 5

Given the query:

"Name of customers holding policies with companies located in Pisa and with expiry date 2010"

- 1) express the query as a relational-algebra expression;
- 2) show the basic steps of the query optimization process in terms of relational-algebra expression transformations
- 3) give an efficient strategy for computing the query.

Point 1

 $\Pi_{\text{CUSTOMER.Name}}(\sigma_{\text{INSURANCE}_COMPANY. City=Pisa and POLICY.expiry_date= 2010})$

(CUSTOMER |X|_{CUSTOMER.Id_cust=POLICY.Id_cust} POLICY) |X|_{POLICY.Id_company=INSURANCE_COMPANY.Id_company} INSURANCE_COMPANY))

Let C, IC and P denote CUSTOMER, INSURANCE_COMPANY and POLICY, respectively. $\Pi_{C.Name}$ ($\sigma_{IC. City=Pisa and P.expiry_date= 2010$ ((C |X|_{C.Id_cust=P.Id_cust} P) |X|_{P.Id_company=IC.Id_company} IC))

Point 2

 $\sigma_{\text{IC. City=Pisa and P.expiry_date=2010 (....)}}$ can be rewritten as: $\sigma_{\text{IC. City=Pisa (}} \sigma_{\text{P.expiry_date=2010 (....)}})$

 $\Pi_{C.Name} \left(\sigma_{IC.\ City=Pisa} \left(\sigma_{P.expiry_date=\ 2010} \left(\begin{array}{cc} (C \ |X|_{C.Id_cust=P.Id_cust}\ P) \ |X|_{P.Id_company=IC.Id_company} \ IC) \right) \right) \right)$

Push selection down

 $\Pi_{C.Name} \left(\begin{array}{cc} (C \ |X|_{C.Id_cust=P.Id_cust} \left(\sigma_{P.expiry_date=\ 2010} \left(P \right) \right) \right) \ |X|_{P.Id_company=IC.Id_company} \left(\sigma_{IC.\ City=Pisa} \left(IC \right) \right) \right)$

Push projection down

 $\begin{array}{l} \Pi_{C.Name} \left(\begin{array}{c} (\Pi_{C.Name, \ C.Id_cust} \ C) \ |X|_{C.Id_cust=P.Id_cust} & (\Pi_{P.Id_cust, \ P.Id_company} \ (\sigma_{\ P.expiry_date=\ 2010} \ P) \right) \\ |X|_{P.Id_company=IC.Id_company} \ (\Pi_{IC.Id_company} \ (\sigma_{\ IC.\ City=Pisa} \ (IC)) \end{array} \right)$

We evaluate the size and the number of different values for the new relations.

 $\begin{array}{l} \mbox{Let } C' = \Pi_{C.Name, \ C.Id_cust} \ (\ C \) \\ n_{C'} = n_{CUSTOMER} \ = 2000 \qquad Id_cust \ is \ a \ key \end{array}$

Let P' = $\sigma_{P.expiry_date=2010}$ (P) $n_{P'} = n_{POLICY} / V(expiry_date, POLICY) = (100.000/20) = 5.000$ $V(Id_cust, P') = min(n_{P'}, V(Id_cust, P)) = min(5.000, 2.000) = 2.000$ $V(Id_company, P') = min(n_{P'}, V(Id_company, P)) = min(5.000, 20) = 20$ Let P'' = $\Pi_{P.Id_cust, P.Id_company}$ (P') $n_{P''} = min(n_{P'}, V(Id_cust, P') * V(Id_company, P')) = min(5.000, 2.000 * 20) = 5.000$ $V(Id_cust, P'') = 2.000$ $V(Id_company, P'') = 20$ Let IC' = $\sigma_{IC. City=Pisa}$ (IC) $n_{IC'} = (n_{INSURANCE_COMPANY} / V(City, INSURANCE_COMPANY) = (20/5) = 4$ $V(Id_company, IC') = n_{IC'} = 4$ Let IC'' = $\Pi_{IC.Id_company}$ (IC')

 $n_{IC''} = n_{IC'} = 4$ (Id_company is a key)

Point 3

The query expression can be rewritten using natural join operator. Natural join is commutative. $\Pi_{C.Name}$ (C' /X/ P" /X/ IC")

We estimate the size of different combinations of join.

Let $T1 = (C' |X|_{C'.Id cust=P''.Id cust} P'')$ Number of records in the result: Id_cust in P" is foreign key of C' (note that C' and C have the same values of Id_cust) $n_{T1} = n_{P''} = 5000$ Let T2 = (C' |X| |IC'') Cartesian product Number of records in the result: $n_{T2} = (n_{C'*} n_{IC''}) = 2000 * 4 = 8000$ Let $T3 = (P'' | X|_{P''.Id company=IC''.Id_company} IC'')$ Number of records in the result: Id company in P" is not foreign key of IC" Id company in P" is a key of IC" $n_{T3} < n_{P''} < 5.000$ More precisely : n_{T3} = number of policies at each insurance company * number of companies -number of policies at each insurance company: $n_{P''}$ / V(Id_company, P'') = 5.000 / 20 = 250 -number of insurance companies: $n_{IC^{*}} = 4$ $n_{T3} = 250 * 4 = 1.000$ Rule applied by the optimizer: min($n_{P''}$ * ($n_{IC''}$ / V(Id_company, IC''), $n_{IC''}$ * ($n_{P''}$ / V(Id_company, P'')) = $\min(5000 * (4/4), 4*(5.000/20)) = \min(5.000, 1.000) = 1.000$ The best ordering of join is : $(C' |X|_{C'.Id_cust=P''.Id_cust} (P'' |X|_{P''.Id_company=IC''.Id_company} IC''))$

An efficient strategy for solving the query is: $\Pi_{C.Name} (C' /X / C'.Id_cust=P''.Id_cust (P'' /X / P''.Id_company=IC''.Id_company IC''))$