
1

 Redundancy in fault tolerant computing

 D. P. Siewiorek R.S. Swarz,

Reliable Computer Systems,

Prentice Hall, 1992

2

 HARDWARE REDUNDANCY

 Physical replication of hw

 (the most common form of redundancy)

 The cost of replicating hw within a system is decreasing because the

costs of hw is decreasing

 INFORMATION REDUNDANCY

 Addition of redundant information to data in order to allow fault

detection and fault masking

 TIME REDUNDANCY

 Attempt to reduce the amount of extra hw at the expense of using

additional time

 SOFTWARE REDUNDANCY

 Fault detection and fault tolerance implemented in sw

Redundancy

Fault tolerance computing is based on redundancy

3

HARDWARE REDUNDANCY

4

Hardware redundancy

 Passive fault tolerant techniques

 - use fault masking to hide the occurrence of faults

 - rely upon voting mechanisms to mask the occurrence of faults

 - do not require any action on the part of the system / operator

 - generally do not provide for the detection of faults

 Active fault tolerance techniques (dynamic approach)

 - fault detection, location and recovery

 - detect the existence of faults and perform some actions to remove

 the faulty hw from the system

 - require the system to perform reconfiguration to tolerate faults

 - common in applications where temporary, erroneous results are

 acceptable while the system reconfigures (satellite systems)

 Hybrid approach

 - very expensive

 - often used in critical computations in which fault masking is required to

 prevent momentary errors and high reliability must be achieved

5

Passive fault tolerance technique
Triple Modular Redundancy (TMR) – fault masking

Module 1

Module 3

Module 2 Voter
output

Triplicate the hw (processors, memories, ..) and perform a majority vote to determine the output of the

system

 - 2/3 of the modules must deliver the correct results

 - effects of faults neutralised without notification of their occurrence

 - masking of a failure in any one of the three copies

If we assume that a failed module output is always incorrect tolerates one faulty module

Sometimes some failures in two or more modules may occurr in such a way that a failure is avoided

Example

 - stuck-at-1 in a module line; stuck-at-0 in another copy at the same line,

 correct voted result (compensating failures)

 - failure at location 127 in a memory; failure at location 10 in another copy,

 correct voted result (non overlapping failures)

6

Module1

Module 3

Module 2
Voter

Voter

Voter

Difficulties:

 Delay in signal propagation:

 - due to the voter

 - due to multiple copies synchronisation

 Trade-off : achieved fault tolerance vs hw required

 Voter: if the Voter fails, the complete system fails

 Voter is a single point of failure

Triplicated Voters in a TMR configuration

If triplicated output is desired, the single point of failure is removed

7

Triplicated voters: voter errors propagates only of one step

Cascading TMR

Cascading TMR with triplicated voters

A complex system can be partitioned into smaller subsystems

The effect of partitioning of modules (A, B, C) is that the design can withstand

more failures than the solution with only one large triplicated module

The partition cannot be extended to arbitrarily small modules, because

reliability improvement is bounded by the reliability of the voter

8

Voter:

 Hardware voters are bit voters that compute the majority on n input bits.

 Optimal designs of hardware voters with respect to circuit complexity, number of

logic levels, fan-in and fan-out, power dissipation, …, in order to obtain high

reliability

1 bit majority voter

OUT = AB + BC + AC

In digital systems majority voting is normally performed by a bit-by-bit basis. For 1 bit line, majority

vote can be performed by a 1bit adder.

- if a module has n output lines, the TMR implementation has n single bit voters

- due to the cost of the voting unit, TMR is used at module level

9

Problems with voting procedure on analog signals:

using multiple analog to digital convertes and performing bit-by-bit

voting on their digital output is not satisfactory. The three results from the analog to

digital converters may not completely agree, for example, they could produce a result

which differs for the least-significant bit even if the exact signal is passed through the

same converter

 Perform voting in the analog domain:

 average the three signals

 choose the mean of the two most most similar signals

 choose the median of the three signals (pseudo voting)

N-Modular Redundancy with Voting
 - n is made an odd number

 - 5MR tolerates 2 faulty modules

 Coverage:

 m faulty modules, with n = 2m +1

 Good for transient faults

 For permanent faults, since the faulty module is not isolated,

 the protective fault tolerance decreases

10

Active hw redundancy

Module 1

Module 2

output
input

1. Duplication with comparison scheme (duplex systems)

 - two identical pieces of hw (Module1 and Module 2) are employed

 - they perform the same computation in parallel

 - when a failure occurs, the two outputs are no more identical and a simple comparison

detects the fault

- Then the comparator (hw component) selects the output and reconfigure the switch

to select the correct value

 The comparator must select the correct value: the comparator uses

 range checks, assertions, parity checks, ….

 executed at each clock period

comparator
switch

Sometimes named dual-modular redundancy

11

Problems:

- need to check if the output data are valid. The comparator may not be able to perform an

exact comparison, depending on the application area (digital control applications)

- faults in the comparator may cause an error indication when no error exists or possible faults

 in duplicated modules are never detected

Advantages:

- Simplicity, low cost, low performance impact of the comparison technique, applicable

 to all levels and areas

- Coverage:

 detects all single faults except those of the comparison element

12

- hot spares

the spares operate in synchrony

with the on line modules, and

they are prepared to take over

- warm spares

the spares are running but

receive inputs only after switching

- cold spares

the spares are unpowered until

needed to replace a faulty

module

2. Stand-by sparing

input output

Module 1

Module 2

Module n

error detection

error detection

error detection

switch .
.
.

• Part of the modules are operational, part of the modules are spares modules (used as

replacement modules)

• The switch can decide no longer use the value of a module (fault detection and

localization). The faulty module is removed and replaced with one of the spares. The

switch can activate another module.

Reconfiguration process can be viewed as a switch that accepts the module’s outputs and error reports

As long as the outputs agree, the spares are not used. When a miscompare occurs, the switch uses

the error reports from the modules to identify the faulty module and then select a replacement module.

13

 A module is a duplex system, pairs

connected by a comparator

 Duplex systems are connected to

spares by a switch

 As long as the two outputs agree, or

the comparator can detect the right

value, the spare is not used.

Otherwise, the comparator signals

the switch that it is not able to

compute the right value and the

switch operates a replacemnet

using the spare.

 Used in commercial systems, safety

critical system (aviation, railways, …)

Different schemes can be implemented

input

output

Module 1

Module 2

switch

Pair-and-spare approach

Module 1

Module 2

comparator

comparator

spare

Pair results are used in a spare arrangment. Spare components at coarser granularity

Not all four copies must be synchronised (only the two pairs)

14

Hybrid approaches

Combine both the active and passive approaches

Very expensive in terms of the amount of hw required to implement a system

Applied in safety critical applications

NMR with spares (Reconfigurable NMR):

Modules arranged in a voting configuration

 - spares to replace faulty units

 - rely on detection of disagreements and determine the module(s)

 not agreeing with the majority

15

NMR with spares

Fault detection

unit

SWITCH

(select N

out-of N+M)

output

Module 1

Module N

Spare

Module 1

Spare

Module M

Voter

. .

Active

units outputs

Disagreement

detection

. .

.

.

.

.

- N redundant module configuration

(active modules)

- Voter (votes on the output of active

modules)

- The Fault detection units

1) compares the output of the Voter

with the output of the active modules

2) replaces modules whose output

disagree with the output of the voter

with spares

- Reliability as long as the spare pool is

not empty

 Coverage:

 TMR with one spare can tolerate 2 faulty modules

(mask the first faulty module; replace the module; mask the second faulty module)

16

Key differences

 Passive: rely on fault masking

 Active: rely on error detection, location and recovery

 Hybrid: emply both masking and recovery

Passive provides fault masking but requires investment in hw

 (5MR can tolerate 2 faulty modules)

Active has the disadvantage of additional hw for error detection and

recovery, sometimes it can produce momentary erroneous outputs

Hybrid techniques have the highest reliability but are the most costly

 (3MR with one spare can tolerate 2 faulty modules)

Hw redundancy techniques

17

INFORMATION REDUNDANCY

18

Coding
Information is represented with more bits that strictly necessary: says, an n-bit

information chunck is represented by

 n+c= m bits

Among all the possible 2m configurations of the m bits, only 2n represent

acceptable values (code words)

 if a non-code word appears, it indicates an error in

transmitting, or storing, or retrieving …

Set of

code words

Set of all

possible words

2n

2m

Parity code

for each unit of data, e.g. 8 bits, add a parity bit

so that the total number of 1’s in the resulting 9

bits is odd

10100000 1

byte parity

bit

10100100 1 not a codeword

communication

channel

sender

node

receiver

node

one bit flip

Two bit flips are not detected

19

Coding

Codes

 - encoding :

 the process of determining the c bit configuration for a n bit data item

 - decoding:

 the process of recovering the original n bit data from the m bit total bit

Separable code: a code in which the original information is appended with new

information to form the codeword. The decoding process consists of simply

removing the additional information and keeping the original data

Nonseparable code: requires more complicated decoding procedures

Parity code is a separable code

Additional information can be used for error detection and may be for error

correction

Memories of computer systems. Parity bit added before writing the memory. Parity bit is

checked when reading.

20

Hamming distance (Code distance)

number of bit positions on which two code words differ

A code such that the minimum Hamming distance is k will detect

up to k-1 single bit errors

Minimum Hamming distance:

minimum distance between two code words

3-bit words

boxed words = code words
4-bit words – 8 code words

A code such that the minimum Hamming distance is k will correct

up to d errors, where k = 2d +1

What is the minimum Hamming distance of odd parity? 2

We can detect a 1-bit error

We cannot locate/correct the error

We cannot detect a 2-bit error

21

2/4 m of n codes

all words with exactly two 1

Hamming distance: 2

4-bit words – 6 code words

Complemented duplication codes (CD)

Hamming distance: 2

4-bit words – 4 code words

22

CD code: 0110 code word

 - multiple adjacent unidirectional error 0000 not a code word (detected)

 - double bit error 1010 not a code word (detected)

 - double bit error 1100 code word (not detected)

2/4 code: 0110 code word

 - multiple adjacent unidirectional error 0000 not a code word (detected)

 - double bit error 1010 code word (not detected)

 - double bit error 1100 code word (not detected)

23

Parity Code

1. bit-per-word

2. bit-per-byte

3. bit-per-multiple-chip (RAM chips)

 when memories are organised using memory chips, if a chip becomes faulty

 (multiple bits affected in the same chip), parity code is unable to detect the error.

Sufficient parity bits are provided to allow each data bit within a chip to be associated

with a distinct parity bit

16 bit word 4-bit chips Coverage: single-bit error + chip failure

P0 parity bit for 0, 4, 8, 12

P1 parity bit for 1, 5, 9, 13

P2 parity bit for 2, 6, 10, 14

P3 parity bit for 3, 7, 11, 15

chip0 chip1 chip2 chip3 chip4

Faulty chip: many of P0-P3 affected

Single bit error: one of P0-P3 affected

P

P P

Linear separable codes: each check bit is calculated as a linear combination

of some data bits. Parity codes are linear separable codes: bit calculated as

the sum modulo2 of a subset of data bits

24

Checksumming

dn

dn-1

d2

d1

rn

rn-1

r2

r1

Original data Received data

Checksum on

Original data
Checksum on

received data

Received version

of checksum

compare

- the checksum is

stored with the data block

- when blocks of data are

transferred (e.g. data transfer

between mass-storage device)

the sum is recalculated

and compared with the checksum

- checksum is basically the

sum of the original data

Coverage: single fault

checksum for a block of n words is formed by adding together all of the words in the block

modulo-k, where k is arbitrary (one of the least expensive method)

Code word = block + checksum

applied to large block of data in memories

25

Disadvantages

 - if any word in the block is changed, the checksum must also be modified at the

same time

 - allow error detection, no error location: the detected fault could be in the block

of s words, the stored checksum or the checking circuitry

 - single point of failures for the comparison and encoder/detector element

Different methods differ for how summation is executed

Checksummming

26

3 2 1 0 P0 P2 P1
Four Information Bits Three Parity Checks Bits

Bit Error

3

2

1

0

P2

P1

P0

Parity group affected

P2 P1 P0

P2 P1

P2 P0

 P1 P0

P2

 P1

 P0

Parity code be used for location and correction of errors?

m = number of information bits

k = number of parity bits

2K = number of outcomes of the parity checking process

m+k = number of single bit errors

2K > m+k

 disadvantage: 75% of redundancy

ECC – Error Correcting Codes

27

Two-dimensional parity

1 0 1 …. 0 1

0 0 1 …. 1 1

1 1 1 …. 0 0

1 0 0 …. 0 0

k words

n-bit words

column parity

row parity
Odd parity

0

parity error

parity error

Error location is possible for single-bit error:

one error in the row parity vector, one error in the column parity vector

A single-bit error in the parity column or parity row column is detected

Single-error correcting code (SEC): detect and correct 1-bit error

28

Hamming Codes
Parity bits spread through all the data word

http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Number the bit positions starting from 1: bit 1, 2, 3, 4, 5, etc.

Parity bits

all bit positions that are powers of two : 1, 2, 4, 8, etc.

Data bits

all other bit positions

Each data bit is included in a unique set of 2 or more parity bits, as determined by

the binary form of its bit position.

Parity bit pj covers all bits whose position has the j least significant bit set

29

Parity bit p1 covers all bit positions which have the least significant bit set (-------1):

 bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

Parity bit p2 covers all bit positions which have the second least significant bit set (------1-):

 bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.

Parity bit p4 covers all bit positions which have the third least significant bit set (-----1--):

 bits 4–7, 12–15, 20–23, etc.

Parity bit p8 covers all bit positions which have the fourth least significant bit set (----1---):

 bits 8–15, 24–31, 40–47, etc.

30

Overlap of control bit:

 a data bit is controlled by more than one parity bits

 Overhead /fault tolerance

Minimum Hamming distance: 3

Double-error detection code

Single-error correction code SEC-DED code

31

Self checking circuitry

Necessity of reliance on the correct operation of comparators and code

checkers that are used as hard-core for fault tolerant systems

 Given a set of faults, design of comparators and code checkers capable

of detecting their own faults (checking the checker)

Self-checking circuit:

a circuit that has the ability to automatically detect the existence of the fault

and the detection occurs during the normal course of its operations

 Typically obtained using coding techniques: circuit inputs and outputs are

encoded (also different codes can be used)

Basic idea:

fault free + code input correct code output

fault + code input (correct code output) or (nocode output)

32

Self checking circuitry
Self-testing circuit: if, for every fault from the set, the circuit produces a noncode

output for at least one code input (each single fault is detectable)

Fault-secure circuit: if, for every fault from the set, the circuit never produces a

incorrect code output for a code input (i.e. correct code output or noncode output)

Totally self-checking (TSC): if the circuit is self-testing and fault-secure

Example:

two signal input comparator

output 0 if inputs are equal; 1 otherwise

input and output coding: 1/2 code

(dual-rail signal: coded signal whose two bits are always complementary)

m/n code:

 m bit equal to 1

33

 D. P. Siewiorek R.S. Swarz,

Reliable Computer Systems,

Prentice Hall, 1992

Set of faults:

stuck-at-1, stuck-at-0

of each line

(a, b, c, d, e, ……, q, r)

Fault free

A =0, B =1

 m=1, n =1, q=0

o = 0, p=1, r= 1

c2=0

c1=1

code

different input

A

B C

Two input comparator: output 0 if inputs are equal; 1 otherwise

Faulty:

A=0, B=1

m: stuck-at-0

c2 = 1

c1 = 1

noncode

Faulty:

A=0, B=1

m: stuck-at-1

c2=0

c1=1

code

different input

0

1

1

0

0

1

0 se A2 = B2 = 1 (A1=B1=0)

0 se A1= B1 = 1

1 se (00) o (11)

0 se A1 = B2 = 1 (10) 0 se A2= B1 = 1 (01)

1 se (10) o (01)

A B C

0 0 0

0 1 1

1 0 1

1 1 0

34

 D. P. Siewiorek R.S. Swarz, Reliable

Computer Systems, Prentice Hall, 1992

n-input TSC comparator:

a tree whose nodes are

two-input self checking

comparators

35

RAID

RAID: Redundant Arrays of Independent Disks
disk organization techniques that manage a large numbers of disks, providing a
view of a single disk of

- high capacity and high speed by using multiple disks in parallel, and

- high reliability by storing data redundantly, so that data can be recovered
even if a disk fails

Bit-level striping – split the bits of each byte across multiple disks

In an array of eight disks, write bit i of each byte to disk i.

Each access can read data at eight times the rate of a single disk.

…

Disk1 Disk2 Disk7 Disk8

10001101

Byte

001001111

Byte

36

RAID

Block-level striping – with n disks, block i of a file goes to disk (i mod n) + 1

Requests for different blocks can run in parallel if the blocks reside on different

disks. A request for a long sequence of blocks can utilize all disks in parallel

Block4, file1

Block0, file1

…

Block5, file1

Block1, file1

…

Block6, file1

Block2, file1

…

Block7, file1

Block3, file1

…

Block0, file k Block1, file k Block3, file k Block2, file k

… … …

Disk1 Disk2 Disk3 Disk4

37

RAID Levels

Schemes to provide redundancy at lower cost by using disk striping combined

with parity bits

Different RAID organizations, or RAID levels, have differing cost, performance

and reliability characteristics

 RAID Level 1: Mirrored disks with block striping

 Popular for applications such as storing log files in a database system.

 RAID Level 0: Block striping; non-redundant.

 Used in high-performance applications where data lose is not critical.

38

RAID Levels (Cont.)

RAID Level 2: Memory-Style Error-Correcting-Codes

(ECC) with bit striping

Each byte is assigned a parity bit: the bit records whether the number of bits in the

byte that are set to 1 is even or odd

If one bit in the byte gets damaged the parity of the byte changes and

will not match the computed parity

ALL 1-BIT ERRORS ARE DETECTED

Error correcting codes store extra bits to reconstruct the data if a single

bit gets damaged

Disks labelled P store

the ECC

 4 data bits – 3 parity bits SEC code

39

RAID Levels (Cont.)

RAID Level 3: Bit-Interleaved Parity

exploit the fact that disk controllers, unlike memory systems, can detect

whether a sector has been read correctly

 a single parity bit is enough for error correction, not just detection, since we

know which disk has failed

40

RAID Levels (Cont.)
RAID Level 4: Block-Interleaved Parity; uses block-level striping, and keeps a

parity block on a separate disk for corresponding blocks from N other disks.

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

parityblock 8-11

parityblock 4-7

parityblock 0-3

Example

41

RAID Levels (Cont.)
RAID Level 5: Block-Interleaved Distributed Parity; partitions data and parity

among all N + 1 disks, rather than storing data in N disks and parity in 1 disk.

E.g., with 5 disks, parity block for nth set of blocks is stored on disk (n mod 5)

+ 1, with the data blocks stored on the other 4 disks.

parityblock 15-19

block 15

block 19

parityblock 12-15

block 18

block 14

block 17

block 13

block 16

block 12

block 8

block 4

parityblock 0-3

block 9

parityblock 4-7

block 0

parityblock 8-11

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

42

RAID Levels (Cont.)

RAID Level 5 (Cont.)

For each set of N logical blocks, one of the disks store the parity and the

other N disks store the blocks

The P’s are distributed across all the disks

A parity block can not store parity for bocks of the same disk, since then a

disk failure would result in loss of data as well as of parity(failure not

recoverable)

43

RAID Levels (Cont.)

RAID Level 6: P+Q Redundancy scheme;

similar to Level 5, but stores extra redundant information to guard against

multiple disk failures.

 Better reliability than Level 5 at a higher cost; not used as widely.

Level 6, instead of using parity, uses ECC.

In the figure 2 bits of redundant data are stored for every 4 bits of data and

the system can tolerate two disk failures

44

TIME REDUNDANCY

45

Time redundancy techniques

Computation

Computation
Encode

Data
Decode

result

Store

result

Compare

results

Store

result time t0

time t0+d

Data

Data

error

Attempt to reduce the amount of extra hw at the expense of using additional time

 1. Repetition of computations

 - compare the results to detect faults

 - re-execute computations (disagreement disappears or remains)

 good for transient faults

 no protection against permanent fault

 problem of guaranteeing the same data when a computation is executed

 (after a transient fault system data can be completely corrupted)

2. Use a minimum of extra hw to detect also permanent faults

 - encode data before executing the second computation

46

Time redundancy techniques

Example

 - errors in data transmitted over a parallel bus

 - stuck at 0 of a line of the bus

 t0: transmit original data

 t0+d : transmit complement data

 When the fault occurs: received data not complements of each other

 t0 : 1 0 1 1 -> 1 0 0 1

 t0+d : 0 1 0 0 -> 0 1 0 0

Transmission error free, each bit line should alternate between a logic 1 and a

logic 0 (alternating logic)

line stuck at 0

47

SOFTWARE REDUNDANCY

48

Software redundancy techniques

Due to the large cost of developing software, most of the software dependability

effort has focused on

 fault prevention techniques and testing strategies

Fault tolerant software

 Single-version approaches

one code with error detection and fault tolerant capabilities inside

Multi-version approaches

 mainly used in safety-critical systems (due to cost)

49

Single-version software fault tolerance techniques

(redundancy applied to a single version of software to detect errors and recover)

Heisenbugs
temporary internal faults (intermittent faults)
They are essentially permanent faults whose
conditions of activation occur rarely or are not
easily reproducible.
For example faults at boundaries between various
software components with timinig dependences.
They are state dependent and input dependent
faults.
(extremely difficult to identify through testing)

Bohrbugs
permanent design faults, deterministic in nature

identified during the testing and debugging phase

Software faults

Basis to implement fault tolerance

 - software architecture (modularization)

 - system closure principle

 - self-checking and self-protection principle

50

Software architecture

(basis to implement fault tolerance)

1) Modularization and Partitioning

functional independent modules + control modules (that coordinate the execution)

provide isolation between functionally independent modules

2) Hierarchy and connectivity of components

used to analyse error propagation

3) Temporal structuring of the activity between interacting components

atomic action: activity in which the components interact with each other and

there is no interaction with the rest of the system for the duration of the activity

provide a framework for error confinement and recovery

(if a failure is detected during an atomic action, only the participating components

can be affetcted)

 Error confinement areas, with boundary at interfaces between components

51

System closure fault tolerance principle

no action is permissible unless explicitly authorized (mutual suspicion)

1. Each component is only granted the capabilities needed to execute its function

2. Each component examines each request or data item from other components

before acting on it

For example, each software module checks legality and reasonableness of each

request received

3. A capability disabled by an error disables a valid action

 (it does not result in an undesirable action)

Error detection and confinement
Added overhead, need for providing:
signalling back to requestor and own strategy for dealing with erroneous requests

52

Self-protection and self-checking principles

Software system: a set of communicating components

Component (self-protection): protect itself by detecting errors in the information

received by other interacting components

Component (self-checking): able to detect internal errors and take appropriate

actions to prevent the propagation to other components

- Exceptions

- Checkpointing

- Redundancy at code level

- Control flow errors

- …..

53

Exception mechanism: error detection and recovery

Exception handling

exceptions are signalled by the error detection mechanism

 catch() clauses implement the appropriate error recovery

Three classes of exceptions

 interface exceptions

(invalid service request, triggered by the self-protection mechanism, handled by the

module that requested the serice)

 internal local exceptions

(an error in the internal operations of the module, triggered by the error detection

mechanism of the module, handled by the module)

 failure exceptions

(detected error, not handled by the fault processing mechanism. Tell the module

requesting the service that the service had a failure)

 Error confinement is essential to design effective exception handlers

54

Checkpointing and restart recovery mechanism

Most of the faults at this stage are Heisenbugs, hence

these faults result in transient failures, i.e., failures

which may not recur if the software is restarted.

Restart is usually enough to successful completion of

the execution of the module

Checkpointing and restart recovery mechanism

 - Static

 restart from predetermined states

 (initial state or intermediate state, ..)

 - Dynamic

 restart from checkpoints created during

 the execution of the module (backword error recovery)

W. Torres-Pomales

Software fault tolerance: A tutorial

NASA,/TM-2000-210616, 2000

C/C++ language: checkpoint libraries

Process pair:

 two processors

 uses the same version of the software

 the primary processor sends checkpoints to the other

 error detection:

 the secondary processor takes the role of primary and

 starts from the checkpoint

Process pair

55

1. Duplication implemented in a compiler

RECCO: a REliable c/c++ Code COmpiler for dependable applications

 - duplicate variables (code analysis to find important variables - read variables,

variables keeping a value for a long time, lifetime of variables)

 - duplicate instructions - selective instruction duplication (e.g., instruction that are

executed more frequently)

 Covered faults: data errors, memory instruction in memory errors

2. Add information to the Control Flow Graph, and check conditions at run-time

Covered faults: control flow errors

3. ……………………………

Redundancy at code level

56

Multi-version approaches

 replicate the complete program

Software diversity

a simple duplication and comparison procedure will not detect software

faults if the duplicated software modules are identical

 Independent generation of N >= 2 functionally equivalent programs,

called versions, from the same initial specification.

N-version programming N-self-checking programming Recovery block

57

N-version programming

Program

Inputs

Program

Inputs

Program

Version 1

Program

Version N

Program

Version 2 Voter

Program

Outputs

.

.

.

.

- independently developed versions

of design and code

 Technique: independent

design teams using

different design

methodologies, algorithms,

compilers, run-time

systems and hardware

components

- vote on the N results produced

58

Disadvantages:

 -cost of software development

 -cost of concurrent executions

-potential source of correlated errors, such as the original specification.

 Specification mistakes: not tolerated (fault avoidance)

Practical problem in implementing the software Voter for comparing the results

generated by the copies because of the differences in compilers, numerical

techniques and format conversions.

Software voter (single point of failure):

 -not replicated: must be simple and verifiable

 - must assure that the input data vector to each of the versions is identical

 - must receive data from each version in identical formats or make efficient

conversions

 - must implement some sort of communication protocol to wait until all versions

complete their processing or recognize the versions that do not complete

59

N-self-checking programming
 - based on acceptance tests rather than comparison with equivalent versions

 - N versions of the program are written

 - each version is running simultaneously and includes its acceptance tests

 - the selection logic chooses the results from one of the programs that passes

 the acceptance tests

 - tolerates N-1 faults (independent faults)

Program

Version 1

Program

Version N

Acceptance

tests

Accepptance

tests
Selection

Logic

.

.

Program

Inputs

Program

Outputs

Program

Inputs

60

Design diversity

- Cannot adopt the hardware analogy and assume versions fail independently

- Empirical evidence that there will be common faults

- There is evidence that diversity delivers some improvement over single

versions

related faults may result from dependencies in the separate designs and

implementations

(example: specification mistakes)

Functional diversity

assign to independent software versions diverse functions that compute the

same task

For example, in a plant, diverse measurement signals, actuators and functions

exists to monitoring the same phenomenon

Diverse functions: for example, functions that ensure independently that the

plant safety targets are met.

61

Recovery block

Basic structure: Ensure T

 By P

 else by Q

 Else error

1. Each recovery block contains variables global to the block that will be automatically

checkpointed if they are altered within the block.

2. Upon entry to a recovery block, the primary alternate is executed and subjected to an

acceptance test to detect any error in the result.

If the test is passed, the block is exited.

If the test is failed or the alternative fails to execute, the content of the recovery cache

pertinent to the block is reinstated, and the second alternate is executed. This cycle is

executed until either an alternative is successful or no more alternatives exist.

In this case an error is reported.

- Accettability of the result is decided by an acceptance test T

- Primary alternate, secondary alternates checkpoint

Acceptance

test

62

Primary

Version

Secondary

Version N-1

Secondary

Version 1

Program Outputs

.

.

.

.

Program Inputs

N-to-1

Program

Switch

Acceptance

Tests

Test Result

- A single acceptance test

- Only one single implementation of the program is run at a time

- Combines elements of checkpointing and backup

- Minimizes the information to be backed up

- Releases the programmer from determining which variables should

be checkpointed and when

- linguistic structure for recovery blocks requires a suitable mechanism for providing automatic

backward error recovery.

Recovery block software fault tolerant technique

63

Recovery block in concurrent systems

 When a system of cooperating processes employs recovery blocks, each process will
be continually establishing and discarding checkpoints, and may also need to restore to
a previously established checkpoint.

 However, if recovery and communication operations are not performed in a coordinated
fashion, then the rollback of a process can result in a cascade of rollbacks that could
push all the processes back to their beginnings — the domino

 the notion of conversation

64

Conversion scheme

- one of the fundamental approaches to structured design of fault-tolerant

concurrent programs

- provides a means of coordinating the recovery blocks of interacting

processes to avoid the “domino effect”

Example where three processes communicate within a conversation

and the processes P1 and P2 communicate within a nested conversation

do not communicate

with outside

65

The operation of a conversation is: (i) on entry to a conversation a process

establishes a checkpoint; (ii) if an error is detected by any process then all the

participating processes must restore their checkpoints; (iii) after restoration all

processes use their next alternates; and (iv) all processes leave the conversation

together.

Deserters in a conversation: real-time applications may suffer from the

possibility of desertes in a conversation— if a deadline is to be met then a

process that fails to reach its acceptance test could cause all the processes in

the conversation to miss that deadline

66

Fault tolerance uses replication for error detection and system recovery

Fault tolerance relies on the independency of redundancies with respect to the process of fault creation
and activations

When tolerance to physical faults is foreseen, the channels may be identical, based on the assumption
that hardware components fail independently

When tolerance to design faults is foreseen, channels have to provide identical service through separate
designs and implementation (through design diversity)

Fault masking will conceal a possibly progressive and eventually fatal loss of protective redundancy.

Practical implementations of masking generally involve error detection (and possibly fault handling),
leading to masking and error detection and recovery.

Observations

