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DTMC: Discrete-time homogeneous Markov chain 
-  Markov process X (memoryless property) with finite discrete-state space S 

- steady-state transition probabilities 

- transitions at fixed intervals (steps)   

Transition probability matrix 

probability of moving from state i  

to  state j in one step 

Definitions 

n number of states  

p = (p1, …, pn) 
state space distribution 

Memoryless property 
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Transition probability from an initial state to a final state in (t1+t2)  steps:  

 - transition probability from the initial state to a state k in t1 steps  

 - transition probability from state k to final state in t2 steps 

 

Characterization of time evolution of the process  

P(t) = Pt 

It follows that:  t-steps Transition probability matrix 

t-th power of P 

probability of moving from state i to  state j in t steps 
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State space distribution 
 

  

 pi
(t) = P{Xt = i} 

Initial state space distribution:    

   

   pi
(0) = P{X0 = i}  initial probability vector   

A single step forward:  

   p(1) = p(0) P 

Transient solution: p(t) 

State occupancy vector at time t in terms of the transition probability  matrix: 

      p(t) = p(0) Pt 

Probability that the DTMC is in state i at time-step t 

System evolution in a finite number of steps computed starting from the  

initial state distribution and the transition probability matrix  

       

= (p1  , …, pn  )
 p(0) (0) (0) 
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Sojourn time 
time spent by a DTMC in any of its states (independently of  its initial distribution)  

 

    STi(k)   probability that the DTMC stays in state i for k steps  
      before moving to  another state  

 

Geometric distribution – random variable with memoryless  property  

P{Zi = k}= pii
(k-1) (1- pii ) 

Zi = number of steps that the DTMC stays in state i before moving 

S= {0, 1}   0 stay in state i 1 move into a state different from i 

pii probability of staying in state i 

(1-pii) probability of moving to another state 

Z = number of trials before  

the first success  

(included the success) 
STi (k) = P{Zi = k} 
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Limiting behaviour 

A DTMC can be specified in terms of the state occupancy probability 

vector p and a transition probability matrix P 

      p(t) = p(0) Pt 

The limiting behaviour of a DTMC depends on the  

characteristics of its states.  Sometimes the solution is simple.  

The limiting behaviour of a DTMC (steady-state behaviour): 
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Irreducible DTMC 

A state j is said to be accessible  from state i if there exists t >=0  

such that   Pij
(t) >0, we write i->j 

 

In terms of the graph, j is accessible from state i if there is a path 

from node i to node j.  

 

A DTMC is irreducible if each state is accessible from every 

other state (for each i, j: it holds i ->j), otherwise it is reducible 
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Classification of states 
A state i is periodic with period d >1  if it is possible to move to 

state i only after n steps such that  n = d, 2d, 3d, ….: 

  

  Pji
(t) > 0    implies t is an integer multiple of d 

 

If d=1, the state i is  said to be aperiodic; it is possible to move 

to the same state in one step 

 

1 2 

state 1 is periodic with period d=2 

state 2 is periodic with period d=2 

1 

1 
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Classification of states 

 

A state i is recurrent if  

   for each j: if (i->j)  then (j->i) 

 

A state i is transient if  

   exists (j!=i)  such that (i->j)  and not (j->i) 

 

A state i is absorbent if  

   pii=1        

(i is a recurrent state) 

 

 

Each Markov chain has at least one recurrent state 
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Steady-state behaviour 

If all states are recurrent,  the steady-state behaviour of 

the Markov chain is given by the fixpoint of the equation:  

  

    p(t) = p(t-1) P 
with  

  Sj pj =1 

  

For aperiodic irreducible Markov chain for each j   

 

 

 

exists and are independent from p(0)   

pj  is  inversely proportional to the period of recurrence of state j 
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Time-average state space distribution 

For periodic Markov chains 

 

doesn’t exist (caused by the  

probability of the periodic state) 

We compute the time-average 

state space distribution, called p* 

     1   2 

1   0   1 

2   1   0 

p(0) = (1,0) 

p(1) = p(0) P       p(1) = (0,1) 

p(2) = p(1) P       p(2) = (1,0) 

……….. 

 

P= 

1 2 

p(0) =(1,0) 

p* = 
state i is periodic with period d=2 

1 

1 
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Continuous-time homogeneous Markov chain (CTMC) 
- Markov process X (memoryless property) with discrete-state space S 

- steady-state transition rates 

-  events may occur at any point in time 

          for all t>0 and 0<t1<t2<…<tn. 

Steady-state transition probabilities  

Let T be an interval of real numbers (e.g., T=[0,1]).  
Memoryless property: 

State-transition-rate matrix, the Q matrix 

Definitions 
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      Single system with repair 

 - transition rates: l failure rate, m repair rate 

 - identification of states 

 - initial state-space  p(0) = [1, 0] 

Q = 

Solution of the differential 

equations: 

  

Availability 

A(t) = p0(t) 

  

(t) (t) (t) p =  [p0   , p1   ]      

    p(t) = [p0(t), p1(t)] in the book 



13 

A CTMC can be specified in terms of the occupancy probability vector 

p and a transition probability matrix P 

     p(t) = p(0) Pt 

Transient solution  

 p(t) 

This allows to compute the probability of reaching state j from state i 

at time t : 

where 

  P(t) = eQt    for t>=0 

P(t) =  

ij 

We have: 
Different  numerical  

solution methods 
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For the memoryless property,  

the sojourn time spent by a CTMC in any of its states is  

independent of how long the CTMC has previously been  

in state i.   

 

There is only one random variable that has this property: the 

exponential random variable: 

 

STi  sojourn time in state i:      

      

Sojourn time 

-> the time spent in each state takes non-negative real values and 

has an exponential distribution 

STi = e(  ) ai
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Steady-state behaviour 

For irreducible CTMC (irreducible if every state is accessible 

from every other state. For each i, j, it holds i ->j.)  

the solution can be calculated under the constraint: 

p*Q=0,     where p* =  

The steady-state distribution is independent of the  

initial-state distribution 

We can prove that we have to solve the equation: 
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Direct methods: 
 Good packages exists 

 Very poor performance if Q is very large 

Iterative methods:  

An iterative method converges if : 

Stopping condition: 

If the CTMC is not irreducible then more complex solution 

methods are required 

Other methods 
…………………………  
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Dual processor system with repair 
A, B processors 

 

Rates: l1, l2 and m1, m2 

Identification of states:  

  A, B working 

  A working, B failed 

  B working, A failed 

  A, B failed 

  
Collapsed model 

Single repair at a time 

Availability 

 

A(t) = 1- p2(t) 

 

p(0) = [1, 0, 0] Q = 

Laplace transform 
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Reliability modeling 
 

- making state 2 a trapping state 
 

p(0) = [1, 0, 0] 

Q = 

Reliability   R(t) = 1- p2(t)       R(t)=p0(t) + p1(t) 

  Laplace transform 
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TMR system with repair 

Rates: l and m 

 

Identification of states:  

  3 processors working, 0 failed 

  2 processors working, 1 failed  

  1 processor working, 2 failed 

Transition rate matrix: 

Reliability   R(t) = 1- p2(t) 

  

P(0) = [1, 0, 0] 
Q = 

Laplace transform 
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Comparison with nonredundant system and TMR 

without repair  
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        MTTF 

MTTF =     R(t) dt 

MTTF is equal to the MTTF of a TMR system without repair plus an 

additional term due to the repair activity. 

failure rate l = 0.001    repair rate 

m = 0.1 

on-line repair allows the system  

MTTF to increase by a factor of 17 

MTTF =     p0(t) + p1(t)  dt 

period the system is in a state that correspond to correct 

behavior 

TMR with repair:  
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X random process that represents the  number of operational memories and the 

number of  operational processors at time t 

 

 

Given a state (i, j):  

  i is the number of operational memories;  

 j is the number of operational processors 

 

An example of modeling (CTMC)  

lm failure rate for memory 

lp failure rate for processor 

 

Multiprocessor system with  2 processors and 3 shared memories system. 

System is operational if at least one processor and  one memory are 

operational. 

S = {(3,2), (3,1), (3,0), (2,2), (2,1), (2,0), (1,2), (1,1), (1,0), (0,2), (0,1)} 
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(3, 2) -> (2,2)  failure of one memory 

 

(3,0), (2,0), (1,0), (0,2), (0,1)  are absorbent states 

lm failure rate for memory 

lp failure rate for processor 

 

Reliability modeling 
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 Assume that faulty components are replaced and we evaluate the 

probability that the system is operational at time t 

 

 Constant repair rate m (number of expected repairs in a unit of time) 

 

 Strategy of repair: 

 only one processor or one memory at a time can be substituted 

 

 The behaviour of components (with respect of being operational or failed) 

is not independent:  it depends on whether or not other components are 

in a failure state.   

Availability modeling 
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 Strategy of repair: 

 only one component can be substituted at a time 

 

lm failure rate for memory 

lp failure rate for processor 

mm repair rate for memory  

mp repair rate for processor 
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 An alternative strategy of repair: 

 only one component can be substituted at a time  and processors have  

higher priority 

 exclude the lines mm representing memory repair in the case where there 

has been a process failure 
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System model analysis 

What is the availability of the system at time t? 

 

What is the steady-state availability? 

 

What is the expected time to failure? 

 

…………. 

The Markov model fits with the standard assumption of failure rates  a 
constant, leading to exponentially distributed inter-arrival times of 

failures. Similarly, we assume costant repair rate. 

 

What about safety?  
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  Safety - avoidance of catastrophic consequences -  

As a function of time, S(t), is the probability that the system 

either behaves correctly or will discontinue its functions in a 

manner that causes no harm (operational or Fail-safe) 

 

Fail-safe 

Fail-unsafe 

 Coverage – The coverage is the measure c of the system ability 

to reach a fail-safe state after a fault.   

Modeling coverage and safety in a Markov chain means that every unfailed  

state has two transitions to two different states, one of which is fail-safe,  

the other is fail-unsafe. 

cl 

(1-c)l 

Fs 

Fu 

op 

Safety  
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TMR 

c = probability of coincident failures of two components  

the system  can be in a safe state although the failures of two 

components, if the output of the three components  disagree  

0 
3l 2(1-c)l 

2cl 

1 4 2 

3 

3cl 
3cl 

3(1-c)l 

0   three correct components 

1 one faulty component 

2 two faulty components (no coincident failures) 

3 two faulty component coincident failures 

4 three faulty components (no coincident failures) 

S(t) = 1- p3(t) 

R(t) = p0(t) + p1(t) 

 

S(t) = p0(t) + p1(t) + p2(t) + p4(t) 

 
Fail-unsafe state 

Fail-safe state 

Fail-safe state 
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Observations 

Quantitative dependability evaluation: 

 - guiding design decisions  

 - assessing systems as built 

- mandatory for safety critical systems 

 

Model construction techniques  

  -> scalability challenge 

 composition approaches  

 build complex models in a modular way through a  composition of its 

submodels 

 

 decomposition/aggregation approaches  

(hierarchical decomposition approach) 

 The overall model is decoupled in simpler and more tractable 

submodels, and the measures obtained from the solution of the sub-

models are then aggregated to compute those concerning the overall 

model.  


