Exercise (B+-tree index)

Suppose we have a relation r = (A,B,C), with A primary key.

Assume

nr =100.000 number of records in the relation

Lr =50 byte size of a record (fixed length record)
LA =6 byte size of attribute A

Lp =4 byte size of a pointer

Lb = 1000 byte size of a block
Heap file organization

1. Show the number of leaves of a B+-tree index on search-key A
2. Cost in terms of number of block transfers from disk of the queries:

1) select * from r where A=xxXx;
2) select * from r where 2.000 <= A < 3.000;

assuming A uniformly distributed on the interval [1; 500.000]
3) select * from r where B = xXxxx;

where B is not a key

Point 1
k K structure of a node K —
v V)4 \ | |
“ I
nonleaf node leaf node

Heap file organization

We have a B+-tree secondary index. The index is dense, with an entry in the leaves for every
search-key value in the file. Since A is a key of the relation, the number of search-key values in the
leaves of the B+tree is equal to the number of records in the file (100.000).

We evaluate the maximum number of (key, point) in a node (blocking factor of the index, named f;)

Lb-Lp 1000-4
f| = = =99
(LA+Lp) 6+4
m = 100 fanout of the nodes: max number of pointers in a hode
m-1 =99 number of search-key values
100.000 1 _, 014 Minimum number of leaf nodes in the B+-tree
99

We evaluate the minimum number of (key, point) in a node.

[m/2] =50 minimum number of pointers in a node
[m/21]-1=49 number of search-key values

100.000) .
=2041 Maximum number of leaf nodes in the B+-tree

49

Number of leaves: 1011 <= neaves <= 2041

Let h be the height of a B+-tree, it can be shown that

Full nodes:
1 level 1
I‘L level 2
m’l‘m level 3
m*m *m :>mhl level h

- number of blocks (nodes) is:
1+m+m2+...+mhil= (mh-1)/(m-1)

- number of search-key values is:
m"-1 (number of nodes * number of values in the node)

Given the number of leaves, the height of the B+tree can be computed as follows:

Nieaves = MM1
h-1= |Ogm (nleaves)

h=1+logm (nleaves)
Half full nodes:

- number of blocks (nodes) is:
1+2+2[m2 1+....+2[m2 2=

h-1 _
C14 o [m/27 -1

[m27 -1
- number of search-key values is:

2[m/2 1M -1 (number of nodes * min number of values in the node)

- height of the tree
h=1+ log m21 (nleaves)

Point 2
Hight of the B+-tree
1 +log100 (1011) <= h <= 1+logs0(2041)
V\r}o_rse,t-case scenario. h=3

Point 2.1
select * from R where A=xxx

Cost of the query:

C = height of the B+-tree + 1 block for the file
C=3+1=4

Point 2.2

select * from R where 2.000 <=A<3.000
- Cost of the query using the index
fs = 1.000/500.000 = 1/500 selectivity factor of the query
Let h be the height of the B+-tree
C=(h-1) + /fs* Nicaves /+/fs*n; /
Number of leaf node transfers:
/¥5* Nieaves /= / 1/500 *2041 /=5
Number of file block transfers:
/fs* n. /=/ 1/500 *100.000 /=200
(heap file organization, a block transfer for each record)

C=2+5+200 =207

- Cost of sequential scan of the file
Number of blocks of the file: 5000
Worst case cost: 5000 and the best case cost is 1. On average, we have:(np + 1)/2 = 2.500
C’ =5000

Cost of the query: min(C, C’) =min(205, 5.000) = 205

Point 2.3

select * from r where B = XxxX;

No index on B. Moreover B is not a key. We estimate C =njp
C =5.000

Exercise (B+-tree index)
Same exercise, assuming sequential file organization on search key A.

Point 1

Sparse index. We have number of values in the index equal to number of blocks of the file. We
evaluate the number of blocks in the file.

Lb 1000 _ _
fr= fr= =20 blocking factor of the relation r
max number of records in a
Lr 50 block of the file
o [100.000 7| .
Np = Np = - 5.000 number of blocks of the file
fr 20
5.000 —51 Minimum number of leaf nodes in the B+-tree
99
5.000 . .
=103 Maximum number of leaf nodes in the B+-tree
49

Number of leaves: 51 <= nieaves <= 103
Point 2

1 + log1o00 (51) <= h <= 1+l0gs0(103)
2<=h<=3

Worst-case scenario. h=3

Point 2.1
select * from R where A=xxx
- Cost of the query using the index
C = height of the B+-tree + 1 block for the file
C=3+1=4

- Cost of the query using binary search
C’ =[log, np1=[log> 5.0001=13

Cost of the query: min(C, C’) =min(4, 13) = 4
Point 2.2
select * from R where 2.000 <=A<3.000
- Cost using the index:
fs = 1/500
C =(h-1) + /fs* Nieaves /+/fs*ny /
Number of leaves transfers:
/1* Neaves /= /' 1/500 *103 /=1
Number of file block transfers:
[fs* np /=/1/500 *5000 /=10
(sequential file organization, records are stored in search-key order in the blocks)

C=2+1+10=13

Point 2.3
select * from r where B = xxxx;

No index on B. Moreover B is not a key. We estimate C =np
C =5.000

