DTMC: Discrete-time homogeneous Markov chain
- Markov process X (memoryless property) with finite discrete-state space S

- steady-state transition probabilities
- transitions at fixed intervals (steps) t € {0,1,2,...}

Definitions

n number of states

n=(m, ..., ;) state space distribution

Transition probability matrix
p |, D pij = P{X1=j|Xo =i}
| probability of moving from state |
" dy to statejin one step

Memoryless property

p{Xt+1 :j|Xn — kn; Xt—l — 'I’f-t—hXt — ?;} — p{Xt+1 :j

){t =1 }



Characterization of time evolution of the process

pi)) =P{X; =j|Xo=i}, t€{0,1,2,..}
probability of moving from state i to state j in t steps

Transition probability from an initial state to a final state in (t1+t2) steps:
- transition probability from the initial state to a state k in t1 steps
- transition probability from state k to final state in t2 steps

t1+t2 ZP:A p“ Vi,jeSVitL2 >1
keS

It follows that: t-steps Transition probability matrix

P(t) = P! t-th power of P



State space distribution

Initial state space distribution:  w©@ = (7Y, ..., ©®)

m.0 = P{X, =i} initial probability vector
A single step forward:

1) = 7zO0) P
Probability that the DTMC is In state | at time-step t

m = P{X, = i}

Transient solution: ©®

State occupancy vector at time t in terms of the transition probability matrix:
) = 0 pt

System evolution in a finite number of steps computed starting from the
initial state distribution and the transition probability matrix



Sojourn time

time spent by a DTMC in any of its states (independently of its initial distribution)

STi(k) probability that the DTMC stays in state i for k steps
before moving to another state

Geometric distribution — random variable with memoryless property

Z1 = number of steps that the DTMC stays in state i before moving
S={0, 1} Ostayinstatei 1 move into a state different fromi

P{Zi = k}= p; 1) (1- p;)
P probability of staying in state |
(1-p;) probability of moving to another state
Z = number of trials before

the first success ST. (k) — P{Zi — k}
|

(included the success)



Limiting behaviour

A DTMC can be specified in terms of the state occupancy probability
vector m and a transition probability matrix P

0 = 70 pt

The limiting behaviour of a DTMC (steady-state behaviour):

lim 7r(-t )

t—o0 J

The limiting behaviour of a DTMC depends on the
characteristics of its states. Sometimes the solution is simple.



Irreducible DTMC

A state j is said to be accessible from state i if there exists t >=0
such that Pij(t) >0, we write i->j

In terms of the graph, j is accessible from state i if there is a path
from node i to node |.

ADTMC is irreducible if each state is accessible from every
other state (for each i, j: it holds i ->j), otherwise it is reducible



Classification of states

A state i is periodic with period d >1 if it is possible to move to
state i only after n steps such that n=d, 2d, 34, ....:

Pji(t) > (0 implies tis an integer multiple of d

If d=1, the state i is said to be aperiodic; it is possible to move
to the same state in one step

state 1 is periodic with period d=2

state 2 is periodic with period d=2



Classification of states

A state i is recurrent if
for each j: if (i->)) then (j->1)

A state i is transient if
exists (j!=1) such that (i->}) and not (j->i)

A state 1 is absorbent if

Pi=1
(1 Is a recurrent state)

Each Markov chain has at least one recurrent state



Steady-state behaviour

For aperiodic irreducible Markov chain for each |

lim 7r§-t )
t—o0 -

exists and are independent from 7

If all states are recurrent, the steady-state behaviour of
the Markov chain is given by the fixpoint of the equation:

a® = gt p
with

m; IS Inversely proportional to the period of recurrence of state |



Time-average state space distribution

For periodic Markov chains lim 7r(-t)

tooo 7

doesn'’t exist (caused by the
probability of the periodic state)

We compute the time-average
state space distribution, called n*
t

Z () n®=(1,0)
ok = ![l-frvl 1_='t_ state i is periodic with period d=2
. 10 = (1,0)
1 2 D = 7O P ) =(0,1)

P= 1 [0 1 t@=g®WP 7@ =(1,0)
211 0
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Continuous-time homogeneous Markov chain (CTMC)

- Markov process X (memoryless property) with discrete-state space S
- steady-state transition rates

- events may occur at any point in time

Definitions

Let T be an interval of real numbers (e.g., T=[0,1]).
Memoryless property:

P{XH‘T — j‘){t — ?:J Xf—i‘l — kla *eey Xf—t-n — kﬁ} — ‘P{-‘Xrt-l-‘r — j

X, =i}
for all t>0 and O<t1<t2<...<tn.
Steady-state transition probabilities
P{Xiyr = jl X =i} = P{X; = j|Xo = ¢}

State-transition-rate matrix, the Q matrix

/
rate of going from i#j,
state 7 to state j L —
5= < ’ ngs 9 — 0
—Zqik i=J].

k#i

~
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Single system with repair

- transition rates: A failure rate, u repair rate

- identification of states
o nlt) = [ch()t) ’Tfl(t)]
- Initial state-space p(0) =[1, O] p(t) = [po(), p,(8)] in the book
A
o c Solution of the differential
equations:
,l.
}‘L )‘ “ [N+t
poft) = + e
A+ A+
(—j%’—”—’ = —=Apolt) + ppi(t) 2 5
| pa(t) = e
A+ A+
g%;ﬂ = Apolt) — ppa(t)
Availability
0= [-* A ] A(t) = po(t)
A
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Transient solution

A CTMC can be specified in terms of the occupancy probability vector
m and a transition probability matrix P

0 = 70 pt

where
PO = gQt for t>=0
tQ t2Q2 t3Q3
Pt = I+ 1!—|— 5 + 3] 4 s

This allows to compute the probability of reaching state | from state |
attimet: p(t)

We have:
7 = ;(0) Q1 Different numerical

d solution methods
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Sojourn time

For the memoryless property,
the sojourn time spent by a CTMC in any of its states is
Independent of how long the CTMC has previously been

In state I.

There is only one random variable that has this property: the
exponential random variable:

ST, sojourn time in state i

ST, = e@)

-> the time spent in each state takes non-negative real values and
has an exponential distribution

14



Steady-state behaviour

lim ?T;ﬂ VI ES

t—r00
We can prove that we have to solve the equation:

. (1)
* —_— * —
*0=0 where T* = lim 7
Q : t—00 J

For irreducible CTMC (irreducible if every state is accessible

from every other state. For each i, j, it holds i ->j.)
the solution can be calculated under the constraint:

n

Zrz:::l

i=1

The steady-state distribution is independent of the

Initial-state distribution
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If the CTMC is not irreducible then more complex solution
methods are required

Direct methods:

Good packages exists

Very poor performance if Q is very large

Iterative methods:

An iterative method converages if ;

Al’imHn(M —n||=0
Stopping condition: Hn(’f”) — n(k)H <g

Other methods
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Dual processor system with repair

A, B processors

Rates: A1, A2 and pul, u2
Identification of states:
A, B working

A working, B failed

B working, A failed

A, B failed

Collapsed model

' i ' -2\ 2\ 0
Single repair at a time a ~
2 N Q_ 8 ~A = K AJ p(o)_[]'!O)O]
oo NB I
Al p2 AN exp (—(2IGA + 2p) + VAT + 4hpult)

a2 3 . e ——
AT+ 2Ap A2+ dAp + (3N + 2u) VA® + d\p

Availabilit ' + 4hp
y _ 4\ exp (OGN + 2u) — VA + 4hp)

A2+ 4hp — BN + 2u) VAT + 4

A() = 1- p,(0) e

Laplace transform 2% + 2\ + pf
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Reliability modeling
- making state 2 a trapping state

p(0) =11, 0, 0]

—

= 2 [ =2\ 2\ 0

0 0 0

Reliability R(t) =1-p,(t)  R(O)=py(t) + (1

Laplace transform

a2 exp (—(1/2)BN + u = VA2 + 6Ap + pt)
(3N + w) VA? + 6Ap + pf — AN — 6ap —

R(t) =

4N exp (—(12)BA + p + VAT + 6Ap + phit)
(Gh + w) VA + 6Ap + p2 + A7 + 6Ap + p




TMR system with repair

Rates: A and u

o 3 A
Identification of states:

3 processors working, O failed 2 A
2 processors working, 1 failed 1 ‘@

1 processor working, 2 failed

"
Transition rate matrix:
Q= |:—3>\ 3\ 0]
-2\ - 2\ —
*5 : M = P(0) =11, 0, 0]
Reliability R(t) = 1- p2(t) Laplace transform

5)\+p.+\[}\2+10)\p+p.2
2V + 10Ap + p2

CSA 4 p = VAT 4 10Ap +
2VAY + 10Ap + p

exp (—(1/2)(5\ + p — VAT + 10Ap + p)t)

R(t) =

exp (—(172)6N + w + VAT + 100u + pd)t)
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Comparison with nonredundant system and TMR
without repair

Rehiability
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o MTTF
MTTE =] R(t) dt
t=0
period the system is in a state that correspond to correct
behavior

TMR with repair:
‘ fallure rate A = 0.001 repair rate
MTTE = [ po® + py(t) ot "20° i
t=0
TMR with repair MTTF = 2 , L = 17,5000 hours
bA bA

MTTF is equal to the MTTF of a TMR system without repair plus an
additional term due to the repair activity.

1
Nonredundant MTTF = X = 1000 hours

: IR on-line repair allows the system
MR wit MTTF = — = ~ :
TRAR Witout Frepanr ) RIS MTTF to increase by a factor of 17
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An example of modeling (CTMC)

Multiprocessor system with 2 processors and 3 shared memories system.
System is operational if at least one processor and one memory are

operational.

—  mem

proc

mem

proc

— mcm

Ay, failure rate for memory
A, failure rate for processor

X random process that represents the number of operational memories and the

number of operational processors at time t

Given a state (i, j):
| Is the number of operational memories;
j iIs the number of operational processors

S =1{(3.2),(3.1), (3.0), (2,2), (2,1), (2,0), (1,2), (1,1), (1,0), (0.,2), (0,1)}
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Reliability modeling

@ 3Am 2Am @ Am @

iZXP 2 kp l A failure rate for memory
@ 3 Am @ Am Q A, failure rate for processor
E M, B

W @ o

(3, 2) -> (2,2) failure of one memory

(3,0), (2,0), (1,0), (0,2), (0,1) are absorbent states
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Availability modeling

>

Assume that faulty components are replaced and we evaluate the
probability that the system is operational at time t

Constant repair rate u (number of expected repairs in a unit of time)

Strategy of repair:
only one processor or one memory at a time can be substituted

The behaviour of components (with respect of being operational or failed)
IS not independent: it depends on whether or not other components are
in a failure state.

24



» Strategy of repair:
only one component can be substituted at a time

Am failure rate for memory
Ap failure rate for processor
um repair rate for memory
up repair rate for processor
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» An alternative strategy of repair:
only one component can be substituted at a time and processors have
higher priority

» exclude the lines um representing memory repair in the case where there
has been a process failure




System model analysis

What is the availability of the system at time t?
What is the steady-state availability?

What is the expected time to failure?

The Markov model fits with the standard assumption of failure rates a
constant, leading to exponentially distributed inter-arrival times of

failures. Similarly, we assume costant repair rate.

What about safety?
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Safety

Safety - avoidance of catastrophic consequences -
As a function of time, S(t), is the probability that the system
either behaves correctly or will discontinue its functions in a
manner that causes no harm (operational or Fail-safe)

Coverage — The coverage is the measure c of the system ability
to reach a fail-safe state after a fault.

Modeling coverage and safety in a Markov chain means that every unfailed
state has two transitions to two different states, one of which is fail-safe,
the other is fail-unsafe.

G
Fail-safe
(1-c)4 Fail-unsafe
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A WNEFLO

TMR

the system can be in a safe state although the failures of two
components, if the output of the three components disagree

c = probability of coincident failures of two components

Fail-safe state

Fail-safe state

S(t) = 1- ps(t)

S(t) = Po(t) + Py (1) + Pa(t) + Pa(t)
Fail-unsafe state R(t) = po(t) o pl(t)

three correct components

one faulty component

two faulty components (no coincident failures)
two faulty component coincident failures

three faulty components (no coincident failures)
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Observations

Quantitative dependability evaluation:
- guiding design decisions
- assessing systems as built
- mandatory for safety critical systems

Model construction techniques
-> scalability challenge
» composition approaches

build complex models in a modular way through a composition of its
submodels

» decomposition/aggregation approaches
(hierarchical decomposition approach)

The overall model is decoupled in simpler and more tractable
submodels, and the measures obtained from the solution of the sub-
models are then aggregated to compute those concerning the overall
model.
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