
NASA / TM-2000-210616

Software Fault Tolerance: A Tutorial

Wilfredo Torres-Pomales

Langley Research Center, Hampton, Virginia

October 2000

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional
mechanism for disseminating the results of its

research and development activities. These
results are published by NASA in the NASA STI

Report Series, which includes the following

report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant

phase of research that present the results of
NASA programs and include extensive

data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA
counterpart of peer-reviewed formal

professional papers, but having less
stringent limitations on manuscript length

and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary

or of specialized interest, e.g., quick release

reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include
creating custom thesauri, building customized

databases, organizing and publishing research

results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http'//www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA / TM-2000-210616

Software Fault Tolerance: A Tutorial

Wilfredo Torres-Pomales

Langley Research Center, Hampton, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

October 2000

Available from:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 605-6000

Abstract

Because of our present inability to produce error-free

software, software fault tolerance is and will continue to be an

important consideration in software systems. The root cause of

software design errors is the complexity of the systems.

Compounding the problems in building correct software is the

difficulty in assessing the correctness of software for highly

complex systems. This paper presents a review of software fault

tolerance. After a brief overview of the software development

processes, we note how hard-to-detect design faults are likely to

be introduced during development and how software faults tend

to be state-dependent and activated by particular input

sequences. Although component reliability is an important

quality measure for system level analysis, software reliability is

hard to characterize and the use of post-verification reliability

estimates remains a controversial issue. For some applications

software safety is more important than reliability, and fault

tolerance techniques used in those applications are aimed at

preventing catastrophes. Single version software fault tolerance

techniques discussed include system structuring and closure,

atomic actions, inline fault detection, exception handling, and

others. Multiversion techniques are based on the assumption

that software built differently should fail differently and thus, if

one of the redundant versions fails, at least one of the others

should provide an acceptable output. Recovery blocks, N-

version programming, N self-checking programming, consensus

recovery blocks, and t/(n-1) techniques are reviewed. Current

research in software engineering focuses on establishing

patterns in the software structure and trying to understand the

practice of software engineering. It is expected that software

fault tolerance research will benefit from this research by

enabling greater predictability of the dependability of software.

iii

Acknowledgements

I would like to acknowledge my gratitude to Dr. F. Gail Gray of the Virginia Polytechnic

Institute and State University (VA Tech) for providing advice during the preparation and

reviewing of this report. I also wish to acknowledge my appreciation to Mr. Ricky Butler of the

NASA Langley Research Center for his help in reviewing the final version of this report.

iv

Table of Contents

1. INTRODUCTION .. 1

2. SOFTWARE DEVELOPMENT ... 2

3. SOFTWARE DESIGN FAULTS ... 6

4. SOFTWARE FAULT TOLERANCE ... 8

4.1. Single-Version Software Fault Tolerance Techniques 9

4.1.1. Software Structure and Actions ... 9

4.1.2.

4.1.3.

4.1.4.

4.1.5.

4.1.6.

4.1.6.

Error Detection ... 10

Exception Handling ... 12

Checkpoint and Restart .. 12

Process Pairs .. 13

Data Diversity .. 14

Considerations on the use of Checkpointing ... 16

4.2. Multi-Version Software Fault Tolerance Techniques 17

4.2.1. Recovery Blocks .. 17

4.2.2. N-Version Programming .. 18

4.2.3. N Self-Checking Programming .. 19

4.2.4. Consensus Recovery Blocks .. 20

4.2.6. t/(n- 1)-Variant Programming ... 21

4.2.7. Additional Considerations ... 21

4.2.7.1. Multi-Version Software Development .. 21

4.2.7.2. Output Selection Algorithms ... 23

4.3. Fault Tolerance in Operating Systems .. 25

4.4. Software Fault Injection for Fault Tolerance Assessment 27

V

5. HARDWARE AND SOFTWARE FAULT TOLERANCE 28

5.1. Computer Fault Tolerance ... 28

5.2. Examples of Fault Tolerant Architectures .. 34

5.2.1. B777 Primary Flight Control Computer .. 35

5.2.2. AIRBUS A320/A330/A340 Flight Control Computer .. 37

6. SUMMARY AND CONCLUDING REMARKS .. 38

7. BIBLIOGRAPHY .. 39

vi

List of Figures

Figure 1: Linear Sequential Process Model .. 3

Figure 2: Prototyping Process Model ... 3

Figure 3: Logical Representation of Checkpoint and Restart ... 13

Figure 4: Logical Representation of Process Pairs ... 14

Figure 5: Checkpoint and Restart using Data Diversity (with Input Re-Expression Model) 15

Figure 6: Data Diversity using Input Data Re-Expression .. 15

Figure 7: Data Diversity using Input Re-expression with Post-Execution Adjustment 15

Figure 8: Data Diversity using Re-expression via Decomposition and Recombination 15

Figure 9: Recovery Block Model .. 18

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

N-Version Programming Model .. 19

N Self-Checking Programming using Acceptance Tests ... 19

N Self-Checking Programming using Comparison ... 20

Consensus Recovery Blocks ... 21

Example of Passive Redundancy .. 32

Passive Redtmdancy with Input Voting .. 32

Dynamic Redundancy using Duplication with Comparison ... 33

Dynamic Redundancy using Self-Checking Pairs ... 33

Hybrid Redtmdancy using N-Modular Redundancy with Spares .. 34

Abstract Representation of a Fly-By-Wire Flight System ... 35

Architecture of B777 Flight Control Computer .. 37

Architecture of A3XX Flight Control Computer .. 38

vii

List of Tables

Table 1: Fault classification .. 29

Table 2: Fault Tolerant System Design Paradigm .. 30

viii

1. Introduction

Software permeates every aspect of modem society. Government, transportation,

manufacturing, utilities, and almost every other sector that influences our way of life is affected

directly or indirectly by software systems. The flexibility provided by software-controlled

systems, the insatiable appetite of society for new and better products, and competition for

business drive the continued expansion of the domain ruled by software systems. Without

software, many of our modern conveniences would be virtually impossible.

Despite its widespread use, software is hardly ever "perfect". For a myriad of reasons, it is

extremely difficult to produce a flawless piece of software. According to [Lyu 95], "software is a

systematic representation and processing of human knowledge". For humans, perfect knowledge

of a problem and its solution is rarely achieved. [Abbott 90] states that "programs are really not

much more than the programmer's best guess about what a system should do". Even if a

programmer had sufficient knowledge to solve a problem, that knowledge must be transformed

into a systematic representation adequate for automatic processing. Our computers today are

merciless when it comes to processing software: if there is an error in the logic, sooner or later

that error will show up in the output independently of the consequences. Only the most trivial

software problems can be solved without some trial and error. As computers are applied to solve

more complex problems, the probability of logic errors being present in the software grows.

F. P. Brooks [Brooks 87] conjectured that the hard part about building software is not so much

the representing of the solution to a problem in a particular computer language, but rather what he

called the "essence" of a software entity. This essence is the algorithms, data structures,

functions, and their interrelationships. Specification, design, and testing of this conceptual

construct is the "hard part" of software engineering. This is not to say that capturing the software

description in a textual or graphical manner is not difficult in itself; it certainly is. To Brooks, the

labor intensiveness associated with software is really more of an "accidental" difficulty. Brooks

enumerates four inherent properties that make software hard: complexity, conformity,

changeability, and invisibility. Software is complex because of the extremely large number of

states present in a design and the nonlinear interactions among these states. Software is forced to

conform because it is perceived as the most conformable of all the components in a system.

Software design complexity often follows from requirements to accommodate interfaces designed

with no apparent consideration for homogeneity and ease of use. Also, it is often left to the

software to handle deficiencies and incompatibilities among other system components. Software

changes continuously because it is extremely malleable. As such, new and revised system

functionality is often implemented through software changes. Even if the software is not the

direct target of a change in system functionality, the software is forced to change to accommodate

changes in other system components. Lastly, software is invisible. We use computer languages

to try to capture the essence of software, but the concepts are so intricate that they generally defy

attempts to completely visualize them in a practical manner and require the use of techniques to

simplify relationships and enable communication among designers.

Software engineering is the discipline concerned with the establishment and application of

sound engineering practices to the development of reliable and efficient software. The IEEE

defines software engineering as "the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the application of

engineering to software" [IEEE 93]. This discipline has been around for more than forty years,

and in that time software engineering practices have made possible significant accomplishments.

Textbooks exist on the subject (e.g., [Pressman 97]) and guidelines for the development of

software abound (e.g., [Mazza 96]). We will review some high-level concepts of the design and

verification of software from the perspective of realizing what is involved in a complete and

disciplined development effort.

Because absolute certainty of design correctness is rarely achieved, software fault tolerance

techniques are sometimes employed to meet design dependability requirements. Software fault

tolerance refers to the use of techniques to increase the likelihood that the final design

embodiment will produce correct and/or safe outputs. Since correctness and safety are really

system level concepts, the need and degree to use software fault tolerance is directly dependent

on the intended application and the overall system design.

This paper reviews the concepts of software fault tolerance. Our aim is to survey the literature

and present the material as an introduction to the field. We emphasize breadth and variety of the

concepts to serve as a starting point for those interested in research and as a tutorial for people

wanting some exposure to the field. The next section is an overlook of the software development

process.

2. Software Development

The goal here is to present some of the ideas in software engineering. The information in this

section is based on [Pressman 97] and [DO178B]. The reader should consult those and other

references for a more detailed and precise treatment of the subject.

The software life cycle is composed of three types of processes: planning, development, and

supporting processes. The planning process is the first step in the cycle and its goal is to define

the activities of the development and supporting processes, including their interactions and

sequencing. The data produced by the processes and the design development environments, with

definitions of the methods and tools to be used, are also determined during the planning process.

The planning process scopes the complexity of the software and estimates the resources needed in

the development activities. Software development standards and methods are selected during the

planning activity. Standards exist for all the processes in the software life cycle and are used as

part of the quality assurance strategy. For better performance in terms of development time and

quality of the final product, the plans should be generated at a point in time that provides timely

direction to those involved in the life cycle process. The planning process should provide

mechanisms for further refinement of the plans as the project advances.

The strategy used to develop the software, also known as the process model or software

engineering paradigm, is chosen based on the particular characteristics of the application to be

developed. Further consideration in selecting a process model is given to project elements like

the maturity level of the developers and the organization, tools to be used, existent process

control, and the expected deliverables. Various process models have been proposed in the

software engineering literature [Pressman 97]. The Linear Sequential Model is the most basic

and straightforward process model (see Figure 1). Following the system engineering analysis

where requirements are allocated to each element of a full system, the software development

process goes through the steps of analyzing its allocated requirements and categorizing them in

terms of functional, performance, interface and safety-related requirements. After this phase is

complete, the high level design is built and the code is generated. Testing is then performed on
the final coded version.

.ioh, ve,LJ

Figure 1: Linear Sequential Process Model

Figure 2 presents the Prototyping Process Model. This process model is appropriate for

projects where the requirements are incompletely specified or when the developers are unsure

whether a proposed design solution is adequate. The process begins with a requirements capture

activity, followed by a quick design and build of a prototype or mock-up of the product. After

analyzing the prototype, further refinements to the requirements are generated and the process

begins again. This cycle activity not only helps develop the requirements, but it also helps the

developers better understand the problem.

[_Analysis

Requirements

I qui2 u igcln

Figure 2: Prototyping Process Model

Other process models have been proposed. The Rapid Application Development (RAD)

process model uses multiple teams of developers working simultaneously on different modules of

an application with all the teams following what is basically the Linear Sequential Model to

develop their corresponding module. The Incremental Model is an evolutionary process model

that combines the Linear Sequential Model with prototyping activity in an iterative fashion; after

each iteration the result is an incremental improvement on the software product. The Spiral

Model, the Component Assembly Model, and the Concurrent Development Model are other

evolutionary process models.

Regardlessof theprocessmodelchosen,actualdevelopmentof thesoftwarehasfour main
processes:requirementscapture,design,coding,and integration.The high-level software
requirementsaredevelopedduringtherequirementscaptureprocess.Theserequirementsinclude
functional,performance,interfaceandsafetyrequirementsderivedfromthesystemlevelanalysis
anddevelopment.Thecapturingof requirementsisusuallyaniterativeprocess with corrections

being added to rectify omissions, ambiguities, and inconsistencies found during the other

processes. Further corrections and additions to the requirements can also originate from changing

system-level requirements and design.

The design process produces the software architecture and corresponding lower level

requirements for the coding process. The architectural design is a modular hierarchical

decomposition of the software, including the control relationships and data flow between the

modules. Complementary to the architectural design, this process also includes activities for

performing the data design, interface design and procedural design. The data design is the

selection of the data structures to be used and the identification of the program modules that

operate directly on these structures. The interface design considers the interactions between

software modules, between the software and other non-human external entities, and between the

computer and human operators. A general guideline applicable to all software designs is the

implementation of data validation and error handling capability within each structural module in

order to control the propagation of side effects associated with the processing of erroneous data.

Procedural design is the selection of the algorithms to be used by the software components. The

design process should allocate requirements to software elements, identify available system

resources with their limitations and selected managing strategies, identify scheduling procedures

and inter-processor and/or inter-task communication mechanisms, and select design methods and

their implementation. This part of the software development deals with what F. P. Brooks

[Brooks 87] called the "essence" of a software entity. In general, errors originating during this

phase of development tend to be systemic errors stemming from the inherent difficulty in

mastering the complexity of the problem being solved and the proposed design solution.

The coding process develops the source code implementing the software architecture,

including the data, interface, and procedural designs together with any other low-level

requirements. If the output of the design process is detailed enough, the source code can be

generated using automatic code generators. Any errors or inadequacies found during the coding

activities generate problem reports to be resolved by changes to the requirements or the design.

According to F. P. Brooks [Brooks 87], the difficulty in developing the source code is really

"accidental", meaning that the errors originating here tend to be random oversight errors or

systemic errors caused by the difficulty of mapping the design onto a particular computer

language representation.

The integration process is the phase of development when the source code is linked and

transformed into the executable object code to be loaded on the target computer hardware. If the

design and coding were done properly, this step should flow smoothly. However, errors in

integration do appear often, and any interfacing problem found during this process should

generate a problem report to be resolved by the previous development processes.

The supporting processes are three: verification, configuration management, and quality

assurance. The purpose of the verification process is to search and report errors in the software

requirements, design, source code, and integration. Verification is composed of three types of

activities: reviews, analysis and testing. Reviews are qualitative inspections of the software items

targeting compliance with requirements, accuracy and consistency of the structural modules and

their outputs, compatibility with the target computer, verifiability, and conformance to standards.

A review can take several forms: informal meetings to discuss technical problems; formal

presentations of the design to customers, management, and the technical staff; and formal

technical reviews or walkthroughs. Verification through analysis uses quantitative techniques to

examine the software for functionality, performance, and safety in a system context. Analyses

check the information domain to see how data and events are processed. Functional analysis is

used to check the input-output functionality of the system and its components. Behavioral

analysis studies the stimulus-response characteristics, including internal and external events and

state sequencing. Testing is used as a complementary verification activity to provide assurance of

correctness and completeness. There are four types of tests performed at each of three levels of

the software system hierarchy. Tests should be performed at the low-level structural

decomposition modules, at the software integration level where the modules are "wired" to

perform some architectural functionality, and at the hardware-software integration level to verify

proper operation of the software on the target computer. At each level, normal input range tests,

input robustness tests, requirements-based tests, and structural-coverage tests should be

performed. Normal input range tests demonstrate the ability of the software to respond properly

to normal inputs. These tests should be developed considering internal state transitions, timing,

and sequencing. Robustness tests check the response of the software to abnormal inputs in value,

timing, or sequencing. Requirements-based testing develops tests for each software requirement,

be it derived from system-level requirements, a high-level requirement, or a low-level derived

requirement. Structural coverage testing is based on structural coverage analysis that identifies

code structures not exercised by the previous tests. Testing techniques like path testing, data flow

testing, condition testing and loop testing are used to develop tests that help in increasing the

structural test coverage.

The Configuration Management Process identifies, organizes, and controls modifications to

the software being built with the objective of minimizing the level of confusion generated by

those changes. The changes include not only changes in the requirements coming from the

system level analysis, but also the natural changes that occur in the software design as the project

advances and the design items are created. This supporting process includes four main activities:

configuration identification, baseline establishment, change control, and archiving of the software

product. Configuration identification is the unambiguous labeling of each configuration item and

its versions or variants. Baselines are established as milestones in the development and are

defined as groups of items that have been formally reviewed and accepted as a basis for further

development. Change control is the activity of managing the items under configuration through a

formal process to accommodate changes in the requirements or problems found during the

development activities. Archiving of the software ensures that the software items remain

accessible when they are needed for further development, changes, or future reference.

The Quality Assurance Process is composed of the activities which ensure that the software

development organization does "the right thing at the right time in the right way" [Pressman 97].

The basis for quality assurance is the planning activity. In that sense, quality assurance translates

to ensuring compliance with the plans and all the processes and activities defined in them.

In spite of what is known about the discipline of software engineering, software often fails. A

frequent source of this problem is the use of informal approaches to develop software. [Prowell

99] states:

"The vast majority of the software today is handcrafted by artisans using

craft-based techniques that cannot produce consistent results. These techniques

have little in common with the rigorous, theory-based processes characteristic of

other engineering disciplines. As a result, software failure is a common

occurrence, often with substantial societal and economic consequences. Many

software projects simply collapse under the weight of the unmastered complexity

and never result in usable systems at all".

The next section covers the area of software failures, reliability, and safety as a preamble to

the techniques of software fault tolerance.

3. Software Design Faults

This section discusses the problem of software faults and provides background for software

fault tolerance techniques. Because software does not exist in a physical sense, it cannot degrade

in the same manner as physical hardware components do. Errors that could arise in the bit pattern

representation of the software (e.g., on a hard disk) are really faults in the media used to store the
representation, and they can be dealt with and corrected using standard hardware redundancy

techniques. The only type of fault possible in software is a design fault introduced during the

software development. Software faults are what we commonly call "bugs". According to [Chou

97], software faults are the root cause in a high percentage of operational system failures. The

consequences of these failures depend on the application and the particular characteristic of the

faults. The immediate effects can range from minor inconveniences (e.g., having to restart a hung
personal computer) to catastrophic events (e.g., software in an aircraft that prevents the pilot from

recovering from an input error) [Weinstock 97]. From a business perspective, operational failures

caused by software faults can translate into loss of potential customers, lower sales, higher

warranty repair costs, and losses due to legal actions from the people affected by the failures.

There are four ways of dealing with software faults: prevention, removal, fault tolerance, and
input sequence workarounds. Fault prevention is concerned with the use of design

methodologies, techniques, and technologies aimed at preventing the introduction of faults into

the design. Fault removal considers the use of techniques like reviews, analyses, and testing to

check an implementation and remove any faults thereby exposed. The proper use of software

engineering during the development processes is a way of realizing fault prevention and fault

removal (i.e., fault avoidance). The use of fault avoidance is the standard approach for dealing
with software fauks and the many developments in the software field target the improvement of

the fault avoidance techniques. [Chou 97] states that the software development process usually

removes most of the deterministic design faults. This type of fault is activated by the inputs

independently of the internal state of the software. A large number of the faults in operational

software are state-dependent faults activated by particular input sequences.

Given the lack of techniques that can guarantee that complex software designs are free of

design fault, fault tolerance is sometimes used as an extra layer of protection. Software fault

tolerance is the use of techniques to enable the continued delivery of services at an acceptable

level of performance and safety after a design fault becomes active. The selection of particular

fault tolerance techniques is based on system level and software design considerations.

Thelastlineof defenseagainstdesignfaultsis to useinputsequenceworkarounds.This is
nothingmorethanacceptingthataparticularsoftwaredesignhasfaultsandtakingthosefaultsas
"features".Thisfix is employedby thesystemoperatorto workaroundknownfaultswhilestill
maintainingavailabilityof thesystem.An exampleof this is not enteringa particularinput
sequenceto whichthe systemhasdemonstratedsusceptibility.Also if anunknownfault is
activated,theoperatorcouldtry a seriesof inputsto try to returnthesystemto anacceptable
state.Theultimateworkaroundis to restartthesystemto recoverfromafault. Evidently,this
typeof systemwouldn'tbedependable,asdefinedin [Laprie92], becausetheoperatorcannot
relyonproperdeliveryof services.

Froma systemperspective,twovery importantsoftwarequalitymeasuresarereliabilityand
safety. Reliabilityis "the probabilityof failurefree operationof a computerprogramin a
specifiedenvironmentfor aspecifiedperiodof time",wherefailurefreeoperationin thecontext
of softwareis interpretedasadherenceto itsrequirements[Pressman97]. A measureof software
reliabilityis theMeanTimeBetweenFailures(MTBF)[Pressman97]:

MTBF= MTTF+ MTTR

whereMTTFisanacronymfor theMeanTimeToFailureandMTTRis theMeanTimeTo
Repair.TheMTTF is a measureof howlonga softwareitemis expectedto operateproperly
beforeafailureoccurs.TheMTTRmeasuresthemaintainabilityof thesoftware(i.e.,thedegree
of difficultyin repairingthesoftwareafterafailureoccurs).Asmentionedabove,softwaredoes
not degradewith time andits failuresaredueto theactivationof designfaultsby the input
sequences.So,if a fault existsin apieceof software,it will manifestitself thefirst timethe
relevantconditionoccurs[Abbott90]. Whatallowstheuseof reliabilityasameasureof software
qualityis thefactthatthesoftwareisembeddedin a stochasticenvironmentthatgeneratesinput
sequencesto thesoftwareovertime[Butler91]. Someof thoseinputswill resultin software
failures. Thus,reliabilitybecomesa weightedmeasureof correctness,with theweightsbeing
dependenton the actualuseof the software. Overall,differentenvironmentswill resultin
differentreliabilityvalues[Abbott90].

Muchcontroversyexistsontheuseof reliabilityto characterizesoftware.Reliabilityis
an importantqualitymeasureof a system.Sincesoftwareis viewedasoneof manysystem
components,systemanalystsoftenconsiderthe estimationof softwarereliabilityessentialin
orderto estimatethefull systemreliability[Parnas90]. To somepeople,theapparentlyrandom
behaviorof softwarefailuresis nothingmorethana reflectionof our ignoranceandlackof
understandingof thesoftware[Parnas90]. Sincesoftwaredoesnotfail likehardwaredoes,some
reliabilityengineersarguethatsoftwareis eithercorrect(reliability1)or incorrect(reliability0),
andin orderto getanymeaningfulsystemreliabilityestimatestheyassumeasoftwarereliability
of 1 [Parnas90]. Toothers,thenotionof reliabilityof softwareisof nouseunlessit canhelpin
reducingthetotalnumberof errorsin a program[Abbott90]. An interestingimplicationof the
rootcauseof thestochasticnatureof softwarefailuresis thataprogramwith ahighnumberof
errorsis not necessarilylessreliablethananotherwith a lowererrorcount [Pamas90]; the
environmentisasimportantasthesoftwareitselfindeterminingthereliability.

Perhapsa morecriticalissueto theuseof softwarereliabilityis thephysicallimitationson
achievingaccurateestimates.The key assumptionthat enablesthe designand reliability
estimationof highlyreliablehardwaresystemsis thatthecomponentsfail independently[Butler
91]. This doesnot applyto software,wheretheresultsof onecomponentaredirectlyor

indirectlydependenton theresultsof othercomponents,andthuserrorsin somemodulescan
resultin problemsin othermodules.Whenit comesto softwarereliabilityestimation,theonly
reasonableapproachis to treatthe softwareas a blackbox [Pamas90]. This approachis
applicableto systemswith low to moderatereliability requirements.However,accordingto
[Butler91],testingof softwarewithaveryhightargetreliabilityisprohibitivelyimpractical.In
addition,[DO178B]states:

"...methodsfor estimatingthe post-verificationprobabilitiesof software
errorswereexamined.Thegoalwasto developnumericalrequirementsfor such
probabilitiesforsoftwareincomputer-basedairbornesystemsorequipment.The
conclusionreached,however,was that currentlyavailablemethodsdo not
provideresultsin whichconfidencecanbeplacedto thelevelrequiredfor this
purpose."

Thus,it seemsthatmuchresearchworkremainsto bedonein theareaof softwarereliability
modelingbeforeadequateresultscanbeachievedfor complexsoftwarewith high reliability
requirements.

Reliabilitymeasuresthe probabilityof failure,not the consequencesof thosefailures.
Softwaresafetyis concernedwith the consequencesof failuresfrom a globalsystemsafety
perspective.Leveson[Leveson95]definessoftwaresystemsafetyas"thesoftwarewill execute
withinasystemcontextwithoutcontributingtohazards".A hazardisdefinedas"a stateorsetof
conditionsof asystem(oranobject)that,togetherwithotherconditionsin theenvironmentof the
system(or object),will leadinevitablyto anaccident(lossevent)". A systemsafetydesign
beginsby performingmodelingandanalysisto identifyandcategorizepotentialhazards.Thisis
followedby the useof analysistechniquesto assigna level of severityandprobabilityof
occurrenceto the identifiedhazards. Softwareis consideredas one of the many system
componentsduringthisanalysis.Aftertheanalysisis complete,safetyrelatedrequirementsare
assignedto thesoftware.[DO178B]states:

"Thegoalof [software]faulttolerancemethodsis toincludesafetyfeaturesin
thesoftwaredesignor SourceCode to ensure that the software will respond

correctly to input data errors and prevent output and control errors. The need for

error prevention or fault tolerance methods is determined by the system

requirements and the system safety assessment process."

Thus the function of software fault tolerance is to prevent system accidents (or undesirable

events, in general), and mask out faults if possible.

4. Software Fault Tolerance

In this section we present fault tolerance techniques applicable to software. These techniques

are divided into two groups [Lyu 95]: single version and multi-version software techniques.

Single version techniques focus on improving the fault tolerance of a single piece of software by

adding mechanisms into the design targeting the detection, containment, and handling of errors

caused by the activation of design faults. Multi-version fault tolerance techniques use multiple

versions(orvariants)of apieceof softwarein astructuredwayto ensurethatdesignfaultsin one
versiondonotcausesystemfailures.A characteristicof thesoftwarefaulttolerancetechniquesis
thattheycan,in principle,beappliedatanylevelin a softwaresystem:procedure,process,full
applicationprogram,or the wholesystemincludingtheoperatingsystem(e.g.,[Randell95]).
Also,thetechniquescanbeappliedselectivelyto thosecomponentsdeemedmostlike to have
designfaultsduetotheircomplexity[Lyu95].

4.1.Single-Version Software Fault Tolerance Techniques

Single-version fault tolerance is based on the use of redundancy applied to a single version of

a piece of software to detect and recover from faults. Among others, single-version software fault

tolerance techniques include considerations on program structure and actions, error detection,

exception handling, checkpoint and restart, process pairs, and data diversity [Lyu 95].

4.1.1. Software Structure and Actions

The software architecture provides the basis for implementation of fault tolerance. The use of

modularizing techniques to decompose a problem into manageable components is as important to

the efficient application of fault tolerance as it is to the design of a system. The modular
decomposition of a design should consider built-in protections to keep aberrant component

behavior in one module from propagating to other modules. Control hierarchy issues like

visibility (i.e., the set of components that may be invoked directly and indirectly by a particular

component [Pressman 97]) and connectivity (i.e., the set of components that may be invoked

directly or used by a given component [Pressman 97]) should be considered in the context of

error propagation for their potential to enable uncontrolled corruption of the system state.

Partitioning is a technique for providing isolation between functionally independent modules

[DO178B]. Partitioning can be performed in the horizontal and vertical dimensions of the

modular hierarchy of the software architecture [Pressman 97]. Horizontal partitioning separates

the major software functions into highly independent structural branches communicating through
interfaces to control modules whose function is to coordinate communication and execution of

the functions. Vertical partitioning (or factoring) focuses distributing the control and processing

work in a top-down hierarchy, where high level modules tend to focus on control functions and

low level modules do most of the processing. Advantages of using partitioning in a design

include simplified testing, easier maintenance, and lower propagation of side effects [Pressman

97].

System closure is a fault tolerance principle stating that no action is permissible unless

explicitly authorized [Denning 76]. Under the guidance of this principle, no system element is

granted any more capability than is needed to perform its function, and any restrictions must be

expressly removed before a particular capability can be used. The rationale for system closure is

that it is easier (and safer) to handle errors by limiting their chances of propagating and creating

more damage before being detected. In a closed environment all the interactions are known and
visible, and this simplifies the task of positioning and developing error detection checks. With

system closure, any capability damaged by errors only disables a valid action. In a system with

relaxed control over allowable capabilities, a damaged capability can result in the execution of

undesirableactionsandunexpectedinterferencebetweencomponents.

Temporalstructuringof theactivitybetweeninteractingstructuralmodulesis alsoimportant
for fault tolerance.An atomicactionamonga groupof componentsis anactivityin whichthe
componentsinteractexclusivelywitheachotherandthereis no interactionwith therestof the
systemfor thedurationof theactivity[Anderson81].Withinanatomicaction,theparticipating
componentsneitherimport nor exportany type of informationfrom othernon-participating
components.Fromtheperspectiveof thenon-participatingcomponents,all theactivitywithin
theatomicactionappearsasoneandindivisibleoccurringinstantaneouslyat anytimeduringthe
durationoftheaction.Theadvantageof usingatomicactionsindefiningtheinteractionbetween
systemcomponentsis thattheyprovidea frameworkfor errorconfinementandrecovery.There
areonlytwopossibleoutcomesof anatomicaction:eitherit terminatesnormallyor it is aborted
uponerrordetection. If an atomicactionterminatesnormally,its resultsarecompleteand
committed.If a failureis detectedduringanatomicaction,it isknownbeforehandthatonlythe
participatingcomponentscanbeaffected.Thuserrorconfinementis defined(andneednotbe
diagnosed)andrecoveryis limitedtotheparticipatingsetof components.

4.1.2. Error Detection

Effective application of fault tolerance techniques in single version systems requires that the

structural modules have two basic properties: self-protection and self-checking [Abbott 90]. The

self-protection property means that a component must be able to protect itself from external

contamination by detecting errors in the information passed to it by other interacting components.

Self-checking means that a component must be able to detect internal errors and take appropriate

actions to prevent the propagation of those errors to other components. The degree (and

coverage) to which error detection mechanisms are used in a design is determined by the cost of

the additional redundancy and the run-time overhead. Note that the fault tolerance redundancy is

not intended to contribute to system functionality but rather to the quality of the product.

Similarly, detection mechanisms detract from system performance. Actual usage of fault

tolerance in a design is based on trade-offs of functionality, performance, complexity, and safety.

Anderson [Anderson 81] has proposed a classification of error detection checks, some of

which can be chosen for the implementation of the module properties mentioned above. The

location of the checks can be within the modules or at their outputs, as needed. The checks

include replication, timing, reversal, coding, reasonableness, and structural checks.

Replication checks make use of matching components with error detection based on

comparison of their outputs. This is applicable to multi-version software fault tolerance
discussed in section 4.2.

Timing checks are applicable to systems and modules whose specifications include
timing constraints, including deadlines. Based on these constraints, checks can be

developed to look for deviations from the acceptable module behavior. Watchdog timers

are a type of timing check with general applicability that can be used to monitor for

satisfactory behavior and detect "lost or locked out" components.

• Reversal checks use the output of a module to compute the corresponding inputs based on
the function of the module. An error is detected if the computed inputs do not match the

10

actualinputs.Reversalchecksareapplicableto moduleswhoseinversecomputationis
relativelystraightforward.

Coding checksuse redundancyin the representationof informationwith fixed
relationshipsbetweentheactualandtheredundantinformation.Errordetectionis based
oncheckingthoserelationshipsbeforeandafteroperations.Checksums are a type of

coding check. Similarly, many techniques developed for hardware (e.g., Hamming, M-

out-of-N, cyclic codes) can be used in software, especially in cases where the information

is supposed to be merely referenced or transported by a module from one point to another

without changing its contents. Many arithmetic operations preserve some particular

properties between the actual and redundant information, and can thus enable the use of

this type of check to detect errors in their execution.

Reasonableness checks use known semantic properties of data (e.g., range, rate of

change, and sequence) to detect errors. These properties can be based on the

requirements or the particular design of a module.

Structural checks use known properties of data structures. For example, lists, queues, and

trees can be inspected for number of elements in the structure, their links and pointers,

and any other particular information that could be articulated. Structural checks could be

made more effective by augmenting data structures with redundant structural data like

extra pointers, embedded counts of the number of items on a particular structure, and

individual identifiers for all the items ([TaylorD 80A], [TaylorD 80B], [Black 80], [Black

81]).

Another fault detection tool is run-time checks [Pradhan 96]. These are provided as standard

error detection mechanisms in hardware systems (e.g., divide by zero, overflow, underflow).

Although they are not application specific, they do represent an effective means of detecting

design errors.

Error detection strategies can be developed in an ad-hoc fashion or using structured

methodologies. Ad-hoc strategies can be used by experienced designers guided by their

judgement to identify the types of checks and their location needed to achieve a high degree of

error coverage. A problem with this approach stems from the nature of software design faults. It

is impossible to anticipate all the faults (and their generated errors) in a module. In fact,

according to Abbott [Abbott 90]:

"If one had a list of anticipated design faults, it makes much more sense to

eliminate those faults during design reviews than to add features to the system to

tolerate those faults after deployment The problem, of course, is that it is

unanticipated design fauks that one would really like to tolerate."

Fault trees have been proposed as a design aid in the development of fault detection strategies

[Hecht 96]. Fault trees can be used to identify general classes of failures and conditions that can

trigger those failures. Fault trees represent a top-down approach which, although not

guaranteeing complete coverage, is very helpful in documenting assumptions, simplifying design

reviews, identifying omissions, and allowing the designer to visualize component interactions and

their consequences through structured graphical means. Fault trees enable the designer to

11

performqualitativeanalysisof thecomplexityanddegreeof independencein theerrorchecksof
aproposedfaulttolerancestrategy.In general,asafanktreeis elaborated,thestructuringof the

tree goes from high-level functional concepts to more design dependent elements. Therefore, by

means of a fank tree a designer can "tune" a fault detection strategy trading-off independence

and requirements emphasis on the tests (by staying with relatively shallow and mostly functional

fault trees) versus ease of development of the tests (by moving deeper down the design structure

and creating tests that target particular aspects of the design).

4.1.3. Exception Handling

Exception handling is the interruption of normal operation to handle abnormal responses. In

the context of software fault tolerance, exceptions are signaled by the implemented error

detection mechanisms as a request for initiation of an appropriate recovery. The design of

exception handlers requires that consideration be given to the possible events triggering the

exceptions, the effects of those events on the system, and the selection of appropriate mitigating

actions [Pradhan 96]. [Randell 95] lists three classes of exception triggering events for a software

component: interface exceptions, internal local exceptions, and failure exceptions.

Interface exceptions are signaled by a component when it detects an invalid service

request. This type of exception is triggered by the self-protection mechanisms of a

module and is meant to be handled by the module that requested the service.

Local exceptions are signaled by a module when its error detection mechanisms find an
error in its own internal operations. These exceptions should be handled by the module's

fault tolerant capabilities.

Failure exceptions are signaled by a module after it has detected an error which its fault

processing mechanisms have been unable to handle successfully. In effect, failure

exceptions tell the module requesting the service that some other means must be found to
accomplish its function.

If the system structure, its actions, and error detection mechanisms are designed properly, the
effects of errors will be contained within a particular set of interacting components at the moment

the error is detected. This knowledge of error containment is essential to the design of effective

exception handlers.

4.1.4. Checkpoint and Restart

For single-version software there are few recovery mechanisms. The most often mentioned is

the checkpoint and restart mechanism (e.g., [Pradhan 96]). As mentioned in previous sections,

most of the software faults remaining after development are unanticipated, state-dependent fauks.

This type of fault behaves similarly to transient hardware faults: they appear, do the damage, and

then apparently just go away, leaving behind no obvious reason for their activation in the first

place [Gray 86]. Because of these characteristics, simply restarting a module is usually enough to

allow successful completion of its execution [Gray 86]. A restart, or backward error recovery

12

(see Figure 3), has the advantages of being independent of the damage caused by a fault,

applicable to unanticipated faults, general enough that it can be used at multiple levels in a

system, and conceptually simple [Anderson 81].

Checkpoint

_Checkpoint ',
IV

Input----__ Error _ _ Output

Retry L [_

Figure 3: Logical Representation of Checkpoint and Restart

There exist two kinds of restart recovery: static and dynamic. A static restart is based on

returning the module to a predetermined state. This can be a direct return to the initial reset state,

or to one of a set of possible states, with the selection being made based on the operational

situation at the moment the error detection occurred. Dynamic restart uses dynamically created

checkpoints that are snapshots of the state at various points during the execution. Checkpoints

can be created at fixed intervals or at particular points during the computation determined by

some optimizing role. The advantage of these checkpoints is that they are based on states created

during operation, and can thus be used to allow forward progress of execution without having to

discard all the work done up to the time of error detection.

An issue of particular importance to backward error recovery is the existence of unrecoverable

actions [Anderson 81]. These tend to be associated with external events that cannot be cleared by

the simple process of reloading the state and restarting a module. Examples of unrecoverable

actions include firing a missile or soldering a pair of wires. These actions must be given special

treatment, including compensating for their consequences (e.g., undoing a solder) or just delaying

their output until after additional confirmation checks are complete (e.g., do a friend-or-foe

confirmation before firing).

4.1.5. Process Pairs

A process pair uses two identical versions of the software that run on separate processors

[Pradhan 96] (Figure 4). The recovery mechanism is checkpoint and restart. Here the processors

are labeled as primary and secondary. At first the primary processor is actively processing the

input and creating the output while generating checkpoint information that is sent to the backup

13

or secondaryprocessor.Uponerrordetection,thesecondaryprocessorloadsthelastcheckpoint
asits startingstateandtakesovertherole of primary processor. As this happens, the faulty

processor goes offiine and executes diagnostic checks. If required, maintenance and replacement

is performed on the faulty processor. After returning to service the repaired processor becomes

the secondary processor and begins taking checkpoints from the primary. The main advantage of

this recovery technique is that the delivery of services continues uninterrupted after the

occurrence of a failure in the system.

Input

Primary [

iC _ _ Selecti°n

heckpo Switch

Secondary U _

A _ Output

Error j

Figure 4: Logical Representation of Process Pairs

4.1.6. Data Diversity

In a previous section we mentioned that the last line of defense against design faults is to use

"input sequence workarounds". Data diversity can be seen as the automatic implementation of

"input sequence workarounds" combined with checkpoint and restart. Again, the rationale for

this technique is that faults in deployed software are usually input sequence dependent. Data

diversity has the potential of increasing the effectiveness of the checkpoint and restart by using

different input re-expressions on each retry [Ammann 88] (see Figure 5). The goal of each retry

is to generate output results that are either exactly the same or semantically equivalent in some

way. In general, the notion of equivalence is application dependent.

[Ammann 88] presents three basic data diversity models:

• Input Data Re-Expression, where only the input is changed (Figures 5 and 6);

• Input Re-Expression with Post-Execution Adjustment, where the output is also processed

as necessary to achieve the required output value or format (Figure 7);

Re-Expression via Decomposition and Recombination, where the input is broken down

into smaller elements and then recombined after processing to form the desired output

(Figure 8).

14

Input

Re-Expression1
I
I
I
I
i

Re-Expression n

Checkpoint

I Checkpoint ',
I

Selection Execution
Switch

Retr_ Error

Detection

Figure 5: Checkpoint and Restart using Data Diversity (with Input i

Output

Input LJ Program k
Input

,.1_ Output"1

Figure 6: Data Diversity using Input Data Re-Expression

Input 4 Input _1 Program _ _[Output _ _
,.1__ Output

Figure 7: Data Diversity using Input Re-expression with Post-Execution Adjustment

Input
__ Input _/_

Decomposition: R .I Output L Output

Figure 8: Data Diversity using Re-expression via Decomposition and Recombination

Data diversity is compatible with the Process Pairs technique using different re-expressions of

the input in the primary and secondary. Also it seems plausible to be able to incorporate some

degree of execution flexibility into the design of the software components to simplify the use of

the data diversity concept. Finally, data diversity could be used in conjunction with the multi-

version fault tolerance techniques presented in the next section.

15

4.1.6. Considerations on the use of Checkpointing

We are concemed in this section with the use of checkpointing during execution of a

program. The results referenced here assume instantaneous detection of errors from the moment

a fauk is activated. In real systems these detection delays are non-zero and should be taken into

account when selecting a checkpointing strategy. Non-zero detection delays can invalidate

checkpoints if the time to detect errors is larger than the interval between checkpoints.

As mentioned above, there exist two kinds of checkpointing that can be used with the

checkpoint and restart technique: static and dynamic checkpointing. Static checkpoints take

single snapshots of the state at the beginning of a program or module execution. With this

approach, the system returns to the beginning of that module when an error is detected and

restarts execution all over again. This basic approach to checkpointing provides a generic

capability to recover from errors that appear during execution. The use of the single static

checkpoint strategy allows the use of error detection checks placed at the output of the module

without necessarily having to embed checks in the code. A problem with this approach is that

under the presence of random faults, the expected time to complete the execution grows

exponentially with the processing requirement. Nevertheless, because of the overhead associated

with the use of checkpoints (e.g., creating the checkpoints, reloading checkpoints, restarting), the

single checkpoint approach is the most effective when the processing requirement is relatively
small.

Dynamic checkpointing is aimed at reducing the execution time for large processing

requirements in the presence of random faults by saving the state information at intermediate

points during the execution. In general, with dynamic checkpointing it is possible to achieve a

linear increase in actual execution time as the processing requirements grow. Because of the

overhead associated with checkpointing and restart, there exist an optimal number of checkpoints

that optimizes a certain performance measure. Factors that influence the checkpointing

performance include the execution requirement, the fault tolerance overhead (i.e., error detection

checks, creating checkpoints, recovery, etc.), the fault activation rate, and the interval between

checkpoints. Because checkpoints are created dynamically during processing, the error detection

checks must be embedded in the code and executed before the checkpoints are created. This

increases the effectiveness of the checks and the likelihood that the checkpoints are valid and

usable upon error detection.

[Nicola 95] presents three basic dynamic checkpointing strategies: equidistant, modular,

and random. Equidistant checkpointing uses a deterministic fixed time between checkpoints.

[Nicola 95] shows that for an arbitrary duration between equidistant checkpoints, the expected

execution time increases linearly as the processing requirement grows. The optimal time between

checkpoints that minimizes the total execution time is shown to be directly dependent on the fault

rate and independent of the processing requirements.

Modular checkpointing is the placement of checkpoints at the end of the sub-modular

components of a piece of software right after the error detection checks for each sub-module are

complete. Assuming a component with a fixed number of sub-modules, the expected execution

time is directly related to the processing distribution of the sub-modules (i.e., the processing time

between checkpoints). For a given failure rate, a linear dependence between the execution time

and the processing requirement is achieved when the processing distribution is the same

throughout the modules. For the more general case of a variable processing requirement and an

16

exponentialdistributionin thedurationof thesub-modules,theexecutiontimebecomesa linear
functionof theprocessingrequirementswhenthecheckpointingrateis largerthanthefailurerate.

In randomcheckpointingthe processof checkpointcreationis triggeredat random
withoutconsiderationof thestatusof thesoftwareexecution.Hereit is foundthattheoptimal
averagecheckpointingrate is directlydependenton the failurerateandindependentof the
processingrequirements.With this optimalcheckpointingrate,theexecutiontime is linearly
dependentontheprocessingrequirement.

4.2.Multi-Version Software Fault Tolerance Techniques

Multi-version fault tolerance is based on the use of two or more versions (or "variants") of a

piece of software, executed either in sequence or in parallel. The versions are used as akernatives

(with a separate means of error detection), in pairs (to implement detection by replication checks)

or in larger groups (to enable masking through voting). The rationale for the use of multiple

versions is the expectation that components built differently (i.e, different designers, different

algorithms, different design tools, etc) should fail differently [Avizienis 77]. Therefore, if one

version fails on a particular input, at least one of the alternate versions should be able to provide

an appropriate output. This section covers some of these "design diversity" approaches to

software reliability and safety.

4.2.1. Recovery Blocks

The Recovery Blocks technique ([Randell 75], [Randell 95A]) combines the basics of the

checkpoint and restart approach with multiple versions of a software component such that a
different version is tried after an error is detected (see Figure 9). Checkpoints are created before a

version executes. Checkpoints are needed to recover the state after a version fails to provide a

valid operational starting point for the next version if an error is detected. The acceptance test

need not be an output-only test and can be implemented by various embedded checks to increase

the effectiveness of the error detection. Also, because the primary version will be executed

successfully most of the time, the alternates could be designed to provide degraded performance
in some sense (e.g., by computing values to a lesser accuracy). Like data diversity, the output of

the alternates could be designed to be equivalent to that of the primary, with the definition of

equivalence being application dependent. Actual execution of the multiple versions can be

sequential or in parallel depending on the available processing capability and performance

requirements. If all the alternates are tried unsuccessfully, the component must raise an exception

to communicate to the rest of the system its failure to complete its function. Note that such a
failure occurrence does not imply a permanent failure of the component, which may be reusable

after changes in its inputs or state. The possibility of coincident faults is the source of much

controversy concerning all the multi-version software fault tolerance techniques.

17

Checkpoint

Checkpoints

Primary

Version

Alternate Selection
A _ OutputInput Switch r-

Version 1

Alternate

Version n

Acceptance

--t Test

Figure 9: Recovery Block Model

4.2.2. N-Version Programming

N-Version programming [Avizienis 95B] is a multi-version technique in which all the

versions are designed to satisfy the same basic requirements and the decision of output

correctness is based on the comparison of all the outputs (see Figure 10). The use of a generic

decision algorithm (usually a voter) to select the correct output is the fundamental difference of

this approach from the Recovery Blocks approach, which requires an application dependent

acceptance test. Since all the versions are built to satisfy the same requirements, the use of N-

version programming requires considerable development effort but the complexity (i.e.,

development difficulty) is not necessarily much greater than the inherent complexity of building a

single version. Design of the voter can be complicated by the need to perform inexact voting (see

section 4.2.7.2). Much research has gone into development of methodologies that increase the

likelihood of achieving effective diversity in the final product (see section 4.2.7.1). Actual

execution of the versions can be sequential or in parallel. Sequential execution may require the

use of checkpoints to reload the state before an alternate version is executed.

18

Input

Version 1

Version 2 Selection

Algorithm

Version n

Output

Figure 10: N-Version Programming Model

4.2.3. N Self-Checking Programming

N Self-Checking programming ([Laprie 87], [Laprie 90], [Laprie 95]) is the use of multiple

software versions combined with structural variations of the Recovery Blocks and N-Version

Programming. N Self-Checking programming using acceptance tests is shown on Figure 11.

Here the versions and the acceptance tests are developed independently from common

requirements. This use of separate acceptance tests for each version is the main difference of this

N Self-Checking model from the Recovery Blocks approach. Similar to Recovery Blocks,

execution of the versions and their tests can be done sequentially or in parallel but the output is

taken from the highest-ranking version that passes its acceptance test. Sequential execution

requires the use of checkpoints, and parallel execution requires the use of input and state

consistency algorithms.

Selection

Input Logic

_ Acceptance L

Figure 11: N Self-Checking Programming using Acceptance Tests

Output

19

N self-checking programming using comparison for error detection is shown in Figure 12.

Similar to N-Version Programming, this model has the advantage of using an application

independent decision algorithm to select a correct output. This variation of self-checking

programming has the theoretical vulnerability of encountering situations where multiple pairs

pass their comparisons each with different outputs. That case must be considered and an

appropriate decision policy should be selected during design.

Input

 election
Logic

Output

Figure 12: N Self-Checking Programming using Comparison

4.2.4. Consensus Recovery Blocks

The Consensus Recovery Blocks [Scott 87] (see Figure 13) approach combines N-Version

Programming and Recovery Blocks to improve the reliability over that achievable by using just

one of the approaches. According to Scott [Scott 87], the acceptance tests in the Recovery Blocks

suffer from lack of guidelines for their development and a general proneness to design faults due

to the inherent difficulty in creating effective tests. The use of voters as in N-Version

Programming may not be appropriate in all situations, especially when multiple correct outputs

are possible. In that case a voter, for example, would declare a failure in selecting an appropriate

output. Consensus Recovery Blocks uses a decision algorithm similar to N-Version

Programming as a first layer of decision. If this first layer declares a failure, a second layer using

acceptance tests similar to those used in the Recovery Blocks approach is invoked. Although

obviously much more complex than either of the individual techniques, the reliability models

indicate that this combined approach has the potential of producing a more reliable piece of

software [Scott 87]. The use of the word potential is important here because the added

complexity could actually work against the design and result in a less reliable system.

20

Input

Version 1

Version 2

__1__
Selection

Algoritlun

I

Switch
I

Version n

Failure 1

Switch

Acceptance
Test

Output

Figure 13: Consensus Recovery Blocks

4.2.6. #(n-D-Variant Programming

t/(n-1)-Variant Programming (VP) was proposed by Xu and Randell in [Xu 97]. The main

difference between this approach and the ones mentioned above is in the mechanism used to

select the output from among the multiple variants. The design of the selection logic is based on

the theory of system-level fault diagnosis, which is beyond the scope of this paper (see [Pradhan

96] for a presentation of the subject). Basically, a t/(n-1)-VP architecture consists of n variants

and uses the t/(n-1) diagnosibility measure to isolate the faulty units to a subset of size at most (n-

1) assuming there are at most t faulty units [Xu 97]. Thus, at least one non-faulty unit exists such

that its output is correct and can be used as the result of computation for the module, t/(n-1)-VP

compares favorably with other approaches in that the complexity of the selection mechanism

grows with order O(n) and it can potentially tolerate multiple dependent faults among the

versions. It also has a lower probability of failure than N Self-Checking Programming and N-

Version Programming when they use a simple voter as selection logic.

4.2.7. Additional Considerations

Two critical issues in the use of multi-version software fault tolerance techniques are the

guaranteeing of independence of failure of the multiple versions and the development of the

output selection algorithms.

4.2.7.1. Multi-Version Software Development

Design diversity is "protection against uncertainty" [Bishop 95]. In the case of software

design, the uncertainty is in the presence of design faults and the failure modes due to those

faults. The goal of design diversity techniques applied to software design is to build program

21

versions that fail independently and with low probability of coincidental failures. If this goal is

achieved, the probability of not being able to select a good output at a particular point during

program execution is greatly reduced or eliminated.

Due to the complexity of software, the use of design diversity for software fault tolerance is

today more of an art rather than a science. Some researchers have developed guidelines and

methodologies to achieve a desired level of diversity, but the implementation of design diversity

remains a rather complex (and controversial) subject. Presently, the assessment of the achieved

improvement over single version software design is difficult (if not impossible) and is based

mostly on qualitative arguments.

Perhaps the most comprehensive effort to develop the methodology of multi-version software

design was carried out by Algirdas Avizienis and his colleagues at UCLA starting in the 1970s

([Avizienis 85A], [Avizienis 85B], [Avizienis 86], [Avizienis 88], [Avizienis 89], [Avizienis

95A], [Avizienis 95B], [Avizienis 97]). Although focused mainly on software, their research

considered the use of design diversity concepts for other aspects of systems like the operating

system, the hardware, and the user interfaces. [Avizienis 95B] presents a design methodology for

multi-version software that considers the full development effort from the system requirements

phase to the operational phase. The objectives of the design paradigm are to reduce the

probability of design errors, eliminate any sources of similar design faults and minimize the

probability of similar output errors. The presented methodology basically follows the same

software engineering principles presented in Section 2 of this paper and it is augmented with

activities to support the introduction of design diversity. Decisions to be made include: the

selection of the number of software versions; assessment of the required diversity (i.e., diverse

specification, design, code, and/or testing); assessment of the use of random (or unmanaged)

diversity versus forced (or managed) diversity to minimize the common causes of errors; roles of

isolation between the development teams to reduce the probability of similar design errors; the

establishment of a coordinating team to serve as an interface between the development teams; and

the definition of a rigorous communication protocol between the design teams and the

coordinating team to prevent the flow of information that could result in common design errors.

An approach to introducing software fault tolerance is to implement the fault tolerance at the

host system level while allowing the application programs to be developed with a minimum of

concern for the fault tolerance services. This allows the application developers to focus on their

application specialties without being overwhelmed by the fault tolerance aspects of the system.

To implement this approach, a framework must be developed which expands the capabilities of

the basic operating system with fault tolerance services like cross-version communication, error

recovery, and output value selection ([Avizienis 95B], [Bresoud 98]).

As mentioned above, it is hard to determine the benefits of using design diversity for software

fault tolerance. There are some inherent difficulties with this approach including the elimination

of failure dependencies and the cost of development. Assuming that the development is rigorous

and design diversity is adequately applied to the product, there is still the common error source of

the identical input profile. [Saglietti 90B] points out that experiments (e,g, [Knight 85], [Knight

86], [Ecldlardt 91]) have shown that the probability of error manifestations are not equally

distributed over the input space and the probability of coincident errors is impacted by the chosen

inputs. Certainly data diversity techniques could be used to reduce the impact of this error

source, but the problem of quantifying the effectiveness of the approach still remains.

22

Thecostof usingmulti-versionsoftwareisalsoanimportantissue.A directreplicationof the
full developmenteffort,includingtesting,wouldcertainlybeanexpensiveproposition.Sincea
supportingexecutionenvironmentisneededto completetheimplementation,thetotalcostcould
beprohibitivefor someapplications.However,costsavingscanbeeffectedbyjudicioususeof
acceptablealternatives.For example,in someapplicationswhereonly a smallpart of the
functionalityis safetycritical,developmentandproductioncostcanbe reducedby applying
designdiversityonlyto thosecriticalparts[Bishop95]. In situationswheredemonstratingsafety
attributesto anofficialregulatoryauthoritytendsto bemorecostlythantheactualdevelopment
cost,designdiversitycanbeusedto makeamoreconvincingsafetycasewitha smallersafety
assessmenteffort. Also,whenthecostof alternativedesignassurancetechniquesis ratherhigh
becauseof theneedfor specializedstaffandtools,theuseof designdiversitycouldactuallyresult
inacostsaving.

4.2.7.2. Output Selection Algorithms

The basic difference among the multi-version software fault tolerance techniques presented

above is in the output selection algorithms. For some techniques, inline acceptance tests simplify

the output selection. Some problems with the acceptance tests is that they are highly application

dependent, they tend to be difficult to develop, and they cannot test for a specific correct answer
but only for "acceptable" values. The ranking of versions based on their individual expected

reliabilities can supplement the acceptance tests for cases where multiple versions pass the tests.

However, when all the versions are considered equally reliable, the output selection must be

based on cross-comparison of the available version outputs, possibly augmented by knowledge of

the application. As noted in the particular case of the Consensus Recovery Block approach, the

output reliability can be increased by the combination of multiple output selection techniques.

The development of output selection algorithms should consider the consequences of

erroneous output selection in terms of critical application issues like safety, reliability, and

availability. In general, the output of properly developed versions should be correct for the vast

majority of inputs and input sequences, and therefore the reliability of a single version will tend

to be relatively good. Nevertheless, for increased reliability in a multi-version arrangement cross-
comparison techniques should be designed such that the selected output is correct with a very

high probability. For applications where safety is a main concern, it is important that the output

selection algorithm be capable of detecting erroneous version outputs and prevent the propagation

of bad values to the main output. For these applications the selection algorithm must be given the

capability to declare an error condition or initiate an acceptable safe output sequence when it

cannot achieve a high confidence of selecting a correct output. In those cases where availability
is more important, the output selection can be designed such that it will always produce an output

even if it is incorrect. Such approach could be acceptable as long as the program execution is not

subsequently dependent on previously generated and possibly erroneous outputs.

[Anderson 86] presents a generic two step structure for the output selection process. The first

step is a filtering process where individual version outputs are analyzed by acceptance tests for
likelihood of correctness, timing, completeness, and other characteristics. In general the function

of the filtering step is to remove any outputs which can be declared bad by direct inline

examination. Those outputs that pass the filtering step are then forwarded to the arbitration step

where a selection algorithm is used to produce a final output value. Because the values used in

23

thearbitrationhavebeenpre-screened, the selection algorithm and the overall approach is likely
to be more effective.

Cross-comparison of the available version outputs is usually performed by means of a voting

algorithm. [Lorczak 89] presents four generalized voters for use in redundant systems:

Formalized Majority Voter, Generalized Median Voter, Formalized Plurality Voter, and

Weighted Averaging Techniques. The proposed generalization of the voting techniques is based

on a framework of metric spaces 1. By assuming the use of a metric space, the voters are given the

capability of performing inexact voting by declaring values to be equal if their metric distance is

less than some predefined threshold _. In the Formalized Majority Voter version outputs are

compared for metric equality and if more than half of the values agree, the voter output is selected

as one of the values in the agreement group. The Generalized Median Voter selects the median of

the version values as the output. In the metric framework defined here, the median is determined

by successively eliminating pairs of values that are the farthest apart until only one value remains

(assuming an odd number of versions, of course). The Formalized Plurality Voter partitions the

set of version outputs based on metric equality and the selected output is one of the elements in

the partition with the largest cardinality. The Weighted Averaging Technique combines the

version outputs in a weighted average to produce a new output. The weights can be selected a-

priori based on the characteristics of the individual versions and the application. When all the

weights are equal this technique becomes a mean selection technique. The weights can also be

selected dynamically based on the pair-wise distances of the version outputs [Broen 75] or the

success history of the versions measured by some performance metric ([Lorczak 89], [Gersting
91]).

Other voting techniques have been proposed. For example, [Croll 95] proposed a selection

function that always produces an acceptable output through the use of artificial intelligence

techniques. Specifically, the voting system would behave like a majority or plurality voter when

version outputs are sufficiently close to each other and within an acceptable normal range. When

there is disagreement, the voter would behave like a weighted averaging voter that assigns the

weights based on "fault records" generated from normal cases when the voter is able to form a

majority for output selection. These fault records contain information about the disagreements in
the value and time domains for each individual version. These records are then used when there

is a disagreement beyond the capabilities of the majority or plurality voter. In those cases the

output selection would be based on the reliability information contained in the fault records. The

authors propose the use of neural networks or genetic algorithms to implement the voter in such a

way that its performance is related to the application and the particular characteristics of the

software versions. [Bass 95] proposes the use of predictive voters (e.g. Linear Predictor and First

Order Predictor) that use history of previous results to produce an expected output value and then

select the output based on which version output value is closest to the expected value. [Broen 75]

proposed eight weighted average voters for control applications. The voters are designed to

produce smooth continuous outputs and to have various degrees of transient failure suppression

for failed channels (or versions) of a redundant system.

An important parameter for output selection algorithms is the granularity of the arbitration.

1 Definition of a metric space [Lorczak 89]: Let X denote the output space of the software. Let d

denote a real-valued function defined on the Cartesian Product X x X with the following

properties: (1) d(x,y) = 0; (2) d(x,y) = 0 implies x = y; (3) d(x,y) = d(y,x); (4) d(x,z) = d(x,y) +
d(y,z), for all x, y, z in X. Then (X,d) is a metric space.

24

This conceptof granularityappliesto systemswherethe versionoutputsarecompositesor
matriceswithvarioussub-elements.Thedecisionto bemadehereconcernsthelevelat which
outputselectionwill beperformed:at coarselevel,at fine level,or at someintermediatelevel.
[Kelly 86], [Tso87],and[Saglietti91] discusstheproblemin somedetail. Themostobvious
characteristicof thisperspectiveon theoutputselectionproblemis thatcoarselevelarbitration
will resultin manymoredisagreementsin outputselectionamongtheversions.In general,the
higherthelevelof arbitration,themorelikely it is thattheselectedoutputwill becorrectbutthe
likelihoodof achievingagreementis diminished. Similarly,applyingthe output selection
algorithmatthelowerlevelswill increasetheavailabilityof thesystembut it will alsoincrease
theprobabilityof havinginconsistentoutputs.Aninterestingcharacteristicofvotergranularityis
thattheoutputselectioncandynamicallyselectthegranularity.Forexample,if avoterisunable
to detecta majorityor pluralityat a coarselevel, it canautomaticallyswitchto progressively
lowergranularitiesuntilagreementisachieved.In doingso,theselectionlogicwouldbetrading
safety and reliability for an increasein systemavailability. As mentionedabove,the
characteristicsof the outputselectionalgorithmmustbe basedon systemlevel issueslike
reliability,safetyandavailability,aswell theparticulardetailsof theapplication.

4.3. Fault Tolerance in Operating Systems

Application level software relies on the correct behavior of the operating system. In theory,

the previously mentioned techniques to achieve software fault tolerance can be applied to the

design of operating systems (e.g., [Denning 76]). However, in general, designing and building

operating systems tends to be a rather complex, lengthy and costly endeavor. For safety critical

applications it may be necessary to develop custom operating systems through highly structured

design processes (e.g., [DO178B]) including highly experienced programmers and advanced

verification techniques in order to gain a high degree of confidence on the correctness of the

software. For many other applications where time to market and cost are driving factors, such

highly structured approaches are not viable. Tradeoffs are necessary in those cases. For example,

as mentioned previously, in some applications where only a small part of the functionality is

safety critical, development and production cost can be reduced by applying design diversity only

to those critical parts. This, of course, requires analysis and insight into the workings of the

applications and the operating system.

Another approach to the development of fault tolerant operating systems for mission critical

applications is the use of wrappers on off-the-shelf operating systems to boost their robustness to

faults. A problem with the use of off-the-shelf software on dependable systems is that the system

developers are not sure if the off-the-shelf components are reliable enough for the application

[Voas 98A]. It is known that the development process for commercial off-the-shelf software does

not consider de facto standards for safety or mission critical applications and the available

documentation for the design and validation activities tend to be rather weak [Salles 99]. A point

in favor of using commercial operating systems is that they often include the latest developments

in operating system technology. Also, widely deployed commercial operating systems could

have fewer bugs overall than custom developed software due to the corrective actions performed

in response to bug complaints from the users [Koopman 97]. Because modifications to the

internals of the operating system could increase the risk of introducing design faults, it is

preferred to apply techniques that use the software as is.

A wrapper is a piece of software put around another component to limit what that component

25

candowithoutmodifyingthecomponent'ssourcecode[Voas98A]. Wrappersmonitortheflow
of informationinto andoutof thecomponentandtry to keepundesirablevaluesfrom being
propagated.In thismanner,thewrapperlimitsthecomponent'sinputandoutputspaces.Aswith
otherinlinesoftwarefault tolerancetechniques,wrappersarenota fix-all solution.Theirerror
detectiontechniquesarebasedon anticipatedfault models. As mentionedpreviously,it is
unanticipatedfaultsthatarethemainsourceof concern.Also,wrapperscannotprotectagainst
illegaloutputsexplicitlygeneratedby the off-the-shelfcomponentwhicharenot partof the
component'sspecification.Again,the wrappercannotprotectagainstunanticipatedevents.
Nevertheless,within their inherentlimitations,wrapperscanbe an acceptabletechniqueto
achievetherobustnessandcostgoalsforcertainapplications.

Wrappershavebeenusedasmiddlewarelocatedbetweenthe operatingsystemandthe
applicationsoftware([Russinovich93], [Russinovich94], [Russinovich95]). Thewrappers
(called"sentries"in the referencedwork) encapsulateoperatingsystemservicesto provide
application-transparentfaulttolerantfunctionalityandcanaugmentorchangethecharacteristics
of theservicesasseenbytheapplicationlayer.In thisdesignthesentriesprovidethemechanism
to implementfaulttolerancepoliciesthatcanbedynamicallyassignedto particularapplications
basedon the individualfault tolerance,costandperformanceneeds. The sentrieshavethe
capabilityto implementfault detectionand recoverypolicies throughcheckpointingand
journaling.Joumalingis atechniquethatallowsrecoveryby guidinganapplicationthroughthe
replayandsynchronizationof keyinputeventsthatoccurredfromthelastcheckpointedstateto a
statecloseto that just beforethe fault wasdetected.The sentriescanalsoperformerror
correctionbyperformingconsistencyandvaliditychecksonoperatingsystemdatastructuresand
doingcorrectionswhenerrorsaredetected.Testsperformedbytheresearchersseemto indicate
the viability of their approachfor effectivelyimplementingfault tolerancepolicieswith
acceptableperformancepenalties.

[Salles99]proposedtheuseof wrappersatthemicrokernellevel for off-the-shelfoperating
systems.Thewrappersproposedbytheseresearchersaimatverifyingconsistencyconstraintsat
asemanticlevelbyutilizinginformationbeyondwhatis availableattheinterfaceof thewrapped
component. Their approachusesabstractions(i.e., models)of the expectedcomponent
functionality.Faultcontainmentis basedonverifyingdynamicpredicatesdefinedto assertthe
correctbehaviorof thecomponent.Aswith othererrordetectiontechniques,thereisa tradeoff
betweendevelopingcostlydetailedmodelsof thetargetedcomponentthatenablemoreaccurate
errordetectionversustheperformanceachievableusingsimplermodelswhichmightnotbeas
effective in detectingerrors. The authorsof the referencedwork deliberatelytargeted
microkernelsinsteadof thefull general-purposeoperatingsystembuilt ontopof it becausetheir
functionalityiseasiertounderstandandmanageablefromamodelingperspective.Theproposed
wrappersrequireaccessto informationinternalto themicrokernelto verify thepredicatesand
enablecorrectiveactionswhena fault is detected. In orderto do this the additionof a
"metainterface"thatwouldallowobservationandcontrolof themicrokerneldatastructuresis
proposed.Thisadditionalinterfacewouldprotectthesourcecodedevelopedbythemicrokemel
manufacturerwhileenablingfull accessto thecriticalinternaldatastructures.Therequirement
for theadditionalmetainterfaceis a drawbackof this approachto wrapperdesign,but it does
enablefaulttolerancecapabilitiesbeyondthoseachievablebyasimplerinterfacewrapper.

One way to increasethe effectivenessof wrappersis by carryingout fault injection
experimentson thetargetedoperatingsystembeforedesigningthe wrappersin orderto gain
knowledgeof theweaknessesandpitfallsof theoperatingsystemerrordetectionandrecovery

26

mechanisms. Section 4.4 covers the area of software fault injection in more detail.

4.4. Software Fault Injection for Fault Tolerance Assessment

Software fault injection (SFI) is the process of testing software under anomalous

circumstances involving erroneous external inputs or internal state information. The main reason

for using software fault injection is to assess the goodness of a design [Voas98B]. Basically, SFI

tries to measure the degree of confidence that can be placed on the proper delivery of services.

Since it is very hard to produce correct software, SFI tries to show what could happen when faults

are activated. The collected information can be used to make code less likely to hide faults and

also less likely to propagate faults to the outputs either by reworking the existing code or by

augmenting its capabilities with additional code as done with wrappers [Voas 98B]. SFI can be

used to target both objectives of the dependability validation process: fault removal and fault

forecasting [Avresky 92]. In the context of fault removal, SFI can be used as part of the testing

strategy during the software development process to see if the designed algorithms and

mechanisms work as intended. In fault forecasting, SFI is used to assess the fault tolerance

robustness of a piece of software (e.g., an off-the-shelf operating system). In this context, SFI

enables a performance estimate for the fault tolerance mechanisms in terms of their coverage (i.e.,

the percentage of faults handled properly) and latency (i.e., the time from fault occurrence to error

manifestation at the observation point). The use of SFI has two important advantages over the

traditional input sequence test cases [Lai 95]. First, by actively injecting faults into the software

we are in effect accelerating the failure rate and this allows a thorough testing in a controlled

environment within a limited time frame. Second, by systematically injecting faults to target

particular mechanisms we are able to better understand the behavior of that mechanism including

error propagation and output response characteristics.

There exist two basic models of software injection: fault injection and error injection.

Fault injection simulates software design faults by targeting the code. Here the injection

considers the syntax of the software to modify it in various ways with the goal of replacing

existing code with new code that is semantically different [Voas 98B]. This "code mutation" can

be performed at the source code level before compilation if the source code is available. The

mutation can also be done by modifying the text segment of a program's object code after

compilation. Error injection, called "data-state mutation" in [Voas 98B], targets the state of the

program to simulate fault manifestations. Actual state injection can be performed by modifying

the data of a program using any of various available mechanisms: high priority processes that

modify lower priority processes with the support of the operating system; debuggers that directly

change the program state; message-based mechanisms where one component corrupts the

messages received by another component; storage-based mechanisms by using storage (e.g.,

cache, primary, or secondary memory) manipulation tools; or command-based approaches that

change the state by means of the system administration and maintenance interface commands

[Lai 95]. An important aspect of both types of fault injection is the operational profile of the

software [Voas 98B]. Fault injection is a dynamic-type testing because it must be used in the

context of running software following a particular input sequence and internal state profile. The

operational profile must be similar to the actual profile in order to realistically assess the

robustness of software. However, for the purpose of removing weaknesses in the code or

characterizing the code under special or unlikely circumstances, the operational profile can be

manipulated to improve other aspects of a test like observability and test duration.

27

Software fault injection is but one element of the larger area of experimental system

testing. A large amount of work has been done in this area by many researchers. The reader is

encouraged to review the reported experiments and experimental tools to gather a deeper

understanding of the pros and cons of this approach to robustness assessment. Examples of

reported works include [Iyer 96], [Kao 93], [Fabre 99], [Koopman 97], [LeeI 95], [Arlat 90].

5. Hardware and Software Fault Tolerance

System fault tolerance is a vast area of knowledge well beyond what can be covered in a

single paper. The concepts presented in this section are purposely treated at a high level with

details considered only where regarded as appropriate. Readers interested in a more thorough
treatment of the concepts of computer system fault tolerance should consult additional reference

material (for example, [Pradhan 96], [Suri 95], [Randell 95B]).

5.1. Computer Fault Tolerance

Computer fault tolerance is one of the means available to increase dependability of delivered

computational services. Dependability is a quality measure encompassing the concepts of

reliability, availability, safety, performability, maintainability and testability [Johnson 96].

• Reliability is the probability that a system continues to operate correctly during a

particular time interval given that it was operational at the beginning of the interval.

• Availability is the probability that a system is operating correctly at a given time instant.

Safety is the probability that the system will perform in a non-hazardous way. A hazard

is defined as "a state or condition of a system that, together with other conditions in the

environment of the system, will lead inevitably to an accident" [Leveson 95].

• Performability is the probability that the system performance will be equal to or greater

than some particular level at a given instant of time.

Maintainability is the probability that a failed system will be returned to operation within

a particular time period. Maintainability measures the ease with which a system can be

repaired.

Testability is a measure of the ability to characterize a system through testing. Testability

includes the ease of test development (i.e., controllability) and effect observation (i.e.,

observability).

The main direct concern for fault tolerant designs is the ability to continue delivery of services

in the presence of faults in the system. A fault is an anomalous condition occurring in the system

hardware or software. [Suri 95] presents a general fault classification table (see Table 1) which is

28

excellent for understanding the types of faults that fault tolerant designs are called upon to handle.

A latent fault is a fault that is present in the system but has not caused errors; after errors occur,

the fault is said to be active. Permanent faults are present in the system until they are removed;

transient faults appear and disappear on their own with no explicit intervention from the system.

Symmetric faults are those perceived identically by all good subsystems; asymmetric faults are

perceived differently by the good subsystems. A random fault is caused by the environment (e.g.,

heat, humidity, vibration, etc.) or by component degradation; generic faults are built-in faults

accidentally introduced during design or manufacturing of the system. Benign faults are

detectable by all good subsystems; malicious faults are not directly detectable by all good

subsystems. The fault count classification is relative to the modularity of the system. A single

fault is a fault in a single system module; a group of multiple faults affects more than one module.

The time classification is relative to the time granularity. Coincident multiple faults appear

during the same time interval; distinct-time faults appear in different time intervals. Independent

faults are faults originating from different causes or nature. Common mode faults, in the context

of multiple faults, are faults that have the same cause and are present in multiple components.

Table 1: Fault classification (source: [Suri 95])

Criteria Fault

Activity Latent vs. Active

Duration Transient vs. Permanent

Perception Symmetric vs. Asymmetric
Cause Random vs. Generic

Intent Benign vs. Malicious

Count Single vs. Multiple

Time (multiple faults) Coincident vs. Distinct

Cause (multiple faults) Independent vs. Common Mode

The selection of the fault tolerance techniques used in a system depends on the requirements

of the application. Fault tolerance is used in a varied set of applications. These include critical,

long-life, delayed-maintenance, high-availability, and commercial applications:

• Critical applications require a high degree of confidence on the correct and safe operation

of the computer system in order to prevent loss of life or damage to expensive machinery.

Long-life applications require that computer systems operate as intended with a high

probability when the time between scheduled maintenance is extremely long (e.g., on the

order of years or tens of years).

Delayed-maintenance applications involve situations where maintenance actions are

extremely costly, inconvenient, or difficult to perform. For this reason the system must

be designed to have a high probability of being able to continue operating without

requiring unscheduled maintenance actions.

• High-availability applications require a very high probability that the system will be

ready to provide the intended service when so requested. This type of system allows

29

frequentserviceinterruptionsif theyareallshortinduration.

Commercialapplicationsaretypically lessdemandingthanthe previousapplications.
Themainuseof faulttolerancein thesesystemsis to providedaddedvalueandprevent
nuisancefaultsfromaffectingtheperceiveddependabilityfromauserperspective.

The designof systemswith fault tolerancecapabilitiesto satisfyparticularapplication
requirementsis acomplexprocessloadedwith theoreticalandexperimentalanalysisin orderto
find themostappropriatetradeoffswithinthedesignspace.[Suri95] offersahigh-leveldesign
paradigm(seeTable2)extractedfromthemoredetaileddescriptionpresentedin [Avizienis87].
Systempropertiesto be consideredinclude dependability(i.e., reliability, availability,
maintainability,etc),performance,failuremodes,environmentalresilience,weight,cost,volume,
power,designeffort,andverificationeffort. In additionto these,developmentprogramsmust
alsoweighin thedevelopmentrisksassociatedwithusingtechnologiesthatin theorycouldresult
in a bettersystembut thatcouldalsodrivethewholedevelopmenteffort to failuredueto the
inabilityof thedesignteamto managethecomplexityof the systemwithin areasonabletime
frame.

Table2:FaultTolerantSystemDesignParadigm(source:[Suri95])

1.Identifytheclassesoffaultsexpectedoverthelifeofthesystem.
2.Specifygoalsforthesystemdependability.
3.Partitionthesystemintosubsystems,bothhardwareandsoftware,takingboth
performanceandfaulttoleranceintoaccount.
4.Selecterrordetectionandfaultdiagnosisalgorithmsforeverysubsystem.
5.Devisestaterecoveryandfaultremovaltechniquesforeverysubsystem.
6.Integratesubsystemfaulttoleranceonaglobal(systemwide)scale.
7.Evaluatetheeffectivenessoffaulttoleranceanditsrelationshipwith
performance.
8.Refinethedesignbyiterationofsteps3through7.

Everyfaulttolerantdesignmustdealwithoneormoreof thefollowingaspects([Nelson90],
[Anderson81]):

• Detection:A basicelementof afault tolerantdesigniserrordetection.Errordetectionis
acriticalprerequisiteforotherfaulttolerantmechanisms.

Containment:In orderto beableto dealwith the largenumberof possibleeffectsof
faultsin acomplexcomputersystemit isnecessaryto defineconfinementboundariesfor
the propagationof errors. Containmentregionsareusuallyarrangedhierarchically
throughoutthemodularstructureof thesystem.Eachboundaryprotectstherestof the
systemfrom errorsoccurredwithin it and enablethe designerto counton a certain
numberof correctlyoperatingcomponentsbymeansof whichthesystemcancontinueto
performitsfunction.

30

Masking: For some applications, the timely flow of information is a critical design issue.

In such cases, it is not possible to just stop the information processing to deal with

detected errors. Masking is the dynamic correction of errors. In general, masking errors

is difficult to perform inline with a complex component. Masking, however, is much

simpler when redundant copies of the data in question are available.

Diagnosis: After an error is detected, the system must assess its health in order to decide

how to proceed. If the containment boundaries are highly secure, diagnosis is reduced to

just identifying the enclosed components. If the established boundaries are not

completely secure, then more involved diagnosis is required to identify which other areas

are affected by propagated errors.

Repair/reconfiguration: In general, systems do not actually try to repair component-level

faults in order to continue operating. Because faults are either physical or design-related,

repair techniques are based on finding ways to work around faults by either effectively

removing from operation the affected components or by rearranging the activity within

the system in order to prevent the activation of the faults.

Recovery and Continued Service: After an error is detected, a system must be returned to

proper service by ensuring an error-free state. This usually involves the restoration to a

previous or predefined state, or rebuilding the state by means of known-good external
information.

Redundancy in computer systems is the use of resources beyond the minimum needed to

deliver the specified services. Fault tolerance is achieved through the use of redundancy in the
hardware, software, information, or time domain ([Johnson 96], [Nelson 90]). In what follows

we presents some basic concepts of hardware redundancy to achieve hardware fault tolerance.

Good examples of information domain redundancy for hardware fault tolerance are error

detecting and correcting codes [Wicker 95]. Time redundancy is the repetition of computations

in ways that allow faults to be detected [Johnson 96].

Hardware redundancy can be implemented in static, dynamic, or hybrid configurations. Static

(or passive) redundancy techniques do not detect or explicitly perform any reactive action to

control errors, but rather rely on masking to simply prevent their propagation beyond predefined

error containment boundaries. Dynamic (or active) redundancy techniques use fault detection

followed by diagnosis and reconfiguration. Masking is not used in dynamic redundancy, and

errors are handled by actively diagnosing error propagation and isolating or replacing faulty

components. Hybrid redundancy techniques combine elements of both static and dynamic

redundancy. In hybrid redundancy approaches, masking is used prevent the propagation of

errors, and error detection, diagnosis, and reconfiguration are used to handle faulty components.

Figure 14 is an example of passive hardware redundancy. Here the modules are replicated

multiple times depending on the desired fault tolerance capability. A selection mechanism

(usually a voter) is used to mask errors that reach the outputs of the modules. Figure 15 shows a

different approach where the voters are moved to the input of the modules to eliminate the single

point of failure that is the single voter in Figure 14. This configuration protects the computations

performed by the replicated components but requires that redundant components reading the

outputs use the same approach to prevent the propagation of errors and single point of failure.

31

2

N

Modules Selection

Figure 14: Example of Passive Redundancy

1

Selection Modules

Figure 15: Passive Redundancy with Input Voting

Figure 16 shows an active redundancy approach. In duplication with comparison, error

detection is achieved by comparing the outputs of two modules performing the same function. If

the outputs of the modules disagree, an error condition is raised followed by diagnosis and repair

actions to return the system to operation. In a similar approach only one module would actually

perform the intended function with the other component being a dissimilar monitor that checks

the outputs looking for errors. Figure 17 shows four modules arranged in a self-checking pair

configuration (or dual-dual configuration). In this configuration the comparators perform the

error detection function. Normally the output is taken from one of the pairs known as the primary

pair, with the other pair acting as a spare or backup. When an error on the primary is detected,

the spare is brought online and the primary is taken offline for diagnosis and maintenance if

necessary.

32

B _ rror

Modules Compare

Figure 16: Dynamic Redundancy using Duplication with Comparison

1A

1B

2A

2B

.N

Modules Compare Switch

Figure 17: Dynamic Redundancy using Self-Checking Pairs

Figure 18 shows an example of hybrid redundancy using an N-modular masking configuration

with spares. Here we are combining the masking approach used in passive redundancy with the

error detection, diagnosis, and reconfiguration used in dynamic approaches. The system in Figure

18 uses a set of primary modules to provide inputs to the voter to implement error masking.

Simultaneously an error detection component monitors the outputs of the active modules looking

for errors. When an error is detected, the faulty module is taken offiine for diagnosis and a spare

module is brought online to participate in the error-masking configuration. Implemented

properly, this configuration has better dependability characteristics than purely passive or active

configurations. However, the cost and complexity are higher for the hybrid approach. The

selection of one of the three approaches is highly dependent on the application.

33

I
I
I
I
I

Primaries

12=1
I
I
I
I
I

Spares

Error Detector

y

y

Reconfiguration
Switch

I
I
I
I
I
I
I
I
l

Maskin

Figure 18: Hybrid Redundancy using N-Modular Redundancy with Spares

It is worth noting that although redundancy is required for fault tolerance, it is not sufficient to

just put a group of components together in a "fault tolerant" configuration. How the redundancy

is used is as important as the redundancy itself in order to contribute to higher dependability. The

following is quoted from [LalaJ 94]:

"Redundancy alone does not guarantee fault tolerance. The only thing it does

guarantee is a higher fault arrival rate compared to a nonredundanct system of the

same functionality. For a redundant system to continue correct operation in the

presence of a fault, the redundancy must be managed properly. Redundancy

management issues are deeply interrelated and determine not only the ultimate

system reliability but also the performance penalty paid for fault tolerance."

5.2. Examples of Fault Tolerant Architectures

In this section we present two examples of fault tolerant architectures for safety critical

applications. These architectures are used on the flight control computers of the fly-by-wire

systems of two types of commercial jet transport aircraft. The first computer is used on the

Boeing 777 airplane. The second computer is used on the AIRBUS A320/A330/A340 series
aircraft.

34

5.2.1. B777 Primary Flight Control Computer

The fly-by-wire system of the Boeing 777 airplane departs from old-style mechanical systems

that directly connect the pilot's control instruments to the external control surfaces. A fly-by-

wire system (see Figure 19) enables the creation of artificial airplane flight characteristics that

allow crew workload alleviation and flight safety enhancement, as well as simplifying

maintenance procedures through modularization and automatic periodic self-inspection ([Bleeg

88], [Hills 88], [Yeh 96], [Aleska 97], [McKinzie 96]).

AutoPilot

Flight Control

Computer Actuators

Pilot's
Commands

Dynamics

Airplane Dynamics

Figure 19: Abstract Representation of a Fly-By-Wire Flight System

Some of the requirements for the 777 flight control computer include:

• No single fault of any kind should cause degradation below MIN-OP (i.e., minimum

configuration to meet requirements)

• lxl0 _o(i.e., 1 in 10 billion) probability of degrading below MIN-OP configuration due to

random hardware faults, generic faults, or common mode faults

• No single fault should result in the transmission of erroneous outputs without a failure
indication.

• Components should be located in separate compartments throughout the airplane to

assure continued safe flight despite physical damage to the airplane and its systems.

"Never give up" redundancy management strategy for situations when the flight control

computer degrades below MIN-OP configuration. This includes considerations for

keeping the computer operational if there are any good resources, preventing improper

35

removal of resources, and recovering resources after being improperly removed.

• Fully automatic redundancy management

• Fully automatic Minimum Dispatch Configuration assessment prior to a flight

• Mean-Time-Between-Maintenance-Actions of 25,000 operating hours assuming 13.6

operating hours per day.

Figure 20 presents the architecture of the B777 flight control computer. It is a triple-triple

configuration of three identical channels, each composed of three redundant computation lanes.

The computers are connected to the flight control data buses that serve to exchange information
among the fly-by-wire system components. Each channel transmits on a preassigned data bus

and receives on all the busses. This setup enables the channels to communicate with each other

without the possibility of one bad channel interrupting all the communications. The channels are

placed in separate equipment bays on the aircraft to allow continued safe flight despite structural

damage. Normally the lanes are arranged in a command-monitor-standby arrangement where one

lane writes to the bus while the others monitor its operation. The spare lanes in each channel
enable rapid reconfiguration in case of a lane failure. The lanes exchange information for

redundancy management and for time and data synchronization in order to allow tighter cross-

lane monitoring. When the command lane is declared bad, it is taken offline and one of the spare

lanes is upgraded to the command assignment. Before sending a computed output to the

actuators, the channels perform an exchange of their proposed output values, do a median select,

and then finally declare the selected value as the actual computed control value. The channels
also exchange information for critical variable equalization to ensure tracking of their outputs

within acceptable bounds. The channels must also monitor the operation on the data busses to

ensure that data flow is taking place according data bus requirements.

The initial design of this flight control computer was a four by three configuration including

hardware and software dissimilarity in all the channels [Hills 88]. Software diversity was to be
achieved through the use of different programming languages targeting different lane processors.

The final and current implementation uses only one programming language with the executable

code being generated by three different compilers still targeting dissimilar lane processors. The

lane processors are dissimilar because they are the single most complex hardware devices, and

thus there is a perceived risk of design faults associated with their use.

36

Left Channel
F
I I

Command _ Standby _ Monitor
I I

Input _ Input S Input I
Interface 1 Interface 2

P,ocesso,11 IP,ocesso,2

Output _ Output
Interface 1 Interface 2

I
I

II

Interface 3

Proces_sor 3

Output

Interface 3

R _-,_--------------_. 1 [1 £1

v-------1

Center Channel Right Channel

V-----1 V----q V-----q V-----q V-----q

Data Buses

Figure 20: Architecture of B777 Flight Control Computer

(Adapted from [Hills 88] and [Yeh 96])

5.2.2. AIRBUS A320/A330/A340 Flight Control Computer

The requirements for the flight control computer on the Airbus A320/A330/A340 include

many of the same considerations as in the B777 fly-by-wire system ([Traverse 91], [Briere 93]).

The selected architecture, however, is much different. Figure 21 shows the architecture used on

the Airbus aircraft. The basic building block is the fail-stop control and monitor module. Each

module is composed of a control computer performing the flight control function and a

completely independent monitoring computer performing functions not necessarily identical to

the flight control function. The specifications for the control and monitoring computers are

developed independently from a common functional specification for the computer module. The

software for the control and monitoring computers are designed and built by independent design

teams to reduce the likelihood of common design errors. As part of the software development,

forced diversity rules are applied to ensure different designs for those areas deemed more

complex (and thus, more likely to have errors in the final design). The primary and secondary

computer modules are designed by different manufacturers to reduce the likelihood of any kind of

software or hardware generic errors. In effect, there are four dissimilar types of computers

working together to perform the flight control function. In the basic configuration, the primary

module sends its commands to the actuators, with the secondary module remaining in standby.

When the primary module fails, it is taken offline and the secondary module takes over the

command function. In addition, a second pair of modules (Primary 2 and Secondary 2 in Figure

21) is also available and sending commands to redundant actuators. At any particular time, only

one computer module is driving a control surface. Upon detection of a computer or actuator

failure, control is passed to another computer based on a predetermined hand over sequence.

37

Primary1 Control
Monitor

Secondary1 Control
Monitor

Primary2 Control
Monitor

Secondary2 Control
Monitor

m

--_ _- To Actuators

A

Figure 21: Architecture of A3XX Flight Control Computer

(Adapted from [Traverse 91])

6. Summary and Concluding Remarks

In this paper we have presented a review of software fault tolerance. We gave a brief

overview of the software development processes and noted how hard-to-detect design faults are

likely to be introduced during development. We noted how software faults tend to be state-

dependent and activated by particular input sequences. Although component reliability is an

important quality measure for system level analysis, software reliability is hard to estimate and

the use of post-verification reliability estimates remains a controversial issue. For some

applications software safety is more important than reliability, and fault tolerance techniques used

in those applications are aimed at preventing catastrophes. Single version software fault tolerance

techniques discussed include system structuring and closure, atomic actions, inline fault

detection, exception handling, and checkpoint and restart. Process pairs exploit the state

dependence characteristic of most software faults to allow uninterrupted delivery of services

despite the activation of faults. Similarly, data diversity aims at preventing the activation of

design faults by trying multiple alternate input sequences. Multiversion techniques are based on

the assumption that software built differently should fail differently and thus, if one of the

redundant versions fails, at least one of the others should provide an acceptable output. Recovery

blocks, N-version programming, N self-checking programming, consensus recovery blocks, and

t/(n-1)-variant techniques were presented. Special consideration was given to multiversion

software development and output selection algorithms. Operating systems must be given special

treatment when designing a fault tolerant software system because of the cost and complexity

associated with their development, as well as their criticality for correct system functionality.

Software fault injection was presented as a technique to experimentally assess the robustness of

38

softwareto designfaultsanderrors.Finally,wepresenteda brief high leveloverviewof fauk
tolerantcomputerdesignfollowedby thereviewof two safetycriticalflight controlcomputer
systems.

Becauseof ourpresentinabilityto produceerror-freesoftware,softwarefaulttoleranceisand
will continueto beanimportantconsiderationin softwaresystems.Therootcauseof software
designerrorsis thecomplexityof thesystems.Compoundingtheproblemsin buildingcorrect
softwareis thedifficulty in assessingthecorrectnessof softwarefor highlycomplexsystems.
Currentresearchinsoftwareengineeringfocusesonestablishingpatternsin thesoftwarestructure
andtryingto understandthepracticeof softwareengineering[Weinstock97]. It isexpectedthat
softwarefaulttoleranceresearchwill benefitfromthisresearchby enablinggreaterpredictability
of thedependabilityof software[Weinstock97].

7. Bibliography

[Abbott 90]

[Aleska 97]

[Ammann 88]

[Anderson 81]

[Anderson 85A]

[Anderson 85B]

[Anderson 86]

[Andrews 79A]

[Andrews 79B]

Russell J. Abbott, Resourceful Systems for Fault Tolerance, Reliability, and

Safety, ACM Computing Surveys, Vol. 22, No. 1, March 1990, pp. 35 - 68.

Brian D. Aleska and Joseph P. Carter, Boeing 777 Airplane Information

Management System Operational Experience, AIAA]IEEE Digital Avionics
Systems Conference, Vol. II, 1997, pp. 3.1-21 - 3.1-27.

Paul E. Ammann and John C. Knight, Data Diversity: An Approach to Software
Fault Tolerance, IEEE Transactions on Computers, Vol. 37, No. 4, April 1988,

pp. 418 - 425.

T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice,
Prentice]Hall, 1981.

T. Anderson, Ed., Resilient Computing Systems, Vol. I, John Wiley & Sons,
1985.

T. Anderson, et al, An Evaluation of Software Fault Tolerance in a Practical

System, Digest of Papers FTCS-15: The Fifteenth Annual International
Symposium on Fault-Tolerant Computing, June 1985, pp. 140 - 145.

Tom Anderson, A Structured Mechanism for Diverse Software, Proceedings of
the Fifth Symposium on Reliability in Distributed Software and Database

Systems, January 1986, pp. 125 - 129.

Dorothy M. Andrews, Using Executable Assertions for Testing and Fault
Tolerance, Digest of Papers: The Ninth Annual International Symposium on

Fault-Tolerant Computing (FTCS 9), June 1979, pp. 102 - 105.

D. M. Andrews, Software Fault Tolerance Through Executable Assertions, 12 th

Asilomar Conference on Circuits and Systems and Computers, November 1979,

pp. 641 - 645.

39

[Arlat90]

[Avizienis77]

[Avizienis85A]

[Avizienis85B]

[Avizienis86]

[Avizienis87]

[Avizienis88]

[Avizienis89]

[Avizienis95A]

[Avizienis95B]

[Avizienis97]

[Avresky92]

[Ayache96]

[Babikyan90]

JeanArlat,etal,Fault Injection for Dependability Validation: A Methodology

and Some Applications, IEEE Transactions on Software Engineering, Vol. 16,

No. 2, February 1990, pp. 166 - 182.

A. Avizienis and L. Chen, On the Implementation of N-Version Programming

for Software Fault Tolerance During Execution, Proceedings of the IEEE

COMPSAC'77, November 1977, pp. 149 - 155.

A. Avizienis, et al, The UCLA DEDIX System: A Distributed Testbed for

Multiple-Version Software, Digest of Papers: The Fifteenth Annual International

Symposium on Fault-Tolerant Computing (FTCS 15), Ann Arbor, Michigan,

June 19- 21, 1985, pp. 126- 134.

Algirdas Avizienis, The N-Version Approach to Fault-Tolerant Software, IEEE

Transactions on Software Engineering, Vol. SE-11, No. 12, December 1985, pp.
290 - 300.

Algirdas Avizienis and Jean-Claude Laprie, Dependable Computing: From

Concepts to Design Diversity, Proceedings of the IEEE, Vol. 74, No. 5, May

1986, pp. 629 - 638.

Algirdas Avizienis, A Design Paradigm for Fault Tolerant Systems, Proceedings

of the AIAA/IEEE Digital Avionics Systems Conference (DASC), Washington,

D.C., 1987.

Algirdas Avizienis, In Search of Effective Diversity: A Six-Language Study of

Fault-Tolerant Flight Control Software, Digest of Papers FTCS-18: The

Eighteenth International Symposium on Fault-Tolerant Computing, June 27 -

30, 1988, pp. 15 - 22.

Algirdas Avizienis, Software Fault Tolerance, Information Processing 89,

Proceedings of the IFIP 11 thWorld Computer Congress, 1989, pp. 491 - 498.

Algirdas Avizienis, Dependable Computing Depends on Structured Fault

Tolerance, Proceedings of the 1995 6 th International Symposium on Software

Reliability Engineering, Toulouse, France, 1995, pp. 158 - 168.

Algirdas Avizienis, The Methodology of N-Version Programming, in R. Lyu,

editor, Software Fault Tolerance, John Wiley & Sons, 1995.

Algirdas Avizienis, Toward Systematic Design of Fault-Tolerant Systems,

Computer, April 1997, pp. 51 - 58.

Dimitri Avresky, et al, Fault Injection for the Formal Testing of Fault

Tolerance, Digest of Papers of the Twenty-Second International Symposium on

Fanlt-Tolerant Computing, Boston, Massachusetts, July 8 - 10, 1992, pp. 345 -
354.

S. Ayache, et al, Formal Methods for the Validation of Fault Tolerance in

Autonomous Spacecraft, Proceedings of the Twenty-Sixth International

Symposium on Fault-Tolerant Computing, Sendai, Japan, June 25 - 27, 1996,

pp. 353 - 357.

Carol A. Babikyan, The Fault Tolerant Processor Operating System Concepts

40

[Bass95]

[Bass97]

[Beedubail95]

[Bishop95]

[Black80]

[Black81]

[Bleeg88]

[Blough90]

[Boi81]

[Bresoud98]

[Briere93]

[Brilliant89]

[Broen75]

and Performance Measurement Overview, IEEE/AIAA/NASA 9th Digital

Avionics Systems Conference, October 1990, pp. 366 - 371.

J. M. Bass, Voting in Real-Time Distributed Computer Control Systems, PhD

Thesis, University of Sheffield, October 1995.

J. M. Bass, et al, Experimental Comparison of Voting Algorithms in Cases of

Disagreement, Proceedings of the 1997 23 '6 EUROMICRO Conference, 1997,

pp. 516 - 523.

Ganesha Beedubail, et al, An Algorithm for Supporting Fault Tolerant Objects

in Distributed Object Oriented Operating Systems, Proceedings of the 4th

International Workshop on Object Orientation in Operating Systems, 1995, pp.
142- 148.

Peter Bishop, Software Fault Tolerance by Design Diversity, in R. Lyu, editor,

Software Fault Tolerance, John Wiley & Sons, 1995.

J. P. Black, et al, Introduction to Robust Data Structures, Digest of Papers

FTCS-10: The Eleventh Annual International Symposium on Fault-Tolerant

Computing, October 1 - 3, 1980, pp. 110 - 112.

J. P. Black, et al, A Compendium of Robust Data Structures, Digest of Papers

FTCS-11: The Eleventh Annual International Symposium on Fault-Tolerant

Computing, June 24 - 26, 1981, pp. 129 - 131.

Robert J. Bleeg, Commercial Jet Transport Fly-By-Wire Architecture

Considerations, AIAA/IEEE 8th Digital Avionics Systems Conference, October

1988, pp. 399 - 406.

Douglas M. Blough and Gregory F. Sullivan, A Comparison of Voting Strategies

for Fault-Tolerant Distributed Systems, Proceedings of the 9th Symposium on

Reliable Distributed Systems, Huntsville, AL, 1990, pp. 136 - 145.

L. Boi, et al, Exception Handling and Error Recovery Techniques in Modular

Systems An Application to the ISAURE System -, Digest of Papers FTCS-11:

The Eleventh Annual International Symposium on Fault-Tolerant Computing,

1981, pp. 62 - 64.

Thomas C. Bressoud, TFT: A Software System for Application-Transparent

Fault Tolerance, Digest of Papers: Twenty-Eight Annual International

Symposium on Fault-Tolerant Computing, Munich, Germany, June 23 - 25,

1998, pp. 128 - 137.

Dominique Briere and Pascal Traverse, AIRBUS A320/A330/A340 Electrical

Flight Controls: A Family of Fault-Tolerant Systems, Digest of Papers FTCS-

23: The Twenty-Third International Symposium on Fault-Tolerant Computing,

June 1993, pp. 616 - 623.

Susan S. Brilliant, et al, The Consistent Comparison Problem in N-Version

Software, IEEE Transactions on Software Engineering, Vol. 15, No. 11,

November 1989, pp. 1481 - 1485.

R. B. Broen, New Voters for Redundant Systems, Transactions of the ASME,

41

[Brooks87]

[Butler91]

[Caglayan85]

[Cha87]

[Chandra98]

[Chang94]

[Chisholm99]

[Christmansson94]

[Christmansson98]

[Cristian80]

[Cristian82]

[Croll95]

[Chou97]

[Damm86]

Journalof DynamicSystems,Measurement,andControl,March1975,pp.41-
45.

FrederickP.Brooks,Jr.,No Sih, er Bullet: Essence and Accidents of Software

Engineering, IEEE Computer, March 1987, pp. 10 - 19.

Ricky W. Butler and George B. Finelli, The lnfeasibility of Quantifying the

Reliability of Life-Critical Real-Time Software, IEEE Transactions on Software

Engineering, Vol. 19, No. 1, January 1991, pp. 3 - 12.

Alper K. Caglayan and Dave E. Eckhardt, Jr., Systems Approach to Software

Fault Tolerance, AIAA Paper 85-6018, 1985.

Sung D. Cha, An Empirical Study of Software Error Detection Using Self-

Checks, Digest of Papers FTCS-17: The Seventh International Symposium on

Fault-Tolerant Computing, July 6 - 8, 1987, pp. 156 - 161.

Subhachandra Chandra and Peter M. Chen, How Fail-Stop are Faulty

Programs?, Digest of Papers: Twenty-Eighth Annual International Symposium

on Fault-Tolerant Computing, Munich, Germany, June 23 - 25, 1998, pp. 240 -
249.

Elizabeth Chang and Tharam S. Dillon, Achieving Software Reliability and

Fault Tolerance Using the Object Oriented Paradigm, Computer Systems

Science and Engineering, Vol. 9, No. 2, April 1994, pp. 118 - 121.

G. H. Chisholm and A S. Wojcik, An Application of Formal Analysis to

Software in a Fault-Tolerant Environment, IEEE Transactions on Computers,

Vol. 48, No. 10, October 1999, pp. 1053 - 1064.

J. Christmansson, et al, Dependable Flight Control System Using Data Diversity

with Error Recovery, Computer Systems Science and Engineering, Vol. 9, No.

2, April 1994, pp. 142 - 150.

J. Christmansson, et al, Dependable Flight Control System Using Data Diversity

with Error Recovery, Doktorsavhandlingar vid Chalmers Tekniska Hogskola,

No. 1362, Sweden, 1998, pp. A.1 - A.10.

Flaviu Cristian, Exception Handling and Software-Fault Tolerance, Digest of

Papers FTCS-10: The 10d' International Symposium on Fault-Tolerant

Computing, October 1 - 3, 1980, pp. 97 - 103.

Flaviu Cristian, Exception Handling and Software Fault Tolerance, IEEE

Transactions on Computers, Vol. C-31, No. 6, June 1982, pp. 531 - 540.

P. R. Croll, et al, Dependable, Intelligent Voting for Real-Time Control

Software, Engineering Applications of Artificial Intelligence, vol. 8, no. 6,

December 1995, pp. 615 - 623.

Timothy C. K. Chou, Beyond Fault Tolerance, IEEE Computer, April 1997, pp.
47 - 49.

Andreas Damm, The Effectiveness of Software Error-Detection Mechanisms in

Real-Time Operating Systems, Digest of Papers: 16 th Annual International

42

[Daughan94]

[David93]

[Deck98]

[Denning76]

[Dingman95]

[Dong99]

[Doyle95]

[DO178B]

[Echtle95]

[Ecklmrdt85A]

[Eckhardt85B]

[Eckhardt88]

[Eckhardt91]

SymposiumonFault-TolerantComputingSystems(FTCS16),Vienna,Austria,
July1- 4,1986,pp.171- 176.

MichaelG.Daughan,Seawo_ Submarine Ship Control System: A Case Study of

a Fault-Tolerant Design, Naval Engineering Journal, January 1994, pp. 54 - 70.

Philippe David and Claude Guidal, Development of a Fault Tolerant Computer

System for the HERMES Space Shuttle, Digest of Papers: The Twenty-Third

International Symposium on Fault-Tolerant Computing (FTCS 23), Toulouse,

France, June 22 - 24, 1993, pp. 641 - 646.

Michael Deck, Software Reliability and the "Cleanroom" Approach: A Position

Paper, Proceedings of the Annual Reliability and Maintainability Symposium,

Anaheim, CA, January 19 - 22, 1998, pp. 218 - 223.

Peter J. Denning, Fault Tolerant Operating Systems, ACM Computing Surveys,

Vol. 8, No. 4, December 1976, pp. 359 - 389.

Christopher P. Dingman, et al, Measuring Robusmess of a Fault Tolerant

Aerospace System, Digest of Papers: The Twenty-Fifth International

Symposium on Fault-Tolerant Computing, Pasadena, CA, June 27 - 30, 1995, p.
522 - 527.

Libin Dong, et al, Implementation of a Transient-Fault-Tolerance Scheme on

DEOS, Proceedings of the 1999 5d' IEEE Real-Time Technology and

Applications Symposium, 1999, pp. 56 - 65.

Stacy A. Doyle and Jane Latin Mackey, Comparative Analysis of Two

Architectural Alternatives for the N-Version Programming (NVP) System,

Proceedings of the 1995 Annual Reliability and Maintainability Symposium,

1995, pp. 275 - 282.

Software Considerations in Airborne Systems and Equipment Certification,

RTCA/DO-178B, RTCA, Inc, 1992.

Klaus Echtle and Tomislav Lovric, Hardware and Software Fault Tolerance

Using Fail-Silent Virtual Duplex Systems, Proceedings of the 1995 Conference

on Fault Tolerant Parallel and Distributed Systems, 1995, pp. 10 - 17.

Dave E. Eckhardt and Larry D. Lee, A Theoretical Basis for the Analysis of

Redundant Software Subject to Coincident Errors, National Aeronautics and

Space Administration (NASA), Technical Memorandum 86369, January 1985.

Dave E. Eckhardt and Larry D. Lee, An Analysis of the Effects of Coincident

Errors on Multi-Version Software, AIAA/ACM]NASA/IEEE Computers in

Aerospace V Conference, October 21 - 23, 1985, pp. 370 - 373.

Dave E. Eckhardt and Larry D. Lee, Fundamental Differences in the Reliability

of N-Modular Redundancy and N-Version Programming, The Journal of

Systems and Software 8, 1988, pp. 313 - 318.

Dave E. Eckhardt, et al, An Experimental Evaluation of Software Redundancy as

a Strategy for Improving Reliability, IEEE Transactions on Software

Engineering, Vol. 17, No. 7, July 1991, pp. 692 - 702.

43

[Elmendorf72]

[Everett98]

[Fabre88]

[Fabre99]

[Fraser99]

[Gersting91]

[Gluch86]

[Goseva93]

[Gray86]

[Greeley87]

[Guerraoui97]

[Hamilton96]

[Hamlet93]

[Hecht79]

[Hecht86]

WilliamR.Elmendorf,Fault-Tolerant Programming, Digest of Papers FTCS-2:

The 2nd Annual International Sympoium on Fault Tolerant Computing, June

1972, pp. 79 - 83.

William Everett, Samual Keene and Allen Nikora, Applying Software Reliability

Engineering in the 1990s, IEEE Transactions on Reliability, Vol. 47, No. 3-SP,

September 1998, pp. 372-SP - 378-SP.

Jean-Charles Fabre, et al, Saturation: Reduced Idleness for Improved Fault-

Tolerance, Digest of Papers: The Eighteenth International Symposium on Fault-

Tolerant Computing (FTCS 18), June 1988, pp. 200 - 205.

J. C. Fabre, et al, Assessment of COTS Microkernels by Fault Injection,

Proceedings IFIP DCCA-7, 1999, pp. 19 - 38.

Timothy Fraser, et al, Hardening COTS Software with Generic Software

Wrappers, Proceedings of the 1999 IEEE Computer Society Symposium on

Research in Security and Privacy, 1999, pp. 2 - 16.

Judith Gersting, et al, A Comparison of Voting Algorithms for N-Version

Programming, Proceedings of the 24 " Annual Hawaii International Conference

on System Sciences, Volume II, January 1991, pp. 253 - 262.

David P. Gluch and Michael J. Paul, Fault-Tolerance in Distributed Fly-By-wire

Flight Control Systems, Proceedings IEEE/AIAA 7d_Digital Avionics Systems

Conference, October 1986, pp. 507- 514.

K. Goseva-Popstojanova and A. Grnarov, N Version Programming with

Majority Decision: Dependability Modeling and Evaluation, Microprocessing

and Microprogramming, Vol. 38, No. 1 - 5, September 1993, pp. 811 - 818.

Jim Gray, Why Do Computers Stop and What Can Be Done About It?,

Proceedings of the Fifth Symposium On Reliability in Distributed Software and

Database Systems, January 13-15, 1986, pp. 3 - 12.

Gregory L. Greeley, The Effects of Voting Algorithms on N-Version Software

Reliability, Master of Science Thesis, Massachusetts Institute of Technology,
June 1987.

Rachid Guerraoui and Andre Schipper, Software-Based Replication for Fault

Tolerance, IEEE Computer, April 1997, pp. 68 - 74.

Major Lynne Hamilton-Jones, et al, Software Technology for Next-Generation

Strike Fighter Avionics, Proceedings of the 1996 15d_ AIAA]IEEE Digital

Avionics Systems Conference, October 1996, pp. 37 - 42.

Dick Hamlet and Jeff Voas, Faults in Its Sleeve: Amplifying Software Reliability

Testing, Proceedings of the 1993 International Symposium on Software Testing

and Analysis (ISSTA), June 1993, pp. 88 - 98.

Herbert Hecht, Fault-Tolerant Software, IEEE Transactions on Reliability, Vol.

R-28, No. 3, August 1979, pp. 227 - 232.

Herbert Hecht and Myron Hecht, Software Reliability in the System Context,

44

[Hecht96]

[Hills88]

[Huang84]

[IEEE93]

[Iyer96]

[Jewett91]

[Johnson96]

[Kanekawa89]

[Kao93]

[Kelly86]

[Kelly91]

[Kersken92]

[Kieckhafer87]

[Kieckhafer88]

IEEETransactionsonSoftwareEngineering,Vol.SE-12,No.1,January1986,
pp.51- 58.

HerbertHechtandMyronHecht,Fault-Tolerance in Software, in Fault-Tolerant

Computer System Design, Dhiraj K. Pradhan, Prentice Hall, 1996.

Andy D. Hills and Dr. Nisar A. Mirza, Fault Tolerant Avionics, AIAA/IEEE 8th

Digital Avionics Systems Conference, October 1988, pp. 407 - 414.

Kuang-Hua Huang and Jacob A. Abraham, Algorithm-Based Fault Tolerance

for Matrix Operations, IEEE Transactions on Computers, Vol. C-33, No. 6, June

1986, pp. 518 - 528.

IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990,

IEEE, 1993.

Ravishankar K. Iyer and Dong Tang, Experimental Analysis of Computer System

Dependability, in Fault Tolerant Computer System Design, Dhiraj K. Pradhan,

Prentice Hall, 1996, pp. 282 - 392.

Doug Jewett, Integrity $2: A Fault-Tolerant Unix Platform, Digest of Papers

Fault-Tolerant Computing: The Twenty-First International Symposium,

Montreal, Canada, June 25 - 27, 1991, pp. 512 - 519.

Barry W. Johnson, An Introduction to the Design and Analysis of Fault-Tolerant

Systems, in Fault-Tolerant Computer System Design, Dhiraj K. Pradhan,

Prentice Hall, Inc., 1996, pp. 1 - 87.

Nobuyasu Kanekawa, et al, Dependable Onboard Computer Systems with a New

Method Stepwise Negotiating Voting, Digest of Papers: The Nineteenth

International Symposium on Fault-Tolerant Computing (FTCS-19), 1989, pp. 13
-19.

Wei-lun Kao, et al, FINE: A Fault Injection and Monitoring Environment for

Tracing the UNIX System Behavior Under Faults, IEEE Transactions on

Software Engineering, Vol. 19, No. 11, November 1993, pp. 1105 - 1118.

John P. J. Kelly, et al, Multi-Version Software Development, Proceeding of the

Fifth IFAC Workshop, Safety of Computer Control Systems, October 1986, pp.
43 - 49.

John P. J. Kelly, Implementing Design Diversity to Achieve Fault Tolerance,

IEEE Software, July 1991, pp. 61 - 71.

M. Kersken and F. Saglietti, Editors, Software Fault Tolerance: Achievement

and Assessment Strategies, Springer-Verlag, 1992.

R. M. Kieckhafer, Task Reconfiguration in a Distributed Real-Time System,

Proceedings Real-Time Systems Symposium, December 1987, pp. 25 - 32.

Roger M. Kieckhafer, et al, The MAFT Architecture for Distributed Fault

Tolerance, IEEE Transaction on Computers, Vol. 37, No. 4, April 1988, pp. 398
- 405.

45

[Kieckhafer89]

[KimH95]

[KimH97]

[KimK97]

[Knight85]

[Knight86]

[Knight91]

[Kojo881

[Koo87]

[Koopman97]

[Koopman99]

[Kopetz99]

[Kropp98]

RogerM.Kieckhafer,Fault-Tolerant Real-Time Task Scheduling in the MAFT

Distributed System, Proceedings of the Twenty-Second Annual Hawaii

International Conference on System Sciences: Architecture Track, 1989, pp. 143
- 151.

Hyun C. Kim and V.S.S. Nair, Application Layer Software Fault Tolerance for

Distributed Object-Oriented Systems, Proceedings of the Nineteenth Annual

International Computer Software & Applications Conference (COMPSAC '95),

August 1995, pp. 199 - 204.

Hyun C. Kim and V.S.S. Nair, Software Fault Tolerance for Distributed Object

Based Computing, Journal of Systems and Software, Vol. 39, No. 2, November

1997, pp. 103 - 117.

K. H. Kim, and Chittur Subbaraman, Fault-Tolerant Real-Time Objects,

Communications of the ACM, Vol. 40, No. 1, January 1997, pp. 75 - 82.

J. C. Knight, et al, A Large Scale Experiment in N-Version Programming,

Digest of Papers FTCS-15: The 15 th Annual International Conference on Fault

Tolerant Computing, June 1985, pp. 135 - 139.

J. C. Knight and Nancy G. Leveson, An Experimental Evaluation of the

Assumption of Independence in Multiversion Programming, IEEE Transactions

on Software Engineering, Vol. SE-12, No. 1, January 1986, pp. 96 - 109.

J. C. Knight and P. E. Ammann, Design Fault Tolerance, Reliability

Engineering and System Safety, Vol. 32, No. 1-2, 1991, pp. 25 - 49.

Takashi Kojo, et al, Fault Tolerant Real-Time Operating System for 32 Bit

Microprocessor V69/V70, NEC Research and Development, No. 89, April 1988,

pp. 123 - 129.

Richard Koo and Sam Toueg, Checkpointing and Rollback-Recovery for

Distributed Systems, IEEE Transactions on Software Engineering, Vol. SE-13,

No. 1, January 1987, pp. 23 - 31.

Philip Koopman, et al, Comparing Operating Systems Using Robustness

Benchmarks, Proceedings of the 1997 16 th IEEE Symposium on Reliable

Distributed Systems, October 1997, pp. 72 - 79.

Philip Koopman and John DeVale, Comparing the Robusmess of POSIX

Operating Systems, Digest of Papers: Twenty-Ninth Annual International

Symposium Fault-Tolerant Computing, Madison, Wisconsin, June 15 - 18,

1999, pp. 30 - 37.

Hermann Kopetz and Dietmar Millinger, The Transparent Implementation of

Fault Tolerance in the Time-Triggered Architecture, Dependable Computing for

Critical Applications 7, Volume 12, A. Avizienis, H. Kopetz, J.C. Laprie,

editors, 1999, pp. 192 - 205.

Nathan P. Kropp, et al, Automated Robustness Testing of Off-the-Shelf Software

Components, Digest of Papers: Twenty-Eighth Annual International Symposium

Fault-Tolerant Computing, June 1998, pp. 230 - 239.

46

[Lai95]

[LalaJ 86]

[LalaJ 88]

[LalaJ 91]

[LalaJ 93]

[LalaJ 94]

[LalaP 91]

[Laprie 87]

[Laprie 90]

[Laprie 92]

[Laprie 94]

[Laprie95]

[LeeI 93A]

[LeeI 93B]

Ming-Yee Lai and Steve Y. Wang, Software Fault Insertion Testing for Fault

Tolerance, in Software Fault Tolerance, Michael R. Lyu, editor, John Wiley &

Sons, 1995, pp. 315 - 333.

Jaynarayan H. Lala, A Byzantine Resilient Fault Tolerant Computer for Nuclear

Power Plant Applications, Digest of Papers: 16 th Annual International

Symposium on Fault-Tolerant Computing Systems (FTCS-16), Vienna, Austria,

July 1 - 4, 1986, pp. 338 - 343.

Jaynarayan H. Lala and Linda S. Alger, Hardware and Software Fault

Tolerance: A Unified Architectural Approach, Digest of Papers FTCS-18: The

Eighteenth International Symposium on Fault-Tolerant Computing, June 1988,

pp. 240 - 245.

Jaynarayan H. Lala, et al, A Design Approach for Ultrareliable Real-Time

Systems, IEEE Computer, Vol. 24, No. 5, May 1991, pp. 12 - 22.

Jaynarayan H. Lala and Richard E. Harper, Reducing the Probability of

Common-Mode Failure in the Fault Tolerant Parallel Processor, AIAA/IEEE

12 thDigital Avionics Systems Conference, October 1993, pp. 221 - 230.

Jaynarayan H. Lala and Richard E. Harper, Architectural Principles for Safety-

Critical Real-Time Applications, Proceedings of the IEEE, Vol. 82, No. 1,

January 1994, pp. 25 - 40.

P. K. Lala, On Self-Checking Software Design, IEEE Proceedings of the

Southeastcon, Vol. 1, 1991, pp. 331 - 335.

Jean-Claude Laprie, et al, Hardware- and Software-Fault Tolerance: Definition

and Analysis of Architectural Solutions, Digest of Papers FTCS-17: The

Seventeenth International Symposium on Fault-Tolerant Computing, July 1987,

pp. 116- 121.

Jean-Claude Laprie, et al, Definition and Analysis of Hardware- and Software-

Fault-Tolerance Architectures, IEEE Computer, July 1990, pp. 39 - 51.

J.C. Laprie, editor, Dependability: Basic Concepts and Terminology,

International Federation for Information Processing (IFIP), WG10.4 Dependable

Computing and Fault Tolerance, Springer-Verlag, 1992.

J.C. Laprie, How Much is Safety Worth?, Proceedings of the IFIP 13_hWorld

Computer Congress, Vol. III, n. A-53, 1994, pp. 251 - 253.

J.C. Laprie, et al, Architectural Issues in Software Fault Tolerance, in Software

Fault Tolerance, Michael R. Lyu, editor, Wiley, 1995, pp. 47 - 80.

Inhwan Lee, et al, Measurement-Based Evaluation of Operating System Fault

Tolerance, IEEE Transactions on Reliability, Vol. 42, No. 2, June 1993, pp. 238
- 249.

Inhwan Lee and Ravishankar K. Iyer, Faults, Symptoms, and Software Fault

Tolerance in Tandem GUARDIAN90 Operating System, Digest of Papers: The

Twenty-Third International Symposium on Fault-Tolerant Computing (FTCS-

23), Toulouse, France, June 22 - 24, 1993, pp. 20 - 29.

47

[LeeI95]

[LeeI96]

[LeeP83]

[LeeY98]

[Levendel89]

[Leveson83]

[Leveson86]

[Leveson95]

[Leung97]

[Littlewood89]

[Littlewood93]

[Littlewood96]

[Lorczak89]

[Lyu92]

[Lyu95]

[Lyu99]

InhwanLeeandRavishankarK. Iyer,Software Dependability in the Tandem

GUARDIAN System, IEEE Transactions on Software Engineering, Vol. 21, No.

5, May 1995, pp. 455 - 467.

Inhwan Lee, et al, Efficient Service of Rediscovered Software Problems,

Proceedings of the Twenty-Sixth International Symposium on Fault Tolerant

Computing, Sendai, Japan, June 25 - 27, 1996, pp. 348 - 352.

P.A. Lee, Structuring Software Systems for Fault Tolerance, AIAA Paper 83-

2322, 1983.

Yann-Hang Lee, et al, An Integrated Scheduling Mechanism for Fault-Tolerant

Modular Avionics Systems, Proceedings of the 1998 IEEE Aerospace

Applications Conference, Vol. 4, 1998, pp. 21 - 29.

Y. Levendel, Defects and Reliability Analysis of Large Software Systems: FieM

Experience, Digest of Papers: The Nineteenth International Symposium on

Fanlt-Tolerant Computing (FTCS-19), 1989, pp. 238 - 244.

Nancy G. Leveson, Software Fault Tolerance: The Case for Forward Recovery,

AIAA Paper 83-2327, 1983.

Nancy G. Leveson, Software Safety: Why, What, and How, ACM Computing

Surveys, Vol. 18, No. 2, June 1986, pp. 125 - 163.

Nancy G. Leveson, Safeware: System Safety and Computers, Addison-Wesley,
1995.

Yiu-Wing Leung, Processor Assignment and Execution Sequence for

Multiversion Software, IEEE Transactions on Computers, Vol. 46, No. 12,

December 1997, pp. 1371 - 1377.

Bey Littlewood and Douglas R. Miller, Conceptual Modeling of Coincident

Failures in Multiversion Software, IEEE transactions on Software Engineering,

Vol. 15, No. 12, December 1989, pp. 1596 - 1614.

Bev Littlewood and Lorenzo Stringini, Validation of Ultrahigh Dependability

for Software-Based Systems, Communications of the ACM, Vol. 38, No. 11,

November 1993, pp. 69 - 80.

Bev Littlewood, The Impact of Diversity Upon Common Mode Failures,

Reliability Engineering and System Safety, Vol. 51, No. 1, 1996, pp. 101 - 113.

Paul R. Lorczack, et al, A Theoretical Investigation of Generalized Voters for

Redundant Systems, Digest of Papers FTCS-19: The Nineteenth International

Symposium on Fanlt-Tolerant Computing, 1989, pp. 444 - 451.

Michael R. Lyu, et al, Software Diversity Metrics and Measurements,

Proceedings IEEE COMPSAC 1992, September 1992, pp. 69 - 78.

Michael R. Lyu, editor, Software Fault Tolerance, John Wiley & Sons, 1995.

Michael R. Lyu and Veena B. Mendiratta, Software Fault Tolerance in a

Clustered Architecture: Techniques and Reliability Modeling, Proceedings of

48

[Malunood84]

[Mancini89]

[Maxiom98]

[Mazza96]

[McAllister90]

[McElvany88]

[McKinzie96]

[Melliar83]

[Metze81]

[Migneault83]

[Moser95]

[Mukherjee97]

[Nelson90]

[Nicola95]

[Parhami96]

the1999IEEEAerospaceConference,Vol.5,1999,pp.141- 150.

AamerMalunood,etal,Executable Assertions and Flight Software, Proceedings

of the 6 thAIAA/IEEE Digital Avionics System Conference, 1984, pp. 346 - 351.

L. V. Mancini and S. K. Shrivastava, Replication within Atomic Actions and

Conversations: A Case Study in Fault-Tolerance Duality, Digest of Papers

FTCS-19: The Nineteenth International Symposium on Fault-Tolerant

Computing, 1989, pp. 454 - 461.

Roy A. Maxion and Robert T. Olszewski, Improving Software Robusmess with

Dependability Cases, Digest of Papers: Twenty-Eighth Annual International

Symposium on Fault-Tolerant Computing, Munich, Germany, June 23 - 25,

1998, pp. 346 - 355.

C. Mazza, et al, Software Engineering Guides, Prentice Hall, 1996.

David McAllister, et al, Reliability of Voting in Fault-Tolerant Software Systems

for Small Output-Spaces, IEEE Transactions on Reliability, Vol. 39, No. 5,

December 1990, pp. 524 - 534.

Michelle C. McElvany, Guaranteeing Deadlines in MAFT, Proceedings of the

Real-Time Systems Symposium, Vol. 35, No. 6, 1988, pp. 130 - 139.

Gordon McKinzie, Summing Up the 777's First Year: Is This a Great Airplane,

or What?, Airliner, July - September 1996, pp. 22 - 25.

Peter Michael Melliar-Smith, Development of Software Fault-Tolerance

Techniques, NASA Contractor Report 172122, March 1983.

Gernot Metze and Ali Mili, Self-Checking Programs: An Axiomatisation of

Program Validation by Executable Assertions, Digest of Papers FTCS-11: The

Eleventh Annual International Symposium on Fault-Tolerant Computing, June

24- 26, 1981, pp. 118- 120.

Gerard E. Migneault, On Requirements for Software Fault Tolerance for Flight

Controls, AIAA Paper 83-2321, 1983.

L.E. Moser, et al, The Totem System, Digest of Papers: The Twenty-Fifth

International Symposium on Fault-Tolerant Computing, June 1995, pp. 61 - 66.

Fault Tolerant System Design Paradigm (source: [Suri 95]) [Mullender 90]

Sape J. Mullender, et al, Amoeba: A Distributed Operating System for

the 1990s, Computer, Vol. 23, No. 5, May 1990, pp. 44 - 53.

Victor P. Nelson, Fault-Tolerant Computing: Fundamental Concepts, IEEE

Computer, July 1990, pp. 19 - 25.

Victor F. Nicola, Checkpointing and the Modeling of Program Execution Time,

in Software Fault Tolerance, Michael R. Lyu, Ed, Wiley, 1995, pp. 167 - 188.

Behrooz Parhami, Design of Reliable Software via General Combination of N-

Version Programming and Acceptance Testing, Proceedings of the 1996 17 th

International Symposium on Software Reliability Engineering (ISREE'96),

49

[Pham92]

[Parnas90]

[Potter86]

[Pradhan92]

[Pradhan96]

[Pressman97]

[Prowell99]

[Purtilo89]

[Rabdjac96]

[Ramirez99]

[Randell75]

[Randell95A]

[Randell95B]

[Russinovich93]

1996,pp.104- 109.

HoangPham,editor,Fault-Tolerant Software Systems: Techniques and

Applications, IEEE Computer Society Press, 1992.

David L.Parnas, A. John van Schouwen, and Shu Po Kwan, Evaluation of

Safety-Critical Software, Communications of the ACM, Vol. 33, No. 6, June

1990, pp. 636 - 648.

James E. Potter and M. C. Suman, Extension of the Midvalue Selection

Technique for Redundancy Management of Inertial Sensors, Journal of

Guidance, Control, and Dynamics, Vol. 9, No. 1, January - February 1986, pp.
37 - 44.

Dhiraj K. Pradhan and Nitin H. Vaidya, Roll-Forward Checkpointing Scheme:

Concurrent Retry with Nondedicated Spares, The 1992 IEEE Workshop on

Fault-Tolerant Parallel and Distributed Systems, July 6-7, 1992, pp. 166 - 174.

Dhiraj K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall, Inc.,
1996.

Roger S. Pressman, Software Engineering: A Practitioner's Approach, The

McGraw-Hill Companies, Inc., 1997

Stacy J. Prowell, et al, Cleanroom Software Engineering: Technology and

Process, Addison-Wesley, 1999.

James M. Purtilo and Pankaj Jalote, A System for Supporting Multi-Language

Versions for Software Fault Tolerance, Digest of Papers: The Nineteenth

International Symposium on Fault-Tolerant Computing (FTCS-19), 1989, pp.
268 - 274.

Christophe Rab6jac, et al, Executable Assertions and Timed Traces for On-Line

Software Error Detection, Proceedings of the Twenty-Sixth International

Symposium on Fanlt-Tolerant Computing, Sendai, Japan, June 25 - 27, 1996,

pp. 138-147.

John C. Ramirez and Rami G. Melhem, Reducing Message Overhead in TMR

Systems, Proceedings of the 1999 19 th International Conference on Distributed

Computing Systems (ICDCS'99), Austin, TX, pp. 45 - 54.

Brian Randell, System Structure for Software Fault Tolerance, IEEE

Transactions on Software Engineering, Vol. SE-1, No. 2, June 1975, pp. 220 -
232.

Brian Randell and Jie Xu, The Evolution of the Recovery Block Concept, in

Software Fault Tolerance, Michael R. Lyu, editor, Wiley, 1995, pp. 1 - 21.

Brian Randell, et al, editors, Predictably Dependable Computing Systems,

Springer, 1995.

Mark Russinovich, et al, Application Transparent Fault Management in Fault

Tolerant Mach, Digest of Papers: The Twenty-Third International Symposium

on Fault-Tolerant Computing (FTCS-23), Toulouse, France, June 22 - 24, 1993,

50

[Russinovich94]

[Russinovich95]

[Saglietti86]

[Saglietti90A]

[Saglietti90B]

[Saglietti91]

[Salles99]

[Schach96]

[Scott87]

[Scott96]

[Shimeall91]

[Shokri96A]

[Shokri96B]

pp.10- 19.

MarkRussinovich,et al,Application Transparent Fault Managemet in Fault

Tolerant Mach, in Foundations of Dependable Computing System

Implementation, Gary M. Koob and Clifford G. Lau, editors, Kluwer Academic

Publishers, 1994, pp. 215 - 241.

Mark Russinovich and Zary Segall, Fault-Tolerance for Off-The-She_

Applications and Hardware, Digest of Papers: The Twenty-Fifth International

Symposium on Fault-Tolerant Computing, Pasadena, CA, June 27 - 30, 1995,

pp. 67 - 71.

F. Saglietti and W. Ehrenberger, Software Diversity Some Considerations

About Its Benefits and Its Limitations, Proceedings of the Fifth International

Federation of Automatic Control (IFAC) Workshop, Safety of Computer

Control Systems, October 14 - 17, 1986, pp. 27 - 34.

F. Saglietti, Software Diversity Metrics: Quantifying Dissimilarity in the Input

Partition, Software Engineering Journal, January 1990, pp. 59 - 63.

F. Saglietti, Strategies for the Achievement and Assessment of Software Fault-

Tolerance, IFAC 1990 World Congress, Automatic Control. Vol. IV, IFAC

Symposia Series, Number 4, 1991, pp. 303 - 308.

Francesca Saglietti, The Impact of Voter Granularity in Fault-Tolerant Software

on System Reliability and Availability, in Software Fault Tolerance:

Achievement and Assessment Strategies, M. Kersken and F. Saglietti, editors,

Springer-Verlag, 1991.

Fr6d6ric Salles, et al, MetaKernels and Fault Containment Wrappers, Digest of

Papers: Twenty-Ninth Annual International Symposium on Fault-Tolerant

Computing, Madison, Wisconsin, June 15 - 18, 1999, pp. 22 - 29.

Stephen R. Schach, Testing: Principles and Practice, ACM Computing Surveys,

Vol. 28, No. 1, March 1996, pp. 277 - 279.

R. Keith Scott, James W. Ganlt, and David F. McAllister, Fault-Tolerant

Software Reliability Modeling, IEEE Transactions on Software Engineering,

Vol. SE-13, No. 5, May 1987, pp. 582 - 592.

R. Keith Scott, and David F. McAllister, Cost Modeling of N-Version Fault-

Tolerant Software Systems for Large N, IEEE Transactions on Reliability, Vol.

45, No. 2, June 1996, pp. 297 - 302.

Timothy J. Shimeall and Nancy G. Leveson, An Empirical Comparison of

Software Fault Tolerance and Fault Elimination, IEEE Transactions on

Software Engineering, Vol. 17, No. 2, February 1991, pp. 173 - 182.

Eltefaat H. Shokri, et al, Development of Software Fault-Tolerant Applications

with ADA95 Object-Oriented Support, Proceedings of the 1996 IEEE National

Aerospace and Electronics Conference, Vol. 2, 1996, pp. 519 - 526.

Eltefaat H. Shokri and Kam S. Tso, Ada95 Object-Oriented and Real-Time

Support for Development of Software Fault Tolerance Reusable Components,

51

[Shrivastava91]

[Simcox88]

[Simon90]

[Sims97]

[Spitzer86]

[Strom88]

[Subramanian89]

[Sullivan90]

[Sullivan95]

[Sundresh98]

[Suri95]

[Takano91]

[TaylorD80A]

[TaylorD80B]

Proceedingsof the 19962ndWorkshopon Object-OrientedReal-Time
DependableSystems,1996,pp.93- 100.

S.K.ShrivastavaandA. Waterworth,Using Objects and Actions to Provide

Fault Tolerance in Distributed, Real-Time Applications, Proceedings of the

Twelfth Real-Time Systems Symposium, December 1991, pp. 276 - 285.

L. N. Simcox, Software Fault Tolerance, Royal Signal and Radar Establislmaent,

Memorandum 4237, 90N12575, June 1988.

D. Simon, et al, A Software Fault Tolerance Experiment for Space Applications,

Digest of Papers Fault Tolerant Computing: 20 th International Symposium,

University of North Carolina at Chapel Hill, June 26 - 28, 1990, pp. 28 - 35.

J. Terry Sims, Redundancy Management Software Services for Seawolf Ship

Control System, Digest of Papers: Twenty-Seventh Annual International

Symposium on Fault-Tolerant Computing, Seattle, Washington, June 24 - 27,

1997, pp. 390 - 394.

Cary R. Spitzer, All-Digital Jets are Taking Off, IEEE Spectrum, September

1986, pp. 51 - 56.

Robert E. Strom, et al, Towards Self-Recovering Operating Systems,

Proceedings of the International Conference on Parallel Processing and

Applications, September 1987, pp. 475 - 483.

C. Subramanian and D.K. Subramanian, Performance Analysis of Voting

Strategies for a Fly-By-Wire System of a Fighter Aircraft, IEEE Transactions on

Automatic Control, Vol. 34, No. 9, September 1989, pp. 1018 - 1021.

Gregory F. Sullivan and Gerald M. Masson, Using Certification Trails to

Achieve Software Fault Tolerance, Digest of Papers FTCS-20: The Twentieth

International Symposium on Fault-Tolerant Computing, June 26 - 28, 1990, pp.
423 - 431.

Gregory F. Sullivan, et al, Certification of Computational Results, IEEE

Transactions on Computers, Vol. 44, No. 7, July 1995, pp. 833 - 847.

Tippure S. Sundresh, Software Hardening Unifying Software Reliability

Strategies, IEEE International Conference on Systems, Man, and Cybernetics,

San Diego, CA, October 11 - 14, 1998, pp. 4710 - 4715.

N. Suri, et al, Advances in Ultra-dependable Distributed Systems, IEEE

Computer Society Press, 1995.

Tadashi Takano, et al, Longlife Dependable Computers for Spacecraft, In

Dependable Computing for Critical Applications, Vol. 4, A. Avizienis, J.C.

Laprie, editors, 1991, pp. 153 - 173.

David J. Taylor, et al, Redundancy in Data Structures: Improving Software

Fault Tolerance, IEEE Transactions on Software Engineering, Vol. SE-6, No. 6,

November 1980, pp. 585 - 594.

David J. Taylor, et al, Redundancy in Data Structures: Some Theoretical

52

[TaylorR90]

[Tong88]

[Traverse91]

[Tso86]

[Tso87]

[Tso95]

[Vaidya93]

[Voas94]

[Voas98A]

[Voas98B]

[Vrsalovic90]

[Walter90]

[Watanabe92]

[Watanabe94]

Results, IEEE Transactions on Software Engineering, Vol. SE-6, No. 6,

November 1980, pp. 595 - 602.

R. C Taylor, et al, A Flexible Fault Tolerant Processor for Launch Vehicle

Avionics Systems, 9 thDigital Avionics Systems Conference, 1990, pp. 147 - 152.

Zhijun Tong and Richard Y. Kain, Vote Assignments in Weighted Voting

Mechanisms, Proceedings of the Seventh Symposium on Reliable Distributed

Systems, October 1988, pp. 138 - 143.

Pascal Traverse, Dependability of Digital Computers on Board Airplanes,

Dependable Computing for Critical Applications, Volume 4, A. Avizienis, J.C.

Laprie, editors, 1991, pp. 134 - 152.

Kam Sing Tso, Error Recovery in Multi-Version Software, Proceeding of the

Fifth IFAC Workshop, Safety of Computer Control Systems, October 1986, pp.
35 - 41.

Kam Sing Tso and Algirdas Avizienis, Community Error Recovery in N-Version

Software: A Design Study with Experimentation, Digest of Papers FTCS-17: The

Seventeenth International Symposium on Fault-Tolerant Computing, July 6 - 8,

1987, pp. 127 - 133.

K. S. Tso, et al, A Reuse Framework for Software Fault Tolerance, AIAA Paper

95-1012, 1995.

N. H. Vaidya, et al, Trade-Offs in Developing Fault Tolerant Software, IEE

Proceedings -E, Vol. 140, No. 6, November 1993, pp. 320 - 326.

Jeffrey M. Voas and Keith W. Miller, Dynamic Testability Analysis for

Assessing Fault Tolerance, High Integrity Systems Journal, Vol. 1, No. 2, 1994,

pp. 171 - 178.

Jeffrey M. Voas, Certifying Off-the-Shelf Software Components, IEEE

Computer, Vol. 31, June 1998, pp. 53 - 59.

Jeffrey M. Voas and Gary McGraw, Software Fault Injection: Inoculating

Programs Against Errors, John Wiley & Sons, Inc., 1998.

D. Vrsalovic, et al, Is it Possible to Quantify the Fault Tolerance of

Distributed�Parallel Computer Systems, Digest of Papers: 35 thIEEE Computer

Society International Conference - COMPCON Spring '90, 1990, pp. 219 -
225.

Chris J. Walter, Evaluation and Design of an Ultra-Reliable Distributed

Architecture for Fault Tolerance, IEEE Transactions on Reliability, Vol. 39, No.

4, October 1990, pp. 492 - 49.

Aki Watanabe, et al, The Multi-Layered Design Diversity Architecture:

Application of the Design Diversity Approach to Multiple System Layers,

Proceedings of the Ninth TRON Project Symposium, December 1992, pp. 116 -
121.

Aki Watanabe and Ken Sakamura, MLDD (Multi-Layered Design Diversity)

53

[Watanabe95]

[Webber91]

[Weinstock97]

[Wicker95]

[Williams88]

[Wu91]

[Wu94]

[Xu95A]

[Xu95B]

[Xu97]

[Xu99]

[Yau96]

[Yeh96]

Architecture for Achieving High Design Fault Tolerance Capabilities,

Dependable Computing - EDCC-1, Klaus Echtle, Dieter Hammer and David

Powell, editors, First European Dependable Computing Conference, October

1994, pp. 336 - 349.

Aki Watanabe and Ken Sakamura, Design Fault Tolerance in Operating

Systems Based on a Standardization Project, Digest of Papers: The Twenty-

Fifth International Symposium on Fault-Tolerant Computing, Pasadena, CA,

June 27 - 30, 1995, pp. 372 - 380.

Steve Webber and John Beirne, The Stratus Architecture, Digest of Papers

Fault-Tolerant Computing: The Twenty-First International Symposium,

Montreal, Canada, June 25 - 27, 1991, pp. 79 - 85.

Charles B. Weinstock and David P. Gluch, A Perspective on the State of

Research in Fault-Tolerant Systems, Software Engineering Institute, Special

Report CMU/SEI-97-SR-008, June 1997.

Stephen B. Wicker, Error Control Systems for Digital Communication and

Storage, Prentice Hall, 1995.

Ronald D. Williams, et al, An Operating System for a Fault-Tolerant

Multiprocessor Controller, IEEE Micro, Vol. 8, No. 4, August 1988, pp. 18 -
29.

Jie Wu, Software Fault Tolerance Using Hierarchical N-Version Programming,

IEEE Proceedings of the SOUTHEASTCON '91, 1991, pp. 124 - 128.

J. Wu, et al, A Uniform Approach to Software and Hardware Fault Tolerance,

Journal of Systems and Software, Vol. 26, No. 2, August 1994, pp. 117 - 127.

Jie Xu, et al, Fault Tolerance in Concurrent Object-Oriented Software Through

Coordinated Error Recovery, Digest of Papers: The Twenty-Fifth International

Symposium on Fault-Tolerant Computing, Pasadena, CA, June 27 - 30, 1995,

pp. 499 - 508.

J. Xu, et al, Toward an Object-Oriented Approach to Software Fault Tolerance,

Proceedings of the 1995 Conference on Fault Tolerant Parallel and Distributed

Systems, 1995, pp. 226 - 233.

Jie Xu and Brian Randell, Software Fault Tolerance: t/(n-1)-Variant

Programming, IEEE Transactions on Reliability, Vol. 46, No. 1, March 1997,

pp. 60 - 68.

J. Xu, et al, Rigorous Development of a Safety-Critical System Based on

Coordinated Atomic Actions, Digest of Papers: Twenty-Ninth Annual

International Symposium on Fault-Tolerant Computing, June 1999, pp. 68 - 75.

Stephen S. Yau, et al, Object-Oriented Software Development with Fault

Tolerance for Distributed Real-Time Systems, Proceedings of the 1996 2nd

Workshop on Object-Oriented Real-Time Dependable Systems (WORDS),

1996, pp. 160 - 167.

Y.C. Yeh, Triple-Triple Redundant 777 Primary Flight Computer, Proceedings

54

[Yen96]

[Yen97]

ofthe1996IEEEAerospaceApplicationsConference,Vol.1,1996,pp.293-
307.

I-Ling Yen,Specialized N-Modular Redundant Processors in Large-Scale

Distributed Systems, Proceedings of the 1996 15d' Symposium on Reliable

Distributed Systems, Ontario, Canada, pp. 12 - 21.

I-Ling Yen, An Object-Oriented Fault-Tolerance Framework Based on

Specialization Techniques, Proceedings of the 1997 3 'd International Workshop

on Object-Oriented Real-Time Dependable Systems (WORDS'97), 1997, pp.
291 - 297.

55

REPORT DOCUMENTATION PAGE Form ApprovedOMBNO.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 2000 Technical Memorandum

4. TITLE AND SUBTITLE

Software Fault Tolerance: A Tutorial

6. AUTHOR(S)

Wilfredo Torres-Pomales

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

9.SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 522-61-21-03

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-18034

10. SPONSORING/MONITORING

AGENCYREPORTNUMBER

NASA/TM-2000-210616

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61 Distribution: Nonstandard

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Because of our present inability to produce error-free software, software fault tolerance is and will continue to be

an important consideration in software systems. The root cause of software design errors is the complexity of
the systems. Compounding the problems in building correct software is the difficulty in assessing the

correctness of software for highly complex systems. After a brief overview of the software development
processes, we note how hard-to-detect design faults are likely to be introduced during development and how

software faults tend to be state-dependent and activated by particular input sequences. Although component
reliability is an important quality measure for system level analysis, software reliability is hard to characterize

and the use of post-verification reliability estimates remains a controversial issue. For some applications
software safety is more important than reliability, and fault tolerance techniques used in those applications are

aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system
structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion

techniques are based on the assumption that software built differently should fail differently and thus, if one of

the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable
output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

14. SUBJECT TERMS

Software fault tolerance; Reliablity; Safety; Software engineering

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

66

16. PRICE CODE

A04

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z-39-18
298-102

