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Availability 

Availability - A(t)  

 the probability that the system is operating correctly and is 

 available to perform its functions at the instant of time t 

 

 
  More general concept than reliability: failure and repair of the system 

Repair rate –  which is the average number of repairs that occur 

per time  period, generally number of repairs per hours. Analogous 

to failure rate, constant repair rate  

     m(t) = m   

 

Maintenability - M(t) is the conditional probability that the system 

is repaired throughout the interval of time [0, t], given that the 

system was faulty at time 0 

 

     M(t) = 1 - e-mt  
   with m constant repair rate. 
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MTTR - The Mean Time To Repair  is the average time required  

to repair the system.   Analogous to MTTF, MTTR is expressed in terms  

of the repair  rate:      

Failure events and repair events are not independent.  
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State-based models: 

Model-based evaluation of dependability  

Characterize the state of the system at time t: 

 - identification of system states and changes of states  

 

    

The system goes from state to state as modules fail and repair.  

 

The state transitions are characterized by the probability of failure  

and the probability of repair 

 

  - each state represents a distinct combination  

  of failed and working modules 

 

   - state transitions govern the changes of state that  

  occur within  a system 
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- systems with arbitrary structures  and complex dependencies  

can be modeled 

 

- assumption of independent failures no longer necessary 

 

- used for both reliability and availability modeling 

 

- based on a Markov process, a special type of random process 

 

Model-based evaluation of dependability  

Basic assumption underlying  Markov models:  

 

the system behavior at any time instant depends  

only on the current state  (independent of past values) 



5 

 Number of faulty components at time t (failures and repairs) 

 

 

 

t 

N_failed(t) 

c1 fails 

1 

2 

3 

c2 fails 

c1 repaired 

c3 fails 

N_failed(t) is a discrete function of a continuous parameter t 

Given different failure rate and repair rate, N_failed(t) function 

 is going to be different. If we have lower repair rate,  

N_failed(t)  will be higher in a stochastic sense. 

 

 

c1 fails 

0 
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Random variable 

 a random variable X is a function from a sample space (Ω) 

      to reals numbers  
 

Let us consider the random experiment of tossing a die.  

 

Let X  be the random variable defined as the face you obtain  

                                                                               

Sample space Ω : faces of the die  (1, 2, 3, 4, 5, 6) 

Real numbers S: 1, 2, 3, 4, 5, 6 

 

Any element in the sample space Ω  has a well defined probability 

distribution. 

 

The probability assigned to each output of the experiment is 1/6. 

 

If the set of values the variable can assume  (S)  is finite  then  

  X is a discrete  random variable 

 

Random variable 
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We define the  probability distribution function of  a discrete random 

variable: a mapping of all possible values of the random variable (S)  to their 

corresponfing probabilities for the given sample space Ω 

 

     f(x) = P(X=x)    

 

     1/6   for all i=1, …, 6   P(X=1)=1/6 

        f(x) =        P(X=2)=1/6  

     0       otherwise     ……. 

 

An order  relation can be defined on L. The probability of the  following sets 

can be computed: 

     P{X <= x0}  for x0 in S 

 

 We define the cumulative distribution function of  X 

    F(x0 ) = P {X <= x0} 
 

 F is a non-decreasing function, if x1 <= x2 , then F(x1) <= F(x2) 

 

 F(3) = P{X<=3} = P{X=1}+P{X=2}+P{X=3} = 1/6 +1/6+1/6 =1/2 

Random variable 
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Let us consider the random experiment of the measuring the temperature in 

a region.  

 

Let X  be the random variable defined as the temperature you obtain.  

                                                                               

Sample space Ω : Real numbers 

Real numbers S: Real numbers 

 

Random variable 

By definition, the probability of any real number is zero. The random variable 

can be infinitely divided into smaller parts such that the probability of 

selecting a real integer value x is zero.  

   

      P(X=x)  = 0 

 

Probability is compiuted as: 

                    

   P(X <=x)       P(X>=x)           P(x1 <= x <= x2) 

 

 

 



9 

Random variable 

probability that a given output will occur at a given point 

 

An example of probability density function : 

 

We define the probability density function:  

 

Cumulative distribution function for a continuos random variable:  

 

 

which is the same as 

 

The probability density function can be computed by the cumulative  

distribution function if the derivative exists: 
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Random process (or stochastic process) 

 a collection of random variables {Xt } indexed by time 
 

The sequence of results of tossing a die can be expressed by a random 

process    

  {Xt }  with t =  0, 1, 2, 3. …  (number of the throw) 

    

 P[X0 = 4] = 1/6  

 P[X1 = 4 ] = 1/6  

 …. 

 P[Xn = 4]  = 1/6         Moreover     P[Xn = 4 | Xn-1 = 2 ]  = 1/6  

 

In this case, the random variables  are independent 

   P[Xi = j] = 1/6   for all i and for all j 

 

Let S be the set of possible values of the random variable, these values are 

named states of the random variable.  

 

S is the state space of the random process. 

Random process  
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Random processes: definitions 

  Continuous-time random process 

 state transitions occur at random intervals (rates assigned to each transition) 

 

        

 Discrete-time random process    

 all state transitions occur at fixed times (probabilities assigned to each transition) 

Discrete-state random process   

if the state space of random process is finite or countable   (e.g., S={1, 2, 3, 4, 5, 6}) 

 

Continuous-state random process 
if the state space of random process is infinite or uncountable   

(e.g., S = the set of real  numbers or an interval of real numbers ) 

State space S of a random process  {Xt}: the set of all possible values the 

process can take  

     S = {y: Xt = y, for some t} 
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Random processes 
The random process that reports the temperature in a region measured at each 

instant of time  

    {Xt}       S= { -       <= x <=       }  T= { 0 <= t <=         }  

     continuos-space, continuos-time  stochastic process 

 

Assume jobs enter the system randomly; after a waiting time, they are served  

and exit the system. 

Let {Xi}  be the random process corresponding to the number of jobs in the 

system when jobs i arrives.  

    

   {Xt}       S={1,2, 3, …}   T={1, 2, …} 

     discrete-space, discrete-time  stochastic process 

 

Let {Xi}  be the random process corresponding to the number of jobs in the 

system at time t  

         {Xt}     S={0, 1,2, 3, …}   T= { 0 <= t <=         }  

     discrete-space, continuous-time  stochastic process 
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Random processes 

Type of dependency between random  variables for different  values of  t 

 

 Joint probability  distribution  function 

                 

 f(x0, x1, … , xn) = P {X0 =x0, X1=x1, …, Xn=xn } 

  

  

 Cumulative distribution function for a joint probability distribution 

   

  F(x0, x1, … , xn) = P {X0 <= x0, X1<=x1, …, Xn<=xn } 

In a general random process {Xt }  the value of the random variable 

Xt+1 may depend on the values of all the previous random variables 

  X0 X1 ............Xt.   
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  f(x0, x1, … , xn) = P {X0 = x0, X1=x1, …, Xn=xn } 

   

Joint probability  distribution  function 

 

P {X0 = x0, X1=x1, …, Xn=xn } =  

 

P {Xn = xn | X0=x0, …, Xn-1=xn-1 } * P {X0=x0, …, Xn-1=xn-1 } = 

 

   P {Xn-1= xn-1 | X0=x0  …  Xn-2=xn-2 } * P {X0=x0, …, Xn-2=xn-2 } 

……………………. 

f(x0, x1, … , xn)  =  
 

P {Xn = xn | X0=x0, …, Xn-1=xn-1 } * P {Xn-1= xn-1 | X0=x0  …  Xn-2=xn-2} *  

P {Xn-2= xn-2 | X0=x0 …. Xn-3=xn-3} * ……………… * P {X0=x0} 

Random process Sequence of tossing a die: 

 P {X0=x0, X1=x1, …, Xn=xn } = P {X0=x0}  * …. * P {Xn=xn }  
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Cumulative distribution function for a joint probability 
distribution 

  F(x0, x1, … , xn) = P {X0 <= x0, X1<=x1, …, Xn<=xn } 

   
P {X0 <= x0, X1<=x1, …, Xn<=xn } =  

 

P {Xn <= xn | X0<=x0, …, Xn-1<=xn-1 } * P {X0<=x0, …, Xn-1<=xn-1 } = 

 

   P {Xn-1<= xn-1 | X0<=x0  …  Xn-2<=xn-2 } * P {X0<=x0, …, Xn-2<=xn-2 } 

… 

F(x0, x1, … , xn)  =  
 

P {Xn <= xn | X0<=x0, …, Xn-1<=xn-1 } * P {Xn-1<= xn-1 | X0<=x0  …  Xn-2<=xn-2} *  

P {Xn-2<= xn-2 | X0<=x0 …. Xn-3<=xn-3} * ……………… * P {X0<=x0} 

…………………. 
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Discrete-time Markov process 

Basic assumption underlying a Markov process: the state of a 

process at time t+1 depends only on the state at time t, and is  

independent  on any state before t. 

Markov property: “the current state is enough to determine  
in a stochastic sense the future state” 

 

P{Xt+1 = j | X0 =x0, X1 =x1, …, Xt =it } =  P{Xt+1 =j | Xt = i } 

Markov property: “the future behavior is independent  of past 

values (memoryless property)” 

 

 

Markov property: “the probability of state transition depends only 

on the current state” 

Let  be given {Xt }   t =  0, 1, 2, … 

A discrete-space  random process is a Markov chain 
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Discrete-time Markov chain 
(steady-state transition probabilities)  

The probability of transition from state i to state j does not depend 

by the  time.   This probability is called    pi j 

Let {Xt, t>=0}  

 P{Xt+1 =j | Xt = i } 

 probability of transition from state i to state j at time t  

 

The Markov process X has steady-state transition probabilities if 

for any pair of states i, j: 

Homogeneous Markov chain 
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Transition probability matrix 

If a Markov process is finite-state, we can define the transition 

probability matrix P (nxn)  

 

 pij = probability of moving from state i to state j in one step 

 

row i of matrix P: 

 probability of make a transition starting from state i 

 

column j of matrix P: 

 probability of making a transition from any state to state j  
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Transition probability after n-time steps  

THEOREM: Generalization of the steady-state transition probabilities.  

For any i, j in S, and for any n>0 

  

Definition: steady-state transition probability after n-time steps 

Definition: transition matrix after n-time steps 
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Properties: 

 

 

Transition probability after n-time steps 

Definition: 

 

 

Si=0,.., n pij = 1 

It can be proved that: 

       P(n) = Pn Pn = P. P. … . P 

the n-th power of P  
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Reliability/Availability  modelling 

Markov model:  

  graph where nodes are all the possible states and arcs are the possible 

transitions between states (labeled with a probability function)  

 

 

 

 

 

 

 

 

 

 

Each state represents a distinct combination of working and failed 

components 

As time passes, the system goes from state to state as modules fails and 

are repaired 

1-p 
p 
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Discrete-time Markov model of a single system 
with repair 

0 1 

1-pf 
pf 

1-pr 

pr 

{Xt }  t=0, 1, 2, ….    S={0, 1} 

 

- all state transitions occur at fixed intervals 

- probabilities assigned to each transition 

     

 

The probability of state transition depends only on the current state 

Graph model 
Transition Probability Matrix 

State 0 : working 

State 1: failed  

- Pij = probability of a transition from state i to state j 

- Pij >=0 

- the sum of each row must be one 

1-pf 
pf 

pr 1- pr 

P =  

current state 

new state 

0 

0 

1 

1 

pf 

pr Repair probability 

Failure probability 
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Discrete-time Markov model 

State j can be made an trapping state with pjj = 1 

 

 

   

0.9 
0.1 

0.5 0.5 

[p0(0), p1 (0)] = [ 1, 0] 

        [ 1, 0] 

   
= [ 0.9, 0.1] 

 

   [p0(1), p1(1)]  

initial state: working 
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      Transient analysis  
      probability of being in a state  after  n  time-steps 

1-pf 
pf 

pr 1- pr 

[p0(n), p1(n)] = [p0(n-1), p1(n-1)] 

n 
1-pf 

pf 

pr 1- pr 

[p0(n), p1(n)] = [p0(0), p1(0)] 
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Another  example 

S={1,2,3}   

1 computer idle 

2 computer working 

3 computer failed 

computer is idle, working or failed. When the computer is idle  

jobs arrives with a given probability. When the computer is idle  

or busy it may fail with probability pfi or pfb, respectively. 

1 

2 

3 

pfi 

pr 

pidle 
parr 

pcom 

pbusy 

pfb 

pff 

{Xt} t= 0,1,2,3 …. 

        state of the computer at time t 

pidle 
parr 

pcom pbusy 

pfi 

pfb 

pr 
0 

pff 

P = 


