Continuous-time Markov chain: Single system with repair

- transition rates: A failure rate, u repair rate
= [, 70]

- iIdentification of states .
p() = [Po(1), Py(t)] in the book

- Initial state-space p(0) =[1, O]
A

o ‘ Solution of the differential
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Continuous-time Markov chain (CTMC)

Markov process {X;} with discrete-state space S
steady-state transition rates

events may occur at any point in time
T is an interval of real numbers (>=0)

Memoryless property:
P{Xerr = J1 X =4, Xty = Ko,y ooy Xi, = kinf = P{Xiyr = j| Xy = i}
for all >0 and O<t1<t2<...<tn.

Steady-state transition probabilities

P{Xis, = jIXi = i} = PLX, = j|Xo = i}

Transient analysis

A CTMC can be specified in terms of the occupancy probability vector
n and a transition probability matrix P

0 = 70 p®



Transient analysis

State-transition-rate matrix, the Q matrix

~
rate of going from [ #],
tate 7 to state j L=
4= < state i to state j Zjesqﬂ'j = ()
_qu'k f:j-
k#i
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We have that:
P = gt for t>=0
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This allows to compute the probability of reaching state | from state |
at time t : pgjt)

We have that: Different numerical
7)) — 2(0) Q1 solution methods



Sojourn time

For the memoryless property,
the sojourn time spent by a CTMC in any of its states is
Independent of how long the CTMC has previously been

In state I.

There is only one random variable that has this property: the
exponential random variable:

ST, sojourn time in state i

ST, = e@)

-> the time spent in each state takes non-negative real values and
has an exponential distribution



Steady-state behaviour

THEOREM
For aperiodic irreducible continuous-time Markov chain for each j,
lim ?TE;”
[—00

exists and is independent trrom 7
The solution can be computed under the constraint
n

Q=0 ang Zﬁf =1

i=|

The steady-state distribution is independent of the initial-state
distribution.



For general CTMC more complex solution methods are required

Direct methods:

Good packages exists

Very poor performance if Q is very large

Iterative methods:

An iterative method converaes if :

limHn(k) T H -0

k=0

Stopping condition: Hn(’“‘) _ n(“H <g

Other methods



Dual processor system with repair

A, B processors

Rates: A1, A2 and pul, u2
Identification of states:
A, B working

A working, B failed

B working, A failed

A, B failed

Collapsed model

| | . ~2\ 2\ 0
Smgie repair ata’jme Q — [ " -\ - 1 A ] p(O) - [1, O, O]
0

2 4N exp (—(IDIBA + 2p) + VAT + 4hplt)
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A(t) = 1- pz(t) p Ap + p2

Laplace transform 27 + A + pd




Reliability modeling
- making state 2 a trapping state

p(0) =11, 0, 0]

= - [ —2A\ 2\ 0

0 0 0

Reliability R(t) =1-p,(t)  R(O)=py(t) + (1

Laplace transform

A2 exp (—(12)BN + p — VAL + 6Ap + pdt)
GA + w) VA? + 6Ap + p? — A2 — 6Ap — p

R(t) =

- —— ——— —

~ AN exp (—(172)3N + p + VAT + 6ap + pdit)
Ghr + @) VAT + 6Ap + p2 + A2 + 6Ap + p




TMR system with repair

Rates: A and u

o ¥ A
Identification of states:

3 processors working, O failed 3 A
2 processors working, 1 failed ° o o

1 processor working, 2 failed

m
Transition rate matrix:
Q= [—3a 3\ 0]
-2A - 2\ —
*; , - ) P(0) =11, 0, 0]
Reliability R(t) = 1- p2(t) Laplace transform

5)\+p.+\/)\2+10)\p+p,2
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_5)\+p—\/P+10)\p.+P
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R(t) = exp (—(1/2)EN + o — VAT + 10Ap + pdt)

exp (—(12)6BA + u + VAZ + 100m + pd)t)



Comparison with nonredundant system and TMR
without repair

Reliability
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o MTTF
MTTE =] R(t) dt
t=0
period the system is in a state that correspond to correct
behavior

TMR with repair:
‘ faillure rate A = 0.001 repair rate
MTTE = [ po® +po(t) dt 20 i
=0
TMR with repair MTTF = i - ﬁ = 17,5000 hours

MTTF is equal to the MTTF of a TMR system without repair plus an
additional term due to the repair activity.

1
Nonredundant MTTF = ; = 1000 hours

, s e S on-line repair allows the system
UM WRROUURepRL on 0 "YU MTTF to increase by a factor of 17
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System model analysis

What is the availability of the system at time t?
What is the steady-state availability?

What is the expected time to failure?

The Markov model fits with the standard assumption of failure rates a
constant, leading to exponentially distributed inter-arrival times of

failures. Similarly, we assume costant repair rate.

What about safety?
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Safety

Safety - avoidance of catastrophic consequences -
As a function of time, S(t), is the probability that the system
either behaves correctly or will discontinue its functions in a
manner that causes no harm (operational or Fail-safe)

Coverage — The coverage is the measure c of the system ability
to reach a fail-safe state after a fault.

Modeling coverage and safety in a Markov chain means that every unfailed
state has two transitions to two different states, one of which is fail-safe,
the other is fail-unsafe.

G
Fail-safe
(1-c)4 Fail-unsafe
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A WNEFLO

TMR

the system can be in a safe state although the failures of two
components, if the output of the three components disagree

c = probability of coincident failures of two components

Fail-safe state

Fail-safe state

S(t) = 1- ps(t)

S(t) = Po(t) + Py (1) + Pa(t) + Pa(t)
Fail-unsafe state R(t) = po(t) o pl(t)

three correct components

one faulty component

two faulty components (no coincident failures)
two faulty component coincident failures

three faulty components (no coincident failures)
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Observations

Quantitative dependability evaluation:
- guiding design decisions
- assessing systems as built
- mandatory for safety critical systems

Model construction techniques
-> scalability challenge
» composition approaches

build complex models in a modular way through a composition of its
submodels

» decomposition/aggregation approaches
(hierarchical decomposition approach)

The overall model is decoupled in simpler and more tractable
submodels, and the measures obtained from the solution of the sub-
models are then aggregated to compute those concerning the overall
model.

15



