
 Exercise (B+-tree index)

Suppose we have a relation r = (A,B,C), with A primary key.

Assume

nr = 100.000 number of records in the relation

Lr = 50 byte size of a record (fixed length record)

LA = 6 byte size of attribute A

Lp = 4 byte size of a pointer

Lb = 1000 byte size of a block

Heap file organization

1. Show the number of leaves of a B+-tree index on search-key A

2. Cost in terms of number of block transfers from disk of the queries:

 1) select * from r where A=xxx;

 2) select * from r where 2.000 <= A < 3.000;

 assuming A uniformly distributed on the interval [1; 500.000]

3) select * from r where B = xxxx;

where B is not a key

Point 1

Heap file organization

We have a B+-tree secondary index. The index is dense, with an entry in the leaves for every

search-key value in the file. Since A is a key of the relation, the number of search-key values in the

leaves of the B+tree is equal to the number of records in the file (100.000).

We evaluate the maximum number of (key, point) in a node (blocking factor of the index, named fI)

We evaluate the minimum number of (key, point) in a node.

 m/2  = 50 minimum number of pointers in a node

 m/2  - 1 = 49 number of search-key values

6+4

1000-4

= 99

= 1011
100.000

99

(LA+Lp)

Lb - Lp

=

m = 100 fanout of the nodes: max number of pointers in a node
m-1 = 99 number of search-key values

Minimum number of leaf nodes in the B+-tree

k’ k k’

k

nonleaf node leaf node

fI =

structure of a node

Number of leaves: 1011 <= nleaves <= 2041

==

Let h be the height of a B+-tree, it can be shown that

Full nodes:

 1 level 1

 |

 m level 2

 |

 m*m level 3

 ……………….

 m*m … *m => mh-1 level h

- number of blocks (nodes) is:

- number of search-key values is:

Given the number of leaves, the height of the B+tree can be computed as follows:

Half full nodes:

- number of blocks (nodes) is:

- number of search-key values is:

- height of the tree

 h = 1+ log m/2  (nleaves)

==

 m/2  h-1 -1

 m/2  -1

= 1 + 2

= 2041
100.000

49

1 + 2 + 2  m/2  + …. + 2  m/2  h-2 =

2  m/2  h-1 -1 (number of nodes * min number of values in the node)

m h -1 (number of nodes * number of values in the node)

1 + m + m2 + ... + mh-1= (mh -1) / (m-1)

nleaves = mh-1

h-1 = logm (nleaves)

h = 1 + logm (nleaves)

Maximum number of leaf nodes in the B+-tree

Point 2

 Hight of the B+-tree

 1 + log100 (1011) <= h <= 1+log50(2041)

 h = 3

 Worst-case scenario. h=3

 Point 2.1

 select * from R where A=xxx

Cost of the query:

 C = height of the B+-tree + 1 block for the file

 C = 3 + 1 = 4

Point 2.2

select * from R where 2.000 <=A<3.000

- Cost of the query using the index

 fs = 1.000/500.000 = 1/500 selectivity factor of the query

 Let h be the height of the B+-tree

 C = (h-1) +  fs* nleaves  +  fs* nr 

 Number of leaf node transfers:

  fs* nleaves  =  1/500 *2041 =5

 Number of file block transfers:

  fs* nr  =  1/500 *100.000 =200

(heap file organization, a block transfer for each record)

 C= 2 + 5 + 200 = 207

 - Cost of sequential scan of the file

 Number of blocks of the file: 5000

 Worst case cost: 5000 and the best case cost is 1. On average, we have:(nb + 1)/2 = 2.500

 C’ = 5000

Cost of the query: min(C, C’) = min(205, 5.000) = 205

Point 2.3

select * from r where B = xxxx;

No index on B. Moreover B is not a key. We estimate C = nb

 C = 5.000

Exercise (B+-tree index)

Same exercise, assuming sequential file organization on search key A.

Point 1

Sparse index. We have number of values in the index equal to number of blocks of the file. We

evaluate the number of blocks in the file.

 Number of leaves: 51 <= nleaves <= 103

Point 2

1 + log100 (51) <= h <= 1+log50(103)

 2 <= h <= 3

Worst-case scenario. h=3

= 103
5.000

49

= 5.000

100.000

nb =

20

nr
nb =

fr

50

= 20

1000

fr =

Lr

Lb
fr =

= 51
5.000

99

Maximum number of leaf nodes in the B+-tree

Minimum number of leaf nodes in the B+-tree

blocking factor of the relation r
max number of records in a
block of the file

number of blocks of the file

Point 2.1

select * from R where A=xxx

- Cost of the query using the index

 C = height of the B+-tree + 1 block for the file

 C = 3 + 1 = 4

- Cost of the query using binary search

 C’ = log2 nb =  log2 5.000 = 13

Cost of the query: min(C, C’) = min(4, 13) = 4

Point 2.2

select * from R where 2.000 <=A<3.000

- Cost using the index:

 fs = 1/500

 C = (h-1) +  fs* nleaves  +  fs* nb 

Number of leaves transfers:

  fs* nleaves  =  1/500 *103 =1

 Number of file block transfers:

  fs* nb  =  1/500 *5000 =10

 (sequential file organization, records are stored in search-key order in the blocks)

 C = 2 + 1 +10 = 13

 Point 2.3

 select * from r where B = xxxx;

 No index on B. Moreover B is not a key. We estimate C = nb

 C = 5.000

