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Discrete-time Markov chain (DTMC) 

State space distribution 

                      pi
(t) = P{Xt = i} 

 

 

Transient solution: p(t) 

State occupancy vector at time t in terms of the transition probability  matrix: 

      p(t) = p(0) Pt 

Probability that the Markov process is in state i at time-step t 

System evolution in a finite number of steps computed starting from the  

initial state distribution and the transition probability matrix  

       

= (p1  , …, pn  )
 p(0) (0) (0) 

p(t) = [p0
(t), p1

(t), p2
(t) , …]     state occupancy vector at time t 

 p(1) = p(0) P 

   

   

   

   

initial state space distribution:    

A single step forward: 
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Limiting behaviour 

A Markov process can be specified in terms of the state occupancy 

probability vector p and a transition probability matrix P 

      p(t) = p(0) Pt 

The limiting behaviour of a DTMC depends on the  

characteristics of its states.  Sometimes the solution is simple.  

The limiting behaviour of a DTMC (steady-state behaviour): 

 



3 

Irreducible DTMC 

A state j is said to be accessible  from state i if there exists t >0  

such that   Pij
(t) >0, we write i->j 

 

 

A DTMC is irreducible if each state is accessible from every 

other state  in a finite number of steps :  

    for each i, j: i -> j 

 

 

A subset S’ of S is closed if there not exists any transition  

from S’ to S-S’ 
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Classification of states 

A state i is recurrent if 

    (i->j)  then (j->i) 

    process  moves again to state i with probability 1 

  

 recurrent non-null: medium time of recurrence is finite 

 

 recurrent null:  medium time of recurrence is infinite 

   

  

A state i is transient if  

   exists (j!=i)  such that (i->j)  and not (j->i) 

 

 

A state i is absorbent if  

      pii=1        

      (i is a recurrent state) 
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Classification of states 
Given a recurrent state, let d be the greatest common divisor of 

all the integers m such that Pii
(m) > 0 

 

A recurrent state  i is periodic  if d > 1  

 

A recurrent state  i is aperiodic  if d = 1: it is possible to move to 

the same state in one step 

 

1 2 

state 1 is periodic with period d=2 

state 2 is periodic with period d=2 

1 

1 
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Steady-state behaviour 

Moreover, if all states are recurrent non-null,  the steady-     

state behaviour of the Markov chain is given by the fixpoint of 

the equation:  

  

    p(t) = p(t-1) P 
with  

  Sj pj =1 

  

THEOREM:  

For aperiodic irreducible Markov chain for each j   

 

 

 

     exists and the solution is independent from p(0)   

pj  is  inversely proportional to the period of recurrence of state j 



7 

Time-average state space distribution 

For periodic Markov chains 

 

doesn’t exist (caused by the  

probability of the periodic state) 

We compute the time-average 

state space distribution, called p* 

     1   2 

1   0   1 

2   1   0 

p(0) = (1,0) 

p(1) = p(0) P       p(1) = (0,1) 

p(2) = p(1) P       p(2) = (1,0) 

……….. 

 

P= 

1 2 

p(0) =(1,0) 

p* = 
state i is periodic with period d=2 

1 

1 
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Continuous-time models:  

 state transitions occur at random intervals  

 transition rates assigned to each transition 

 

Markov property assumption:  

the length of time already spent in a state does not influence either the 

probability distribution of the next state or the probability distribution of 

remaining time in the same state before the next transition 

 

These very strong assumptions imply that the waiting time spent in any 

one state is exponentially distributed  

 

Thus the Markov model naturally fits with the standard assumptions that 

failure rates are constant, leading to exponential distribution of 

interarrivals of failures   

Continuous-time Markov models 
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Continuous-time Markov models 

Single system  with repair 

 

 failure rate, m repair rate                                    state 0: working 

                                                                               state 1: failed  

p0(t) probability of being in the operational state 

p1(t) probability of being in the failed state 

Graph model 

Transition Matrix P 

derived from the discrete time model, taking the limit as  

the time-step interval approaches zero  
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Probability of being in state 0 or 1 at time t+Dt: 

Continuous-time Markov models 

Performing multiplication, rearranging and dividing by Dt, taking the limit as  

 Dt approaches to 0: 

probability of being in 

state 0 at time t+Dt 

Continuous-time Chapman-Kolmogorov equations 
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Matrix form: 

Continuous-time Markov models 

The set of equations can be written by inspection of a transition diagram 

without self-loops and Dt’s: 

  T matrix 

Continuous time Markov model graph 

The change in state 0 is minus the flow out of state 0 times the probability 

of being in state 0 at time t, plus the flow into state 0 from state 1 times 

the probability of being in state 1. 



13 

Chapman-Kolmogorov equations solved by use of a LaPlace transform of 

a time domain function  

 

 

Continuous-time Markov models 

where I is the identity matrix 

 

We solve the equations. We obtain as solutions a ratio of two polynomials 

in s. Then we apply the inverse transform to the solutions. 

probability of being in 

state 0 at time t=0 

A matrix 

Linear equation solving techniques  
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Continuous-time Markov models 

Assume the system starts in the operational state: P(0) = [1,0] 

 

We apply the inverse transforms. 

Our example 
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Continuous-time Markov models 

p0(t) probability that the system is in the operational state at time t, 

availability at time t 

 

The availability consists of a steady-state term and an exponential 

decaying transient term  

A(t) 

Only steady-state solution 

 Chapman-Kolmogorov equations: derivative replaced by 0; p0(t) replaced by p0(0) and p1(t) 

replaced by p1(0)  
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Availability as a function of time  

 = 0.001 

m = 0.1 

 The steady-state 

value is reached in 

a very short time 
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 Markov model making the system-failed state  

a trapping state   
 

Continuous-time Markov models: 
Reliability 

Differential equations: 

Single system without repair 

 T matrix 

Continuous time Markov model graph 

Dt = state transition probability 

 = failure rate 

T matrix can be built by 

inspection 
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Taking the inverse transform: 

 A matrix 

A= [sI –T] 

Continuous-time Markov models: 
Reliability 

Continuous-time homogeneous Markov chains (CTMC) 
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X random process that represents the  number of operational memories and the 

number of  operational processors at time t 

 

 

Given a state (i, j):  

  i is the number of operational memories;  

 j is the number of operational processors 

 

An example of modeling (CTMC)  

m failure rate for memory 

p failure rate for processor 

 

Multiprocessor system with  2 processors and 3 shared memories system. 

System is operational if at least one processor and  one memory are 

operational. 

S = {(3,2), (3,1), (3,0), (2,2), (2,1), (2,0), (1,2), (1,1), (1,0), (0,2), (0,1)} 

 



20 

(3, 2) -> (2,2)  failure of one memory 

 

(3,0), (2,0), (1,0), (0,2), (0,1)  are absorbent states 

m failure rate for memory 

p failure rate for processor 

 

Reliability modeling 
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 Assume that faulty components are replaced and we evaluate the 

probability that the system is operational at time t 

 

 Constant repair rate m (number of expected repairs in a unit of time) 

 

 Strategy of repair: 

 only one processor or one memory at a time can be substituted 

 

 The behaviour of components (with respect of being operational or failed) 

is not independent:  it depends on whether or not other components are 

in a failure state.   

Availability modeling 
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 Strategy of repair: 

 only one component can be substituted at a time 

 

m failure rate for memory 

p failure rate for processor 

mm repair rate for memory  

mp repair rate for processor 
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 An alternative strategy of repair: 

 only one component can be substituted at a time  and processors have  

higher priority 

 exclude the lines mm representing memory repair in the case where there 

has been a process failure 


