

An example of distributed deadlock detection algorithm (IBM DB2).

Distributed transaction: a transaction that has been split into into subtransactions executed at
different nodes.
When a subtransaction T1 of T activates a subtransaction T2 of T at a different node,
T1 waits for the termination of T2.

A transaction Ti waits for a transaction Tj in two different cases:
- Ti waits for a lock to be released by Tj.
- Ti waits for the termination of the subtransaction Tj executed at a different node.

We use wait-for sequences local at nodes.
Assume we have the following wait-for sequence at node 1:
 Ein -> Ti -> Tj-> Eout

We have that:

- a subtransaction executed at node nin waits for Ti
- Ti waits for a lock to be released by Tj at node 1
- Tj waits for the completion of a subtransaction executed at node nout.

Steps of the algorithm:

1) each node must identify the wait-for sequences in its wait-for-graph
2) to guarantee the same deadlock be detected only at one node,

each node sends wait-for sequences according to the following rules:
 - only sequences Ein -> Ti -> Tj-> Eout such that i>j are sent

 - sequences are sent only to the node nout
3) upon receiving the wait-for-sequences, each node updates its local wait-for graph;
 if a deadlock is detected, one transaction is selected and aborted. The decision is
 sent to all the other nodes.

Exercise (Distributed Deadlock detection algorithm)

Assume we have the following local wait-for graphs:

 Show the application of the distributed deadlock detection algorithm.

Step 1)

 Node 1:
 E4 -> T1 -> T6-> E4
 E2 -> T5 -> T6-> E4

T1 T5 T6 E4

E4 E2

T3 T2 T5 E1

E3

T2 T4 E4 E2 T6 T4 T1 E1

E1 E3

Node 1 Node 2

Node 3 Node 4

 Node 2:
 E3 -> T2 -> T5-> E1

 Node 3:
 -

 Node 4:
 E1 -> T6 -> T1-> E1
 E3 -> T4-> T1-> E1

Step 2)
 Node 1:
 sequences are not sent (i<j)

 Node 2:
 sequences are not sent (i<j)

 Node 3:
 There are no sequences

 Node 4:
 E1 -> T6 -> T1-> E1 is sent to node 1
 E3 -> T4-> T1-> E1 is sent to node 1

Step 3)
 Node 1:
 Updates its local wait-for graph:

 A deadlock is detected (cycle T1, T5, T6). One transaction is rolled back.
 The decision is sent to the other nodes.

 Node 2:
 Local-wait-for graph unchanged

 Node 3:
 Local-wait-for graph unchanged

 Node 4:
 Local-wait-for graph unchanged

T4 T1 T5 E2

E3 E4 T6 E4

