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SIFT 
SIFT (Software Implemented Fault Tolerance)  

is a Fault-Tolerant Computer for Aircraft Control 

 

“a system capable of carrying out the calculations required 
for the control of an advanced commercial transport aircraft”   

  developed for NASA as an experimental case study  for fault tolerant  
system research 

 

 

 

The safety of the flight depends on the computer functions (controls 

derived from computer outputs).  

 

Reliability requirement:  

probability of failure less than 10-9 per hour in a flight of ten hours' 

duration.  

 

Reliability requirement similar to that demanded for manned space-

flight systems. 
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SRI International (founded as Stanford Research Institute): 

responsable of the overall design, the software and the 

testing 

 

 Bendix Corporation: reponsable for the design and the 

construction of the hardware.  

 

SIFT was delivered to NASA's Avionics Integration Research 

Laboratory in April 1982 (1978-1982). 
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The SIFT effort began with broad, in-depth, studies stating 

the reliability and processing requirements for digital 

computers which would control flight-critical functions. 

 

Detailed design studies were made of fault-tolerant 

architectures that could meet reliability and processing 

requirements. 
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SIFT 

• A major objective of the SIFT design was to 
reduce the hardware failure rate by 
implementing as much of the system as possible 
in software (i.e., keeping the hardware 
component count to a minimum).  

 

• This software-intensive design philosophy 
deliberately sacrificed performance to maximize 
reliability. It was implicitly assumed that failure 
due to software error would be eliminated by 
formal proof of correctness. 
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- Fully distributed configuration of Bendix BDX930 processors  
 

- Transparent fault tolerance (hw and sw replication and voting) 

 

- Assignment of tasks to processors predetermined by a task schedule 
table defined by the designer 

 

- As processors fail, the available hardware changes (reconfiguration), 
and a new task schedule is defined 

 

- Processor synchronization fundamental to the correct functioning 

 

- The decision to reconfigure is based on error information obtained 
when replicated data are voted 

 

SIFT 
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Fault tolerance includes: 

 - error detection and correction,  

 - diagnosis,  

 - reconfiguration, and  

 - the prevention of a faulty unit from having an adverse effect on the 
system 

 

- Use of a Consensus algorithm to tolerate “malicious processes”  
failure modes. 

 

- Two level of authority: 

- The “local executive” software contains procedures that support 
scheduling, voting and communications 

 

- The “global executive” software consists of tasks that cooperate to 
provide synchronization, redundancy management, (fault isolation and 
reconfiguration) and interactive consistency.  

 

SIFT 
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System overview 
Main processors: 

Computing is carried out by the main processors. Each processor's results 
are stored in a main memory that is uniquely associated with the processor.  

 A processor and its memory are connected by a conventional high bandwidth 
connection.  

 

I/O processors: 
The I/O processors and memories are structurally similar to the main 
processors and memories but are of much smaller computational and 
memory capacity. They connect to the input and output units of the system 
which are the sensors and actuators of the aircraft. 

 

Processing module:  
Each processor and its associated memory form a processing module, and 
each of the modules is connected to a multiple bus system. 

 

The SIFT design approach makes no assumptions about the failure modes, 
distinguishing only between failed and nonfailed units.  
 
The unit of fault detection and of reconfiguration in SIFT is a processor/memory 
module or a bus. 
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Structure of SIFT hardware 

D.P. Siewiorek, R. S. Swarz  

Reliable Computer Systems  

(Design and Evaluation) Prentice Hall, 1998.   

Chapter 10 –  “The SIFT Case: Design and Analysis 

 of a Fault Tolerant Computer for Aircraft Control”. 

smaller computational 

 and memory capacity 

multiple bus system connect  

processing modules 

unit of fault detection  

and of reconfiguration: 

processing  module  

or the bus 
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System overview: execution of tasks 

 The SIFT system executes a set of tasks, each of which consists of a 

sequence of iterations. 

 

The input data to each iteration of a task are the output data 

produced by the previous iteration of some collection of tasks 

(which may include the task itself).  

 

 The input and output of the entire system is accomplished by tasks 

executed in the I/O processors. 

 

 Reliability is achieved by having each iteration of a task 

independently executed by a number of modules.  

 After executing the iteration, a processor places the iteration's output 

in the memory associated with the processor. 
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System overview: synchronization 

SIFT uses the iterative nature of the tasks to economize on the amount of 
voting by  

  

   voting on the state data of the aircraft (or the computer  
  system)  only at the beginning of each iteration. 

 

 

  We must ensure only that the different processors allocated to a task 
are executing the same iteration. This means that the processors need be 
only loosely synchronized, so we do not need tight synchronization to the 
instruction or clock interval. 

 

An important benefit of this loose synchronization is that an iteration of a task 
can be scheduled for execution at slightly different times by different 
processors. 

 

 Simultaneous transient failures of several processors will be less likely to 
produce correlated failures in the replicated versions of a task. 
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System overview: task replication 

The number of processors executing a task  

1)  can vary with the task  
a non critical task may be simplex;  
critical tasks may be replicated (3 or 5 replicas) 

 2)  can be different for the same task at different times—for example,  
if a task that is not critical at one time becomes critical at another time.  

 

The allocation of tasks to modules is, in general, different for each 
module.  

 

It is determined dynamically by a task called the global executive, which 
diagnoses errors to determine which modules and buses are faulty.  

 

When the global executive decides that a module has become faulty, it 
reconfigures the system by appropriately changing the allocation of 
tasks to modules.  
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Fault isolation 

1) Damage isolation 
preventing physical damage from spreading beyond 
carefully prescribed boundaries.  

 

Techniques for damage isolation include physical barriers to 
prevent propagation of mechanical and thermal effects 
and electrical barriers (for example, high-impedance 
electrical connections and optical couplers).  

 

In SIFT, such damage isolation is provided at the boundaries 
between processing modules and buses. 
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Fault isolation 

2) Protection against the corruption of data  
  provided in SIFT by the way in which units can communicate 

 
- A processing module can read data from any processing module's memory, 

but it can write only into its own memory.  

- Thus a faulty processor can corrupt the data only in its own memory and not 
in that of any other processing modules.  

 

- All faults within a module are treated as if they have the same effect: 
namely, that they produce bad data in that module's memory. 

 

 The system does not attempt to distinguish the nature of a module fault. In 
particular, it does not distinguish between a faulty memory and a processor 
that puts bad data into an otherwise nonfaulty memory. 

 

-  A processor can obtain bad data if those data are read from a faulty processing 
module or over a faulty bus. Preventing these bad data from causing the 
generation of incorrect results is solved by fault masking (voting). 
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An abstract view  
of data transfer 

Connections among processors, 

buses, and memories. 

 

Within each unit are shown a 

number of abstract registers that 

contain data or control 

information. 

 

Arrows that terminate at a 

register indicate the flow of data 

to the register.  

 

Arrows that terminate at the 

boundary of a unit indicate 

control signals for that unit. 

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems  (Design and and Evaluation) Prentice Hall, 1998.  

Chapter 10 –  “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”. 
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The SIFT system attempts to use standard units whenever possible. 
Special design is needed only in the bus system and in the interfaces 
between the buses and the processing modules: 

  - the processor-to-bus interfaces,  

 - the bus-to-memory interfaces.  

 

The design of the interfaces permits simultaneous operation of all units. 

For example, a processor can simultaneously read data from its memory 

and from another memory, while at the same time another processor is 

reading from the first processor's memory.  
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Fault isolation 

3) Fault isolation also requires that invalid control signals not 
produce incorrect behavior in a nonfaulty unit.  

 

In general, a faulty set of control signals can cause two types of faulty 
behavior in another unit: 

    (1) The unit carries out the wrong action (possibly by doing  
   nothing), and  

    (2) the unit does not provide service to other units. 

 

In SIFT these two types of fault propagation are prevented by making 
each unit autonomous, with its own control. Improper control 
signals are ignored, and time-outs are used to prevent the unit from 
hanging up, waiting for a signal that never arrives.  
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Scheduling 
The types of timing requirements on the SIFT system: 

• Output to the actuators must be generated with specified frequency. 

• The delay between the reading of sensors and the generation of output to 
the actuators based upon those readings must be kept below specified 
limits. 

 

To fulfill these requirements, an iteration rate is specified for each task. The 
scheduling strategy must guarantee that the processing of each iteration of 
the task will be completed within the time frame of that iteration. It does not 
matter when the processing is performed, provided that it is completed by the 
end of the frame.  

 

Moreover, the time needed to execute an iteration of a task is highly 
predictable. The iteration rates required by different tasks differ, but they can 
be adjusted somewhat to simplify the scheduling. 

 

The scheduling strategy chosen for the SIFT system is a slight variant of the 
simply periodic method. 
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Processor synchronization 

The SIFT intertask and interprocessor communication 

mechanism allows a degree of asynchronism between 

processors. However the processors must periodically 

resynchronize their clocks to ensure that no clock drifts 

too far from any other. 
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Processor synchronization 
The traditional clock synchronization algorithm for reliable systems is the median 

clock algorithm, requiring at least three clocks.  

 

 In this algorithm, each clock observes every other clock and sets itself to the 
median of the values that it sees.  

 

The justification for this algorithm is that, in the presence of only a single fault, 
either the median value must be the value of one of the valid clocks  (case 1, 
case 2) or else it must lie between a pair of valid clock values (case 3). In 
either case, the median is an acceptable value for resynchronization.  

     Clock A,  Clock B,  Clock C: faulty     

     1)  C < A, B   

     2)  C> A, B        

     3)  A < C < B    

 

The weakness of this algorithm is the Byzantine fault, that may 
cause other clocks to observe different values for the failing 
clock 
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Processor synchronization (Consensus problem) 

 In the presence of a fault that results in other clocks seeing different 
values for the failing clock, the median resynchronization algorithm 
can lead to a system failure.  

 Consider a system of three clocks A, B, and C, of which C is faulty. Assume 
clock A < clock B.  Assume the failure mode of clock C is such that clock A 
sees a value for clock C that is slightly earlier than its own value, while clock 
B sees a value for clock C that is slightly later than its own value (Byzantine 
faults).  

    Clock C: faulty 

    A:10 B: 20 C: 8  -> Clock A=10  

    A:10 B:20 C: 22 -> Clock B=20     

 Median clock algorithm: 

 Clock A=10   Clock B= 20 

    

 Clocks A and B will both  see their own value as the median value, and 
therefore not change it. 

 

 To synchronise clocks a Consensus algorithm is applied. 
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The software system 

The software of SIFT consists of the application software and the 
executive software.  

 

The application software performs the actual flight-control 
computations. 

  

The executive software is responsible for the reliable execution of the  

  -   application tasks and implements  

 -    the error-detection and reconfiguration mechanisms. 
 

Formal specifications of the executive software have been written in 
a rigorous form using the SPECIAL language [Robinson and Roubine, 
1977] developed at SRI.  

 

These formal specifications are needed for the proof of the correctness 
of the system. Moreover, they are also intended to force the designer 
to produce a well-structured system.  
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Logical structure of the SIFT software system 

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems  (Design and and Evaluation) Prentice Hall, 1998.  

Chapter 10 –  “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”. 

 

From the point of view of the software, a processing module, with its 
processor, memory, and associated registers, is a single logical unit.  
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Application software 
The application software is structured as a set of iterative tasks.  

 

A task is executed by several processors; this fact is invisible to the 
application software. 

 

In each iteration, an application task obtains its inputs by executing calls to 
the executive software. 

 

After computing its outputs, it makes them available as inputs to the next 
iteration of tasks by executing calls to the executive software.  

 

The input and output of a task iteration will consist of at most a few words 
of data. 
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Executive software 
Performs the following functions: 

1. Run each task at the required iteration rate. 

2. Provide correct input values for each iteration of a critical task 
(masking any errors). 

3. Detect errors and diagnose their cause. 

4. Reconfigure the system to avoid the use of failed components. 

 

To perform the last three functions, the executive software 
implements the techniques of redundant execution and  
majority voting.  

 

The executive software is structured into three parts: the global 
executive task, the local executive, and the local-global 
communicating tasks. 
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Arrangement of application tasks 
within SIFT configuration 

critical tasks  

are replicated  

on several  

processors 

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems  (Design and and Evaluation) Prentice Hall, 1998.  

Chapter 10 –  “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”. 
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Executive software 

One global executive task is provided for the whole system.  
It is run just like a highly critical application task, being executed by 
several processors and using majority voting to obtain the output of 
each iteration. It diagnoses errors to decide which units have failed 
and determines the appropriate allocation of tasks to processors. 

 

Each processing module has its own local executive and local-
global communicating tasks. 

 

The local-global communicating tasks are the error-reporting task and 
the local reconfiguration task. 

 Each of these tasks is regarded as a separate task executed on a single 
processor, so there are as many separate error-reporting tasks 
and local reconfiguration tasks as there are processors. 
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Arrangement of executive tasks 
within SIFT configuration 

D.P. Siewiorek, R. S. Swarz Reliable Computer Systems  (Design and and Evaluation) Prentice Hall, 1998.  

Chapter 10 –  “The SIFT Case: Design and Analysisof a Fault Tolerant Computer for Aircraft Control”. 
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The Global Executive Task: reconfiguration 

The global executive task uses the results of every processor's error task 
to determine which processing modules and buses are faulty.  

 

 

When the global executive decides that a component has failed, it 
initiates a reconfiguration by sending the appropriate information to 
the local reconfiguration task of each processor.  

 

 

The global executive may also reconfigure the system as a result of 
directives from the application tasks. For example, an application task 
may report a change of flight phase that changes the criticality of 
various tasks. 
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The Local Executive. 

The local executive is a collection of routines to perform the following 

functions:  

(1) run each task allocated to it at the task's specified iteration rate;  

(2) provide input values to and receive output values from each task 

iteration; and  

(3) report errors to the local executive task.  
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Fault Detection 
Fault detection is the analysis of errors to determine which components are 

faulty.   

Processor/bus error table, an m by n matrix, where m is the number of 
processors and n the number of buses in the system.  

Each processor p has its own processor/bus error table Xp that is maintained 
by its local executive's error handler.  

 

Xp[i,j]   represents the number of errors detected by processor p's local  
  executive that involve processor i and bus j. 

 

Suppose that processor p is reading from processor i using bus j.  

There are five distinct kinds of errors: 

1. The connection from bus j to processor i is faulty. 

2. The connection from processor p to bus j is faulty. 

3. Bus j is faulty. 

4. Processor i is faulty. 

5. Processor p is faulty. 
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Fault Detection 
Processor p's error-reporting task analyzes the processor/bus error table 

 

If the number of errors is greater than a given threshold, an appropriate action 
can be taken. 

 In case 1, processor p will stop using bus j to talk to processor i.  

 In cases 2 and 3, processor p will stop using bus j, and will report to the 
global executive that bus j is faulty.  

 In case 4, processor p will report to the global executive that processor i is 
faulty. 

 

The global executive task makes the final decision about which unit is 
faulty.  

 

It reads the faulty processor reports provided by the error-reporting task.  
- if two or more processors report that another processor is faulty, then 
the global executive decides that this other processor has indeed failed. 

  
- if two or more processors report that a bus is faulty, then the global 
executive decides that the bus has failed. 
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Fault Detection 

 

It can be shown that in the presence of a single fault, the above 
procedure cannot cause the global executive to declare a 
nonfaulty unit to be faulty.  

 

 With the appropriately malicious behavior, a faulty unit may generate 
error reports without giving the global executive enough information to 
determine that it is faulty.  

 

 For example, if processor p fails in such a way that it gives incorrect 
results only to processor q, then the global executive cannot decide 
whether it is p or q that is faulty.  

 

 However, the majority-voting technique will mask these errors and 
prevent a system failure. 
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Reliability prediction 

Reliability requirement is  that the probability of failure  should be less 
than 10-9 per hour  in a flight of 10 hours' duration. 

High reliability of survival for a short period time (10-hour flight). 

 

For a flight of T duration survival will occurr unless certain combination of 
failure events occurr within the interval T or have already occurred 
prior to the interval T and were undetected by the initial checkout of 
the system. 

 

Show that the probability of a more catastrophic sequence of failures is 
sufficient small. 

 

Finite state Markov process. The combined probability of all event 
sequences that lead to a failed state is the system failure probability. 
Failure rate of 10-9 for a 10-hour period T 



35 

Assumptions: 

 - Hardware-fault events are independent and exponentialy distributed in time 
(constant failure rate) 

 - All failures are permanent for the duration of the flight 

 

Accurate because: 
- the physical design of the system prevents fault propagation between 
functional units  

 - a mutiple fault in a functional unit is no more serious than a single fault 

 

Effects of transient errors are masked by the executive system which requires a 
unit to make multiple errors before it consideres the unit to be  faulty. 

 

The execution of critical tasks in loose synchronism also helps protect against 
correlation of fast transient errors.  

 

Failure rates for hardware have been estimated on the basis of active component 
counts, using typical figures for similar hardware :  
  main processors 10-4 per hour failure rate 
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State of the system in the reliability model (h, d, f) with h<=d<=f 

 

(h, d, f) represents a situation in which: 

f failures of individual components have occurred 

d of those failures have been detected 

h of these detected failures have been handled in reconfiguration 

Three types of possible transitions: 

The first two types of transitions are represented by straight arrorws (costant 

probabilities for unit of time) 

The third type of transition is represented by wave arrows, represents the 

completion of a reconfiguration procedure.  

(these transitions are assumed to occurr within some fixed length of time t) 
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A state (h,d,f) with h<d represents a situation in which the system is 
reconfiguring. 

 

 In make the system immune to an additional failure while in this state is 
a difficult problem because it means that the procedure to reconfigure 
around a failure must work despite an additional undetected failure.  

Instead of solving this problem, designers took the approach of trying to  

 ensure that the time t that the system remains in such state is small 
enough to make it highly unlikely for an additional failure to occurr 
before reconfiguration is completed.  
 

They made the pessimistic assumption that a process failure that occurs 
while the system is reconfiguring will cause a system failure.      
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Designers calculated the probability of system failure through a double-

fault transition and also through reaching a state with fewer than two 

nonfaulty processors, for  which they said the system has failed 

because it has run out of spares.  

 

Failure probabilitie for a 5 processor system and T= 10 hours 

D.P. Siewiorek, R. S. Swarz  

Reliable Computer Systems  

(Design and Evaluation) Prentice Hall, 1998.   

Chapter 10 –  “The SIFT Case: Design and Analysis 

 of a Fault Tolerant Computer for Aircraft Control”. 
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Summary  
SIFT basic approach to fault tolerance involves the replication of standard 

components, relying upon the software to detect and analyze errors and to 
dyamically reconfigure the system to bypass faulty units. 

 

Special hardware is needed only to isolate the units from one another, so a 
faulty unit does not cause the failure of a nonfaulty one. 

 

Processor/memory modules and bus modules as the basic units of fault 
detection and reconfiguration have been used. These units make system 
reconfiguration easy and are small and inexpensive enough to allow 
sufficient replication to achieve the desired reliability. 

 

By using software to achieve fault tolerance, SIFT allows considerable 
flexibility in the choice of error handling policies and mechanisms.  

For example, algorithms for fault masking and reconfiguration can be easily 
modified on the basis of operational experience.  

Novel approaches to the tolerance of programming errors can be incorporated. 
Moreover, it is fairly easy to enhance the performance of the system by 
adding more hardware. 


