
1

Fault tolerant distributed
computing

2

Architecting fault tolerant distributed systems

Multiple isolated processing nodes that operate
concurrently on shared informations

Information is exchanged between the processes from

time to time

Algorithm construction:

the goal is to design the software in such a way that
the distributed application is fault tolerant

 - A set of high level faults are identified

 - Algorithms are designed that tolerate those faults

3

Fault models in distributed systems

Node failures
-Byzantine

-Crash

-Fail-stop

-...

Communication failures

-Byzantine

-Link (message loss, ordering loss)

-Loss (message loss)

-...

Byzantine
Processes :
– can crash, disobey the protocol, send contradictory messages,

collude with other malicious processes,...

Network:
– Can corrupt packets (due to accidental faults)

– Modify, delete, and introduce messages in the network

4

The more general the fault model, the more costly

and complex the solution (for the same problem)

Byzantine

Crash

Fail-stop

No failure

GENERALITY COST / COMPLEXITY

Arbitrary failure approach (Byzantine failure mode)

Architecting fault tolerant systems

5

Architecting fault tolerant systems

We must consider the system model:
- Asynchronous
- Synchronous
- Partially synchronous
- …

Develop algorithms , protocolos that are useful building

blocks for the architect of faut tolerant systems:
- Consensus
- Atomic actions
- Trusted components
- …….

6

Atomic Actions

7

Atomic actions
An action that either is executed in full or has no effects at all is called

“Atomic action”

Atomic actions in distributed systems:

 - an action is generally executed at more than one node

 - nodes must cooperate to guarantee that

 either the execution of the action completes successfully at each node
 or the execution of the action has no effects

Atomic actions are a basic building block in fault tolerant computing

The designer can associate fault tolerance mechanisms with the underlying
atomic actions of the system:

 - limiting the extent of error propagation when faults occur and

 - localizing the subsequent error recovery

J. Xu, B. Randell, A. Romanovsky, R.J. Stroud, A.F. Zorzo,E. Canver, F. von Henke. Rigorous
Development of a Safety-Critical System Based on Coordinated Atomic Actions. In FTCS-29,
Madison, USA, pp. 68-75, 1999.

8

An example: Transactions in databases

Transaction: a sequence of changes to data that move the data
base from a consistent state to another consistent state.

A transaction is a unit of program execution that accesses and
possibly updates various data items

Transactions must be atomic:

 all changes are executes successfully or data are not
updated

9

Transactions in databases

Let T1 and T2 be transactions

Transaction T2

Transaction T1

1) A failure before the termination of the transaction, results into a

rollback (abort) of the transaction

2) A failure after the termination with success (commit) of the

transaction must have no consequences

10

Transactions in databases

Concept of transaction and ACID properties of transactions:

A- Atomicity property

 all or nothing property (with respect to failures)

C- Consistency
each transaction preserves required invariants over the data

I- Isolation (concurrency atomicity)
concurrent transaction have the same effect as though they were
sequential

D- Durability(or permanence)
once a transaction is committed, failures cannot destroy its effects

11

t1: begin transaction

 UPDATE account

 SET balance=balance + 500

 WHERE account_number=45;

 UPDATE account

 SET balance=balance - 500

 WHERE account_number=35;

 commit

 end transaction

site1
site2

t11: UPDATE account

 SET balance=balance + 500

 WHERE account_number=45;

t12:UPDATE account

 SET balance=balance - 500

 WHERE account number=35;

t1

Client:

t1

t1: distributed transaction

(access data at different sites)

account_number

45

account_number
35

Account =(account_name, branch_name, balance)

each branch responsable

of data on its accounts

site1
site2

Banking application

12

Atomicity requirement

if the transaction fails after the update of 45 and before the update of 35, money will
be “lost” leading to an inconsistent database state

the system should ensure that updates of a partially executed transaction are not
reflected in the database

Atomicity of a transaction:

 Commit protocol + Log in stable storage + Recovery algorithm

A programmer assumes atomicity of transactions

A main issue: atomicity in case of failures of various kinds, such as
hardware failures and system crashes

13

Tolerates: loss of messages

 crash of nodes

- One transaction manager TM

- Many resource managers RM

- Log file (persistent memory)

- time-out

Two-phase commit protocol

Prepare

Ready Prepare

msg
Ready

msg

TM

Complete

Local

decision Decision

msg

Ack

msg

Global

decision

RM

………………

………………

………………

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati: Architetture e linee di evoluzione

14

 Timeout and uncertain period

Prepare Global Decision Complete

Ready Local Decision

TM

RM

decision ackprepare
msg

ready
msg msg

time-out 1 time-out 2

Finestra di incertezza

msg

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati: Architetture e linee di evoluzione

Uncertain period:

 if the transaction manager crash, a participant with Ready

 in its log cannot terminate the transaction

15

Four-phase commit

P GC

Global Commit CompletePrepare

Ready Commit

partecipante (RM)

coordinatore (TM)

 backup

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati:

Architetture e linee di evoluzione

Coordinator backup is created at a different site

the backup maintains enough information to assume the role of

coordinator if the actual coordinator crashes and does not recover.

The coordinator informs the backup of the actions taken.

If the coordinator crashes, the backup assume the role of coordinator:

1) Another backup is started.

2) The two-phase commit protocol is completed.

16

Three-phase commit

Prepare CompletePre-commit Global Commit

Local
Commit

Pre
CommitReady

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati:

Architetture e linee di evoluzione

Precommit phase is added. Assume a permanent crash of the

coordinator. A participant can substitute the coordinator to

terminate the transaction.

A participant assumes the role of coordinator and decides:

- Global Abort, if the last record in the log Ready

- Global Commit, if the last record in the log is Precommit

17

TM crash

If the TM crashes and does not recover, any participant can assume the role of

transaction manager and correctly terminate the transaction

The participant, scan the Log backward:

Last record in the Log for the transaction:

 - Ready

 abort the transaction

 - Pre-commit

 commit the transaction

18

Recovery and Atomicity

Block movements between disk and main memory are initiated

through the following two operations:

 - input(B) transfers the physical block B to main memory.

 - output(B) transfers the buffer block B to the disk

System can perform the output operation when it deems fit (Buffer manager,

Replacement policies for the buffer manager)

Several output operations may be required for a transaction.

A transaction can be aborted after one of these modifications have been made

permanent (transfer of block to disk); a transaction can be committed and a failure

of the system can occur before all the modifications of the transaction are made

permanent .

To ensure atomicity despite failures, we first output information describing the

modifications to stable storage without modifying the database itself

 Log-based recovery

19

Recovery and Atomicity

Physical blocks are those blocks residing on the disk.

Buffer blocks are the blocks residing temporarily in main memory

Transactions

- Each transaction Ti has its private work-area in which local copies of

all data items accessed and updated by it are kept.

- perform read(X) while accessing X for the first time;

- executes write(X) after last access of X.

output(BX) need not immediately follow write(X)

System can perform the output operation when it deems fit

20

Example of Data Access

X

Y

A

B

x1

y1

main memory : buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)
disk

work area

of T1

work area

of T2

transaction

private

memory

x2

From: Database System Concepts, 5th Ed., McGraw-Hill, by Silberschatz, Korth and Sudarshan

Physical Blocks

21

LOG file:

 record types: B(T), U(T, O, B, A), A(T), C(T) ,CK(T1, …, Tn)

To Recover from system failure:
- consult the Log

 - redo all transactions in the checkpoint or started after the checkpoint that
committed;

 - undo all transaction in the checkpoint not committed or started after the
checkpoint

To recover from disk failure:

- restore database from most recent dump

- apply the Log Recovery

CK(T1,T2)

Crash

B(T1) B(T2) C(T2) B(T3)

U(T3,…) U(T1,…) U(T1,…)

dump
U(T2,…)

A(T1,…) U(T1,…)

CK(T1,T3)

22

Atomic actions

Advantages of atomic actions:

a designer can reason about system design as

 1) no failure happened in the middle of a atomic action

 2) separate atomic actions access to consistent data
(property called “serializability”, concurrency control).

23

Consensus problem

24

Byzantine fault-tolerant (BFT)
algorithms

 they do not depend on trusted
components for their correct operation

 they must build trust during execution
without trusting each other initially

 they tolerate malicious components

25

Air Traffic Management
•Air Traffic Control (ATC)
is a service provided by
ground-based controllers
who are responsible for
maintaining a safe and
efficient air traffic flow.

•Future generation of ATC:
Airborne Self-Separation,
an operating environment
where pilots are allowed to
select their flight paths in
real-time.

ADS-B (AUTOMATIC DEPENDENT SURVELLEINCE BROADCAST):
based on the Global Navigation Satellite System (GNSS) -
broadcast communication links -

26

Airbone Self-Separation
•guarantee the correct behaviour of the system (i.e., the set of
aircraft in a given area) even in the presence of component
failures, or malicious attacks .

27

Airbone Self-Separation

Main challenge in Airborne Self-Separation:
 coordination between aircrafts within a dynamic

environment, where the set of surrounding aircraft is
constantly changing, and where there is the possibility
of arbitrary failures and malicious threats.

Conflict Resolution (and Traffic Optimisation) problem

Conflict Resolution algorithms are
 decentralized and cooperative with the cooperation

between aircraft being based on properties of the
system

28

Conflict Resolution algorithms

based on theory of decision-making based on a multi-

agent approach and Satisficing Game Theory (SGT)

- SGT as decision procedure requires the same
information available at each node of the
distributed system

- a fault-tolerant Byzantine agreement protocol
that provides SGT the necessary services to
execute correctly is necessary

- the agreement protocol is supported by suitable
communication primitives realised for wireless
networks

29

Conflict Resolution algorithms
System model:
 multi-agent system
 Aicraft: agent
 Aircraft state (local information):

 state_i = (aircraft id, destination, current_time,
 coordinates, speed, ….)

 Region:
 surrounding aircrafts involved in the calculation
 of the flight path (changing)

Decision procedure:
 algorithm applied at every agent i based on
 - agent state (local information)
 - state of the agents in the region

 (information received from sorrounding aicrafts)

30

Decision procedure
Every aircraft must decide its flight path: to execute correctly it is necessary

that every agent has the correct view of the system

Let n be number of agents in a region,
 Agent_i: decision_procedure(i, state_1, state_2, …, state_n)

 every agent applies the decision procedure starting from the same

information on the state of the aircrafts in the region

Assume an attacker changes information exchanged through wireless

communications.

 What happen if information on the value of the position of aircraft 2 is

modified and arrives wrong at some destination?

Agent_i: decision_procedure(i, state_1, state_2, …, state_n)
…

Agent_j: decision_procedure(j, state_1, state*_2, …, state_n)

Correctness of the decision procedure is compromised

 Agent_i and Agent_j must have the same information about the state of
the aircraft in the region before applying the decision procedure.

31

Consensus problem
The Consensus problem can be stated informally as:

How to make a set of distributed agents achieve agreement
on a value despite a number of threats?

Region

1

2 3

5

4

1

2 3

5

4

Example: state of aircraft 2

Byzantine fault-tolerant algorithm to solve the consensus problem

32

Consensus problem
Idea:

 - use redundant messages exhanged among aircrafts reporting
the position of the aircrafts

Region

1

2 3

5

4

1

3

5

4

5:state_2

4:state_2

3:state_2

2:state_2

1:state_2

Example: value of the state of aircraft 2

33

From the abstract of Castro & Liskov OSDI’99 paper:

 “We believe that Byzantine fault-tolerant algorithms
will be increasingly important in the future because
malicious attacks and software errors are increasingly
common and can cause faulty nodes to exhibit
arbitrary behavior.”

Byzantine fault-tolerant (BFT) algorithms

