
1

A case study: SIFT

From: D.P. Siewiorek, R. S. Swarz

Reliable Computer Systems (Design and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysis of a Fault Tolerant

Computer for Aircraft Control”.

2

SIFT
SIFT (Software Implemented Fault Tolerance)

is a Fault-Tolerant Computer for Aircraft Control

“a system capable of carrying out the calculations required
for the control of an advanced commercial transport aircraft”

 developed for NASA as an experimental case study for fault tolerant
system research

The safety of the flight depends on the computer functions (controls

derived from computer outputs).

Reliability requirement:

probability of failure less than 10-9 per hour in a flight of ten hours'

duration.

Reliability requirement similar to that demanded for manned space-

flight systems.

3

SRI International (founded as Stanford Research Institute):

responsable of the overall design, the software and the

testing

 Bendix Corporation: reponsable for the design and the

construction of the hardware.

SIFT was delivered to NASA's Avionics Integration Research

Laboratory in April 1982 (1978-1982).

4

The SIFT effort began with broad, in-depth, studies stating

the reliability and processing requirements for digital

computers which would control flight-critical functions.

Detailed design studies were made of fault-tolerant

architectures that could meet reliability and processing

requirements.

5

SIFT

• A major objective of the SIFT design was to
reduce the hardware failure rate by
implementing as much of the system as possible
in software (i.e., keeping the hardware
component count to a minimum).

• This software-intensive design philosophy
deliberately sacrificed performance to maximize
reliability. It was implicitly assumed that failure
due to software error would be eliminated by
formal proof of correctness.

6

- Fully distributed configuration of Bendix BDX930 processors

- Transparent fault tolerance (hw and sw replication and voting)

- Assignment of tasks to processors predetermined by a task schedule
table defined by the designer

- As processors fail, the available hardware changes (reconfiguration),
and a new task schedule is defined

- Processor synchronization fundamental to the correct functioning

- The decision to reconfigure is based on error information obtained
when replicated data are voted

SIFT

7

Fault tolerance includes:

 - error detection and correction,

 - diagnosis,

 - reconfiguration, and

 - the prevention of a faulty unit from having an adverse effect on the
system

- Use of a Consensus algorithm to tolerate “malicious processes”
failure modes.

- Two level of authority:

- The “local executive” software contains procedures that support
scheduling, voting and communications

- The “global executive” software consists of tasks that cooperate to
provide synchronization, redundancy management, (fault isolation and
reconfiguration) and interactive consistency.

SIFT

8

System overview
Main processors:

Computing is carried out by the main processors. Each processor's results
are stored in a main memory that is uniquely associated with the processor.

 A processor and its memory are connected by a conventional high bandwidth
connection.

I/O processors:
The I/O processors and memories are structurally similar to the main
processors and memories but are of much smaller computational and
memory capacity. They connect to the input and output units of the system
which are the sensors and actuators of the aircraft.

Processing module:
Each processor and its associated memory form a processing module, and
each of the modules is connected to a multiple bus system.

The SIFT design approach makes no assumptions about the failure modes,
distinguishing only between failed and nonfailed units.

The unit of fault detection and of reconfiguration in SIFT is a processor/memory
module or a bus.

9

Structure of SIFT hardware

D.P. Siewiorek, R. S. Swarz

Reliable Computer Systems

(Design and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysis

 of a Fault Tolerant Computer for Aircraft Control”.

smaller computational

 and memory capacity

multiple bus system connect

processing modules

unit of fault detection

and of reconfiguration:

processing module

or the bus

10

System overview: execution of tasks

 The SIFT system executes a set of tasks, each of which consists of a

sequence of iterations.

The input data to each iteration of a task are the output data

produced by the previous iteration of some collection of tasks

(which may include the task itself).

 The input and output of the entire system is accomplished by tasks

executed in the I/O processors.

 Reliability is achieved by having each iteration of a task

independently executed by a number of modules.

 After executing the iteration, a processor places the iteration's output

in the memory associated with the processor.

11

System overview: synchronization

SIFT uses the iterative nature of the tasks to economize on the amount of
voting by

 voting on the state data of the aircraft (or the computer
 system) only at the beginning of each iteration.

 We must ensure only that the different processors allocated to a task
are executing the same iteration. This means that the processors need be
only loosely synchronized, so we do not need tight synchronization to the
instruction or clock interval.

An important benefit of this loose synchronization is that an iteration of a task
can be scheduled for execution at slightly different times by different
processors.

 Simultaneous transient failures of several processors will be less likely to
produce correlated failures in the replicated versions of a task.

12

System overview: task replication

The number of processors executing a task

1) can vary with the task
a non critical task may be simplex;
critical tasks may be replicated (3 or 5 replicas)

 2) can be different for the same task at different times—for example,
if a task that is not critical at one time becomes critical at another time.

The allocation of tasks to modules is, in general, different for each
module.

It is determined dynamically by a task called the global executive, which
diagnoses errors to determine which modules and buses are faulty.

When the global executive decides that a module has become faulty, it
reconfigures the system by appropriately changing the allocation of
tasks to modules.

13

Fault isolation

1) Damage isolation
preventing physical damage from spreading beyond
carefully prescribed boundaries.

Techniques for damage isolation include physical barriers to
prevent propagation of mechanical and thermal effects
and electrical barriers (for example, high-impedance
electrical connections and optical couplers).

In SIFT, such damage isolation is provided at the boundaries
between processing modules and buses.

14

Fault isolation

2) Protection against the corruption of data
 provided in SIFT by the way in which units can communicate

- A processing module can read data from any processing module's memory,

but it can write only into its own memory.

- Thus a faulty processor can corrupt the data only in its own memory and not
in that of any other processing modules.

- All faults within a module are treated as if they have the same effect:
namely, that they produce bad data in that module's memory.

 The system does not attempt to distinguish the nature of a module fault. In
particular, it does not distinguish between a faulty memory and a processor
that puts bad data into an otherwise nonfaulty memory.

- A processor can obtain bad data if those data are read from a faulty processing
module or over a faulty bus. Preventing these bad data from causing the
generation of incorrect results is solved by fault masking (voting).

15

An abstract view
of data transfer

Connections among processors,

buses, and memories.

Within each unit are shown a

number of abstract registers that

contain data or control

information.

Arrows that terminate at a

register indicate the flow of data

to the register.

Arrows that terminate at the

boundary of a unit indicate

control signals for that unit.

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems (Design and and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”.

16

The SIFT system attempts to use standard units whenever possible.
Special design is needed only in the bus system and in the interfaces
between the buses and the processing modules:

 - the processor-to-bus interfaces,

 - the bus-to-memory interfaces.

The design of the interfaces permits simultaneous operation of all units.

For example, a processor can simultaneously read data from its memory

and from another memory, while at the same time another processor is

reading from the first processor's memory.

17

Fault isolation

3) Fault isolation also requires that invalid control signals not
produce incorrect behavior in a nonfaulty unit.

In general, a faulty set of control signals can cause two types of faulty
behavior in another unit:

 (1) The unit carries out the wrong action (possibly by doing
 nothing), and

 (2) the unit does not provide service to other units.

In SIFT these two types of fault propagation are prevented by making
each unit autonomous, with its own control. Improper control
signals are ignored, and time-outs are used to prevent the unit from
hanging up, waiting for a signal that never arrives.

18

Scheduling
The types of timing requirements on the SIFT system:

• Output to the actuators must be generated with specified frequency.

• The delay between the reading of sensors and the generation of output to
the actuators based upon those readings must be kept below specified
limits.

To fulfill these requirements, an iteration rate is specified for each task. The
scheduling strategy must guarantee that the processing of each iteration of
the task will be completed within the time frame of that iteration. It does not
matter when the processing is performed, provided that it is completed by the
end of the frame.

Moreover, the time needed to execute an iteration of a task is highly
predictable. The iteration rates required by different tasks differ, but they can
be adjusted somewhat to simplify the scheduling.

The scheduling strategy chosen for the SIFT system is a slight variant of the
simply periodic method.

19

Processor synchronization

The SIFT intertask and interprocessor communication

mechanism allows a degree of asynchronism between

processors. However the processors must periodically

resynchronize their clocks to ensure that no clock drifts

too far from any other.

20

Processor synchronization
The traditional clock synchronization algorithm for reliable systems is the median

clock algorithm, requiring at least three clocks.

 In this algorithm, each clock observes every other clock and sets itself to the
median of the values that it sees.

The justification for this algorithm is that, in the presence of only a single fault,
either the median value must be the value of one of the valid clocks (case 1,
case 2) or else it must lie between a pair of valid clock values (case 3). In
either case, the median is an acceptable value for resynchronization.

 Clock A, Clock B, Clock C: faulty

 1) C < A, B

 2) C> A, B

 3) A < C < B

The weakness of this algorithm is the Byzantine fault, that may
cause other clocks to observe different values for the failing
clock

21

Processor synchronization (Consensus problem)

 In the presence of a fault that results in other clocks seeing different
values for the failing clock, the median resynchronization algorithm
can lead to a system failure.

 Consider a system of three clocks A, B, and C, of which C is faulty. Assume
clock A < clock B. Assume the failure mode of clock C is such that clock A
sees a value for clock C that is slightly earlier than its own value, while clock
B sees a value for clock C that is slightly later than its own value (Byzantine
faults).

 Clock C: faulty

 A:10 B: 20 C: 8 -> Clock A=10

 A:10 B:20 C: 22 -> Clock B=20

 Median clock algorithm:

 Clock A=10 Clock B= 20

 Clocks A and B will both see their own value as the median value, and
therefore not change it.

 To synchronise clocks a Consensus algorithm is applied.

22

The software system

The software of SIFT consists of the application software and the
executive software.

The application software performs the actual flight-control
computations.

The executive software is responsible for the reliable execution of the

 - application tasks and implements

 - the error-detection and reconfiguration mechanisms.

Formal specifications of the executive software have been written in
a rigorous form using the SPECIAL language [Robinson and Roubine,
1977] developed at SRI.

These formal specifications are needed for the proof of the correctness
of the system. Moreover, they are also intended to force the designer
to produce a well-structured system.

23

Logical structure of the SIFT software system

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems (Design and and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”.

From the point of view of the software, a processing module, with its
processor, memory, and associated registers, is a single logical unit.

24

Application software
The application software is structured as a set of iterative tasks.

A task is executed by several processors; this fact is invisible to the
application software.

In each iteration, an application task obtains its inputs by executing calls to
the executive software.

After computing its outputs, it makes them available as inputs to the next
iteration of tasks by executing calls to the executive software.

The input and output of a task iteration will consist of at most a few words
of data.

25

Executive software
Performs the following functions:

1. Run each task at the required iteration rate.

2. Provide correct input values for each iteration of a critical task
(masking any errors).

3. Detect errors and diagnose their cause.

4. Reconfigure the system to avoid the use of failed components.

To perform the last three functions, the executive software
implements the techniques of redundant execution and
majority voting.

The executive software is structured into three parts: the global
executive task, the local executive, and the local-global
communicating tasks.

26

Arrangement of application tasks
within SIFT configuration

critical tasks

are replicated

on several

processors

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems (Design and and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”.

27

Executive software

One global executive task is provided for the whole system.
It is run just like a highly critical application task, being executed by
several processors and using majority voting to obtain the output of
each iteration. It diagnoses errors to decide which units have failed
and determines the appropriate allocation of tasks to processors.

Each processing module has its own local executive and local-
global communicating tasks.

The local-global communicating tasks are the error-reporting task and
the local reconfiguration task.

 Each of these tasks is regarded as a separate task executed on a single
processor, so there are as many separate error-reporting tasks
and local reconfiguration tasks as there are processors.

28

Arrangement of executive tasks
within SIFT configuration

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems (Design and and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”.

29

The Global Executive Task: reconfiguration

The global executive task uses the results of every processor's error task
to determine which processing modules and buses are faulty.

When the global executive decides that a component has failed, it
initiates a reconfiguration by sending the appropriate information to
the local reconfiguration task of each processor.

The global executive may also reconfigure the system as a result of
directives from the application tasks. For example, an application task
may report a change of flight phase that changes the criticality of
various tasks.

30

The Local Executive.

The local executive is a collection of routines to perform the following

functions:

(1) run each task allocated to it at the task's specified iteration rate;

(2) provide input values to and receive output values from each task

iteration; and

(3) report errors to the local executive task.

31

Fault Detection
Fault detection is the analysis of errors to determine which components are

faulty.

Processor/bus error table, an m by n matrix, where m is the number of
processors and n the number of buses in the system.

Each processor p has its own processor/bus error table Xp that is maintained
by its local executive's error handler.

Xp[i,j] represents the number of errors detected by processor p's local
 executive that involve processor i and bus j.

Suppose that processor p is reading from processor i using bus j.

There are five distinct kinds of errors:

1. The connection from bus j to processor i is faulty.

2. The connection from processor p to bus j is faulty.

3. Bus j is faulty.

4. Processor i is faulty.

5. Processor p is faulty.

32

Fault Detection
Processor p's error-reporting task analyzes the processor/bus error table

If the number of errors is greater than a given threshold, an appropriate action
can be taken.

 In case 1, processor p will stop using bus j to talk to processor i.

 In cases 2 and 3, processor p will stop using bus j, and will report to the
global executive that bus j is faulty.

 In case 4, processor p will report to the global executive that processor i is
faulty.

The global executive task makes the final decision about which unit is
faulty.

It reads the faulty processor reports provided by the error-reporting task.
- if two or more processors report that another processor is faulty, then
the global executive decides that this other processor has indeed failed.

- if two or more processors report that a bus is faulty, then the global
executive decides that the bus has failed.

33

Fault Detection

It can be shown that in the presence of a single fault, the above
procedure cannot cause the global executive to declare a
nonfaulty unit to be faulty.

 With the appropriately malicious behavior, a faulty unit may generate
error reports without giving the global executive enough information to
determine that it is faulty.

 For example, if processor p fails in such a way that it gives incorrect
results only to processor q, then the global executive cannot decide
whether it is p or q that is faulty.

 However, the majority-voting technique will mask these errors and
prevent a system failure.

34

Reliability prediction

Reliability requirement is that the probability of failure should be less
than 10-9 per hour in a flight of 10 hours' duration.

High reliability of survival for a short period time (10-hour flight).

For a flight of T duration survival will occurr unless certain combination of
failure events occurr within the interval T or have already occurred
prior to the interval T and were undetected by the initial checkout of
the system.

Show that the probability of a more catastrophic sequence of failures is
sufficient small.

Finite state Markov process. The combined probability of all event
sequences that lead to a failed state is the system failure probability.
Failure rate of 10-9 for a 10-hour period T

35

Assumptions:

 - Hardware-fault events are independent and exponentialy distributed in time
(constant failure rate)

 - All failures are permanent for the duration of the flight

Accurate because:
- the physical design of the system prevents fault propagation between
functional units

 - a mutiple fault in a functional unit is no more serious than a single fault

Effects of transient errors are masked by the executive system which requires a
unit to make multiple errors before it consideres the unit to be faulty.

The execution of critical tasks in loose synchronism also helps protect against
correlation of fast transient errors.

Failure rates for hardware have been estimated on the basis of active component
counts, using typical figures for similar hardware :
 main processors 10-4 per hour failure rate

36

State of the system in the reliability model (h, d, f) with h<=d<=f

(h, d, f) represents a situation in which:

f failures of individual components have occurred

d of those failures have been detected

h of these detected failures have been handled in reconfiguration

Three types of possible transitions:

The first two types of transitions are represented by straight arrorws (costant

probabilities for unit of time)

The third type of transition is represented by wave arrows, represents the

completion of a reconfiguration procedure.

(these transitions are assumed to occurr within some fixed length of time t)

37

D.P. Siewiorek, R. S. Swarz

Reliable Computer Systems

(Design and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysis

 of a Fault Tolerant Computer for Aircraft Control”.

38

A state (h,d,f) with h<d represents a situation in which the system is
reconfiguring.

 In make the system immune to an additional failure while in this state is
a difficult problem because it means that the procedure to reconfigure
around a failure must work despite an additional undetected failure.

Instead of solving this problem, designers took the approach of trying to

 ensure that the time t that the system remains in such state is small
enough to make it highly unlikely for an additional failure to occurr
before reconfiguration is completed.

They made the pessimistic assumption that a process failure that occurs
while the system is reconfiguring will cause a system failure.

39

Designers calculated the probability of system failure through a double-

fault transition and also through reaching a state with fewer than two

nonfaulty processors, for which they said the system has failed

because it has run out of spares.

Failure probabilitie for a 5 processor system and T= 10 hours

D.P. Siewiorek, R. S. Swarz

Reliable Computer Systems

(Design and Evaluation) Prentice Hall, 1998.

Chapter 10 – “The SIFT Case: Design and Analysis

 of a Fault Tolerant Computer for Aircraft Control”.

40

Summary
SIFT basic approach to fault tolerance involves the replication of standard

components, relying upon the software to detect and analyze errors and to
dyamically reconfigure the system to bypass faulty units.

Special hardware is needed only to isolate the units from one another, so a
faulty unit does not cause the failure of a nonfaulty one.

Processor/memory modules and bus modules as the basic units of fault
detection and reconfiguration have been used. These units make system
reconfiguration easy and are small and inexpensive enough to allow
sufficient replication to achieve the desired reliability.

By using software to achieve fault tolerance, SIFT allows considerable
flexibility in the choice of error handling policies and mechanisms.

For example, algorithms for fault masking and reconfiguration can be easily
modified on the basis of operational experience.

Novel approaches to the tolerance of programming errors can be incorporated.
Moreover, it is fairly easy to enhance the performance of the system by
adding more hardware.

