
1

Software Reliability

2

Software Reliability

sw

input output

What is software reliability?

 the probability of failure-free software operation for a specified

 period of time in a specified environment

 One of the weakest links in systems reliability is software reliability.

Even for control applications which usually have less complex

software, it is well established that many failures are results of

software bugs.

We assume that programs will not be fault-free

3

Software Reliability

sw

input output Software is subject to

1. design flaws:

 - mistakes in the interpretation of the specification

 that the software is supposed to satisfy (ambiguities)

 - mistakes in the implementation of the specification:

 carelessness or incompetence in writing code,

 inadequate testing

2. operational faults

 incorrect or unexpected usage faults (operational profile)

4

Design Faults

Given a design flaw, only some type of inputs will exercise that

fault to cause failures. Number of failures depend on how

often these inputs exercise the sw flaw

Apparent reliability of a piece of software is correlated to how

frequently design faults are exercised as opposed to number

of design faults present

- hard to visualize, classify, detect, and correct.

- closely related to human factors and the design

process, of which we don't have a solid understanding

- a design flaw not discovered and corrected during testing, may

possibly lead to a failure during system operation

5

Software faults and Failure regions

The input to the software is a set of variables, defining a Cartesian
space, e.g. x and y

x

y

The software contains bugs if some inputs are processed erroneously

Failure regions

 (efficacy of software fault tolerance techniques depends on how
disjoint the failure regions of the versions are)

6

Software Reliability evaluation

- structural based models are not well suited for software

- identification of individual components is very difficult

(sometimes they do not exist because the software is complex)

- the assumption of independent failures is not valid
(for example, many processes read data from the same memory)

7

 1) "defect density" models

 attempt to predict software reliability from design parameters

 use code characteristics such as line of codes,

 nesting loops, input/output, …

 2) "software reliability growth" models
 attempt to predict software reliability from test data

 statistically correlate failure detection data with known

 functions (exp function)

 If the correlation is good, the known function can be used to

 predict future behavior

Software Reliability

There are basically two types of software reliability models

8

Defect density models

Fault density: number of faults for KLOC (thousands of lines of code)

Fault density ranges from 10 to 50 for “good” software and

from 1 to 5 after intensive testing using automated tools

[Miller 1981]

[Miller 1981]

Miller E.F, et al. “Application of structural quality standards to Software”,

Softw. Eng. Standard Appl. Workshop, IEEE, 1981

9

October 9 - October 11, 2012

10

11

Software Reliability Growth Models

Software failures are random events, because they are result
of two processes:

 - the introduction of faults
- and then activation through selection of input values

These processes are random in nature:

- we do not know which bugs are in the software

-we do not know when inputs will activate those bugs

Software reliability growth models
are developed in general by probability distribution of failure times

12

Software Reliability Growth Models

Based on the idea of an iterative improvement process of software.
Software is tested, the times between successive failures are
recorded, and faults are removed.

 testing -> correction ->testing

Based on the assumption that the failure rate is proportional to the
number of bugs in the code.

Each time a bug is repaired, there are fewer total bugs in the code, the
failure rate decreases as the number of faults detected (and repaired)
increases, and the total number of faults detected asymptotically
approaches a finite value.

The concave model

strictly follows this pattern

13

Are prediction systems

Provide a means of characterizing the development process
and enable to make predictions about the expected future
reliability of software under development.

These approaches are based mainly on the failure
history of software. Correlation of bug-removal history
with the time evolution of the MTTF value may allow the
prediction of when a given MTTF value will be reached

Data are monitored and recorded at development and
operational phase

Software Reliability Growth Models

14

Assume times between successive failures are modeled

 by random variables T1, ..., Tn

 T1, time to the first failure

 Ti, i>1, time between failure i-1 and failure i

Reliability growth characterization

0

T1 T2 Tn

1st

failure

n-th failure

continuous time reliability growth

based on these data, Tn+1, Tn+2, … should be predicted

(Ti= MTTF)

2nd

failure

Reliability growth: Ti <=st Tk for all i < k

Prob {Ti < x} >= Prob {Tk <= x} forall i < k and for all x

15

Specification of the distribution of Tj

 Prob(Tj=k) conditional on a parameter g

Statistical inference of g by using available data

prediction procedure about future Tj

Reliability growth characterization

16

Number of failures: the number of failures is decreasing

 Cumulative number of failure law:

 the number of failure events in an interval of the form [0, tk]

 is larger than the number of failure events taking place in an interval

 of the same length beginning later

 Random Variables N(t1), ..., N(tn)

 N(ti) = cumulative number of failures between 0 and ti

N(1) N(2)
N(k)

0

Reliability growth characterization

x x x x x x x x … … …

17

Jelinski and Moranda Model

(the earliest and the most commonly used model)

Software failure rate is assumed
proportional to the current fault content of the program

Assume there are N faults at the beginning of the testing process

 - each fault is independent of others and

 - equally likely to cause a failure during testing

Detected fault is removed in a negligible time and no new faults are introduced

Assume Ti has an exponential distribution. Ti follows a distribution whose
parameters depend on the number of faults remaining in the system
after the (i-1) failure

Let ti the time between (i-1)th and i-th failure

 Z(ti) = = f(N-(i-1)) failure rate

18

Schick and Wolver ton Model

Software failure rate is proportional to the current fault content of the

program as well as to the time elapsed since the last failure

Let ti the time between (i-1)th and i-th failure

 Z(ti) = f(N-(i-1)) ti

Failure rate is linear with time within each failure interval, return to 0 at

the occurrence of a failure and increases linearly again but at a

reduced slope.

19

Goel and Okumoto Imperfet Debbugging Model

The previous models assume that faults are removed with certainty when

detected. In pratice this is not always the case

 -> imperfect debugging

The number of faults in the system at time t , X(t), is treated as a

Markov process whose transition probabilities are governed by the

probability of imperfect debugging.

 Times between the transitions are taken to be exponentially

distributed with rate dependent on the current fault content of the

system.

20

ti time between failure i-1 and failure i

Failure rate during the interval between the (i-1) and the i failure

 Z(ti) = (N- p(i-1)) l

- p is the probability of imperfect debugging

- l failure rate per fault

21

Software Reliability Grow Models

Siewiorek, et al

Reliable Computer Systems, Prentice Hall,1992

Unfortunately, these models are often inaccurate.

22

Littlewood-Verrall Bayesian model

A different approach: reliability should not specified in terms of number of

bugs in the program

Times between failures follow an exponential distribution with parameter

a random variable with a gamma distribution

 quality of the programmer and difficulty of the programming task

 Failure phenomena in different environments can be

 modeled taking different forms of

From: Software Reliability models:

Assumptions, Limitations and apllicability

A.L.Goel, IEEE TSE Vol 12, 1985.

23

Other models:

Software reliability

Siewiorek, et al

Reliable Computer Systems, Prentice Hall,1992

24

Software Reliability Grow Models

- No assumptions on the software structure

- useful for estimating how software reliability improves as faults are detected

and repaired

- used to predict when a particular level of reliability is reached
and also helps in determining when to stop testing to attain a
given reliability level

- help in decision making in many software development activities
such as number of initial faults, failure intensity, reliability within
a specified interval of time period, number of remaining faults,
cost analysis and release time etc.

25

SOFTWARE RELIABILITY EVOLUTION

identify periods of reliability growth and decrease

upgrades imply feature upgrades,

not upgrades for reliability.

From “Software Reliability”,

J. Pan, Carnegie Mellon University, 1999

As a software is used, design faults are discovered and corrected.

Consequently, the reliability should improve, and the failure rate should

decrease BUT corrections could cause new faults

26

 in the useful-life phase, software will experience a

drastic increase in failure rate each time an upgrade is made.

The failure rate levels off gradually, partly because of the defects

 found and fixed after the upgrades.

 Even bug fixes may be a reason for more software failures,

if the bug fix induces other defects into software

 in the last phase, software does not have an

 increasing failure rate as hardware does. In this phase,

software is approaching obsolescence; there are no

motivations for any upgrades or changes to the software.

Therefore, the failure rate will not change.

SOFTWARE RELIABILTY EVOLUTION

27

From “Software Reliability”, J. Pan, Carnegie Mellon University, 1999

Sometimes redesign or reimplementation of some modules with better

engineering approaches in a new version of the product

28

Software Reliability Engineering

Software Reliability Engineering (SRE) is the

quantitative study of the operational behavior of

software-based systems with respect to user

requirements concerning reliability.

29

A global software reliability analysis method

(In Karama Kanoun, ReSIST network of Excellence Courseware “Software Reliability

Engineering”, 2008 http://www.resist-noe.org/)

30

 Data collection process

- includes data relative to product itself (software size, language,

workload, ...), usage environment: verification & validation

methods and failures

- Failure reports (FR) and correction reports (CR) are generated

 Data validation process

data elaborated to eliminate FR reporting of the same failure, FR

proposing a correction related to an already existing FR, FR

signalling a false or non identified problem, incomplete FRs or

FRs containing inconsistent data (Unusable) …

Data extracted from FRs and CRs

 Time to failures (or between failures)

 Number of failures per unit of time

 Cumulative number of failures

31

 Trend tests

Control the efficiency of test activities

 - Reliability decrease at the beginning of a new activity: OK

 - Reliability row after reliability decrese: OK

 - Sudden reliability grow CAUTION!

 -

 Model application

Trend in accordance with model assumptions

 Descriptive statistics

make syntheses of the observed phenomena

Analyses Fault typology, Fault density of components, Failure /

fault distribution among software components (new, modified,

reused)

Analyses Relationships Fault density / size / complexity;

Nature of faults / components; Number of components affected by

changes made to resolve an FR .

…….

32

Due to the nature of software, no general accepted mechanisms

exist to predict software reliability

Important empirical observation and experience

Good engineering methods can largely improve software reliability

Software testing serves as a way to measure and improve

software reliability

Unfeasibility of completely testing a software module:

 defect-free software products cannot be assured

Databases with software failure rates are available but numbers should be

used with caution and adjusted based on observation

and experience

Software Reliability

