
1

Byzantine Generals Problem

“Byzantine Generals” metaphor used in the classical paper
by Lamport et al. [Lamport et al., 1982]

The paper considered a synchronous system, i.e., a system

in which there are known delay bounds for processing
and communication.

Byzantine Generals

 The problem is given in terms of generals who have

surrounded the enemy.

 Generals wish to organize a plan of action to attack

or to retreat.
 Each general observes the enemy and communicates

his observations to the others.

 Unfortunately there are traitors among generals and

traitors want to influence this plan to the enemy’s
advantage. They may lie about whether they will
support a particular plan and what other generals told
them.

L. Lamport, R. Shostak, M. Pease

The Byzantine Generals Problem

ACM Trans. on Progr. Languages and Systems, 4(3),1982

2

Byzantine Generals Problem

General 3

attack / retreat

General 4

attack / retreat

enemy

General 1

attack / retreat

General 2

attack / retreat

General 5

attack / retreat

What algorithm for decision making should the generals

use to reach a Consensus?

What percentage of liars can the algorithm tolerate and

 still correctly determine a Consensus?

Consensus:

A: All loyal generals decide upon the same plan of actions

B: A small number of traitors cannot cause loyal generals

 to adopt a bad plan

General: either a loyal general or a traitor

3

Byzantine Generals Problem

Assume plan of actions: attack or retreat

Let

– n be the number of generals

– v(i) be the opinion of general i (attack/retreat)

– each general i communicate the value v(i) by

messangers to each other general j

– each general final decision obtained by:

majority vote among the values v(1), ..., v(n)

To satisfy condition A:
 every general must apply the majority function to the

same values v(1),...,v(n).

 But a traitor may send different values to different

generals thus generals may receive different values

To satisfy condition B:
 for each i, if the i-th general is loyal, then the value he

sends must be used by every loyal general as the
value v(i)

4

Byzantine Generals Problem

Let us consider the Consensus problem into a simpler

situation in which we have:
1 commanding general (C)
n-1 lieutenant generals (L1, ..., Ln-1)

Consensus:
Interactive Consistency conditions.

IC1:

All loyal lieutenant generals obey the same command

IC2:

The decision of loyal lieutenants must agree with the
 commanding general’s order if he is loyal.

5

Byzantine Generals Problem

Commanding general loyal: the same command is sent to

lieutenants, IC1 and IC2 are satisfied.

Commanding general lies but sends the same command to

lieutenants: IC1 and IC2 are satisfied.

Commanding general lies and sends

 - attack to some lieutenant generals

 - retreat to some other lieutenant generals

How loyal lieutenant generals may all reach

the same decision either to attack or to retreat ?

enemy

Commanding

General

C

L1

L2

L3
L4

6

Byzantine Generals Problem

C

L1

L2

L3
L4

Lieutenant generals send messages back and forth

among themselves reporting the command received by

the Commanding General.

L1: (v1, v2, v3, v4) majority(v1, v2, v3, v4)

L2:(v1, v2, v3, v4) majority(v1, v2, v3, v4)

L3: (v1, v2, v3, v4) majority(v1, v2, v3, v4)

L4: (v1, v2, v3, v4) majority(v1, v2, v3, v4)

7

Byzantine Generals Problem

C

L1 L2

<attack> <attack>

<C said retreat>

L2 traitor

<C said attack>

In this situation: two different commands, one from

the commanding general and the other from a

lieutenant general.

If L1 must obey the lieutenant general, IC2 is not

satisfied

Assume L1 must obey the commanding general.

L1 decides attack.

IC1 and IC2 are satisfied.

n = 3

no solution exists in presence of a traitor

L1: (attack, retrait) L2: (attack, attack)

8

L1 must obey the commanding general and decides attack

L2 must obey the commanding general and decides retreat

IC1 is violated

IC2 is satisfied (the comanding general is a traitor)

C

L1 L2

<attack> <retreat>

<C said retreat>

C traitor

<C said attack>

The situation is the same as before, and the

same rule is applied

Byzantine Generals Problem

L1: (attack, retrait) L2: (attack, retrait)

9

Byzantine Generals Problem

In the following we show the Oral Message OM(m)
algorithm that gives a solution when

 - Every message that is sent by a non faulty

process is correctly delivered

 - The receiver of a message knows who sent it

 - The absence of a message can be detected

 (the system is synchronous)

Moreover, a traitor commander may decide not to send any

order. In this case we assume a default order equal to
“retreat”.

Similarly the function majority(v1, ..., vn-1) returns “retrait”
if there not exists a majoirity among values

10

Oral Message (OM) algorithm

The Oral Message algorithm OM(m) by which a commander

sends an order to n-1 lieutenants, solves the Byzantine
Generals Problem for n = (3m +1) or more generals, in
presence of at most m traitors.

Function majority(v1, ..., vn-1)

majority(v1, ..., vn-1)

 if a majority of values vi equals v,
 then
 majority(v1, ..., vn-1) equals v
 else
 majority(v1, ..., vn-1) equals retreat

 deterministic majority vote on the values

11

The algorithm

Algorithm OM(0)
1. C sends its value to every Li, i{1, ..., n-1}
2. Each Li uses the received value, or the value retreat

if no value is received

Algorithm OM(m), m>0
1. C sends its value to every Li, i{1, ..., n-1}

2. Let vi be the value received by Li from C

(vi = retreat if Li receives no value)
Li acts as C in OM(m-1) to send vi to each
of the n-2 other lieutenants

3. For each i and j  i, let vj be the value that Li
received from Lj in step 2 using Algorithm OM(m-1)
(vj = retreat if Li receives no value).
Li uses the value of majority(v1, ..., vn-1)

OM(m) is a recursive algorithm that invokes n-1 separate

executions of OM(m-1), each of which invokes n-2
executions of O(m-2), etc..

For m >1, a lieutenant sends many separated messages to

the other lieutenants.

To distinguish these messages, each lieutenent i prefixes

the number i to the value sent
  messages are prefixed by a sequence of numbers

 of lieutenants

12

The algorithm

4 generals, 1 traitor

OM(1)
Point 1
- C sends the command to L1, L2, L3.
- L1 applies OM(0) and sends the command he received

from C to L2 and L3
- L2 applies OM(0) and sends the command he received

from C to L1and L3
- L3 applies OM(0) and sends the command he received

from C to L1 and L2

Point 2
- L1: majority(v1, v2, v3)
- L2: majority(v1, v2, v3)
- L3: majority(v1, v2, v3)

v3

C

L1 L2

<v1> <v3>

v1 L3

<v2>

v3

v1

v1 v3 v2

v2 v2

13

The algorithm

4 generals, 1 traitor n=4, m=1

C

L1 L2

<attack>
<attack>

<attack> L3

<attack>

<attack>

L1, L2 and L3 are loyal. They send the same

command when applying OM(0)

IC1 and IC2 are satisfied

Li: v1 = attack, v2 =attack, v3 = attack

majority(....)= attack

C is a traitor but sends the same

command to L1, L2 ad L3

...................

14

The algorithm

C

L1 L2

<attack>
<retrait>

<attack> L3

<attack>

<retrait>

C is a traitor and sends:

attack to L1 and L2

retrait to L3

L1: v1 = attack, v2 =attack, v3 = retrait

majority(...)= attack

L2: v1 = attack, v2 =attack, v3 = retrait

majority(...)= attack

L3: v1 = attack, v2 =attack, v3 = retrait

majority(...)= attack

IC1 and IC2 satisfied

..................

L1, L2 and L3 are loyal.

..................

15

The algorithm

A leutenant is a traitor

L3 is a traitor:

sends retrait to L2 and attack to L1

C

L1 L2

<attack> <attack>

<attack> L3

<attack>

<retrait>

L1: v1 = attack v2 = attack, v3 = attack

majority(...) = attack

..................

L2: v1 = attack v2 = attack, v3 = retrait

majority(...) = attack

IC1 and IC2 satisfied

<attack>

<attack>

16

The algorithm

The following theorem has been formally proved:

Theorem:
 For any m, algorithm OM(m) satisfies conditions IC1 and

IC2 if there are more than 3m generals and at most m
traitors. Let n the number of generals: n >= 3m +1.

4 generals are needed to cope with 1 traitor;
7 generals are needed to cope with 2 traitors;
10 generals are neede to cope with 3 traitors
.......

17

Byzantine Generals Problem

Original Byzantine Generals Problem
 Solved assigning the role of commanding general to

every lieutenant general, and running the algorithms
concurrently

Each general observes the enemy and communicates his

observations to the others

  Every general i sends the order “use v(i) as my value”

Consensus on the value sent by general i
  algorithm OM

Each general combines v(1),…,v(n) into a plan of actions
  Majority vote to decide attack/retreat

General agreement among n processors, m of which

could be faulty and behave in arbirary manners.
Each processor holds a secret value that wishes to
share with other processors.

 No assumptions on the characteristics of faulty

processors

 Conflicting values are solved taking a deterministic

majority vote on the values received at each
processor (completely distributed).

18

Remarks

Solutions of the Consensus problem are expensive:

Assume m be the maximum number of faulty nodes

 OM(m):

each Li waits for messages originated at C and relayed
via m others Lj

OM(m) requires
 n = 3m +1 nodes
 m+1 rounds
 message of the size O(nm+1) - message size grows

 at each round

Algorithm evaluation using different metrics: number of fault

processors / number of rounds / message size

In the literature, there are algorithms that are optimal for

some of these aspects.

19

Signed messages

The ability of the traitor to lie makes the Byzantine Generals

problem difficult

  restrict the ability of the traitor to lie

A solution with signed messages:
 allow generals to send
 unforgeable signed messages

Signed messages (authenticated messages):
 - Byzantine agreement becomes much simpler

Signed messages limit the capability of faulty-processors

20

Signed messages

Assumption
 (a) The signature of a loyal general cannot be forged,

and any alteration of the content of a signed message
can be detected

 (b) Anyone can verify the authenticity of the signature of

a general

No assumptions about the signatures of traitor generals

Let V be a set of orders. The function choice(V) obtains a

single order from a set of orders:

For choice(V) we require:

choice() = retreat
choice(V) = v if V consists of the single element v

One possible definition of choice(V) is:
choice(V) = retrait if V consists of more than 1 element

x:i denotes the message x signed by general i
v:j:i denotes the value v signed by j and then
 the value v:j signed by i

General 0 is the commander

For each i, Vi contains the set of properly signed orders that

lieutenant Li has received so far

21

Signed messages

Algorithm SM(m)

Vi = 
1. C signs and sends its value to every Li, i1, ..., n-1}

2. For each i:
 (A) if Li receives v:0 and Vi is empty
 then Vi = v};
 sends v:0:i to every other Lj

 (B) if Li receives v:0:j1:...:jk and v  Vi
 then Vi = Vi  v};
 if k < m then
 sends v:0:j1:...:jk:i to every
 other Lj , j j1, ..., jk}

3. For each i: when Li will receive no more msgs,
 he obeys the order choice(Vi)

Observations:

 - Li ignores msgs containing an order vVi

 - Time-outs are used to determine when no more

messages will arrive

 - If Li is the m-th lieutenant that adds the signature to

the order, then the message is not relayed to
anyone.

22

Signed messages

3 generals, 1 traitor

C

L1 L2

<attack:0>

<attack:0:1>

<retreat:0>

<retreat:0:2>

V1 = {attack, retreat} V2 = {attack, retreat}

- L1 and L2 obey the order choice({attack, retreat})

- L1 and L2 know that C is a traitor because

 the signature of C appears in two different orders

The following theorem asserting the correctness

of the algorithm has been formally proved.

Theorem :

For any m, algorithm SM(m) solves the Byzantine

Generals Problem if there are at most m traitors.

C is a traitor and sends:

attack to L1 and L2

retrait to L3

23

Remarks

Consider the Assumption :

 The absence of a message can be detected

 For the oral/signed message algorithm: timeouts

 - requires a fixed maximum time for the generation

 and transmission of a message
 - requires sender and receiver have clocks that are

 synchronised to within some fixed maximum error

Consider the Assumption :

 (a) a loyal general signature cannot be forged, and

any alteration of the content of a signed message
can be detected

 (b) anyone can verify the authenticity of a general
signature

 - probability of this violation as small as possible
 - cryptography

24

Consensus in Asynchronous systems

Consensus in Asynchronous systems

Asynchronous distributed system:
 no timing assumptions (no bounds on message delay,
 no bounds on the time necessary to execute a step)

Asynchronous model of computation: attractive.

 - Applications programmed on this basis are easier to

port than those incorporating specific timing
assumptions.

 - Synchronous assumptions are at best probabilistic:
 in practice, variable or unexpected workloads are

sources of asynchrony

25

Impossibility result

Consensus: cannot be solved deterministically in an

asynchronous distributed system that is subject even to
a single crash failure [Fisher, Lynch and Paterson 85]

  due to the difficulty of determining whether a process

has actually crashed or is only very slow.

 If no assumptions are made about the upper bound

on how long a message can be in transit, nor the upper
bound on the relative rates of processors, then a single
processor running the consensus protocol could simply
halt and delay the procedure indefinitely.

 Stopping a single process at an inopportune time

can cause any distributed protocol to fail to reach
consensus

M.Fisher, N. Lynch, M. Paterson

Impossibility of Distributed Consensus with one faulty process.

Journal of the Ass. for Computing Machinery, 32(2), 1985.

26

Circumventing FLP

Techniques to circumvent the impossibility result:

Augmenting the System Model with an Oracle

A (distributed) Oracle can be seen as some component that

processes can query. An oracle provides information
that algorithms can use to guiide their choices. The most
used are failure detectors.

Since the information provided by these oracles makes
the problem of consensus solvable, they augment the
power of the asynchronous system model.

- Failure detectors
 a failure detector is an oracle that provides information

about the current status of processes, for instance,
whether a given process has crashed or not.

 A failure detector is modeled as a set of distributed
modules, one module Di attached to each process pi.
Any process pi can query its failure detector module Di
about the status of other processes.

T. D. Chandra, S. Toueg

Unreliable Failure Detectors for Reliable Distributed Systems.

Journal of the Ass. For Computing Machinery, 43 (2), 1996.

27

Failure detectors

Failure detectors are considered unreliable, in the

sense that they provide information that may not

always correspond to the real state of the

system.

For instance, a failure detector module Di may

provide the erroneous information that some

process pj has crashed whereas, in reality, pj is

correct and running.

Conversely, Di may provide the information that a

process pk is correct, while pk has actually

crashed.

To reflect the unreliability of the information provided

by failure detectors, we say that

a process pi suspects some process pj whenever

Di , the failure detector module attached to pi,

returns the (unreliable) information that pj

has crashed.

In other words, a suspicion is a belief (e.g., “pi

believes that pj has crashed”) as opposed to a

known fact (e.g., “pj has crashed and pi knows

that”).

Several failure detectors use sending/receiving of

messages and time-outs as fault detection

mechanism.

28

Adding time to the model

Adding Time to the Model
 - using the notion of partial synchrony

 Partial synchrony model: captures the intuition that

systems can behave asynchronously (i.e., with
variable/unkown processing/ communication delays) for
some time, but that they eventually stabilize and start to
behave (more) synchronously.

 The system is mostly asynchronous but we make

assumptions about time properties that are eventually
satisfied. Algorithms based on this model are typically
guaranteed to terminate only when these time properties
are satisfied.

 Two basic partial synchrony models, each one extending

the asynchronous model with a time property are:

 • M1: For each execution, there is an unknown bound on

the message delivery time, which is always satisfied.

 • M2: For each execution, there is an unknown global

stabilization time GST, such that a known bound on the
message delivery time is always satisfied from GST.

29

Wormholes

Wormholes: enhanced components that provide processes

with a means to obtain a few simple privileged functions
with “good” properties otherwise not guaranteed by the
normal.

Example, a wormhole can provide timely or secure functions

in, respectively, asynchronous or Byzantine systems.

Consensus algorithms based on a wormhole device called

Trusted Timely Computing Base (TTCB) have been
defined.

TTCB is a secure real-time and fail-silent distributed

component. Applications implementing the consensus
algorithm run in the normal system, i.e., in the
asynchronous Byzantine system.

TTCB is locally accessible to any process, and at certain

points of the algorithm the processes can use it to
execute correctly (small) crucial steps.

